Experimental investigation on spray characteristics of agricultural full-cone pressure swirl nozzle
Abstract
Keywords: full-cone pressure swirl nozzle, droplet size, droplet velocity, liquid volume flux, high-speed camera, PDA
DOI: 10.25165/j.ijabe.20231604.7088
Citation: Xue X Y, Xu X F, Lyu S L, Song S R, Ai X, Li N C, et al. Experimental investigation on spray characteristics of agricultural full-cone pressure swirl nozzle. Int J Agric & Biol Eng, 2023; 16(4): 29–40.
Keywords
Full Text:
PDFReferences
Laryea G N, No S. Development of electrostatic pressure-swirl nozzle for agricultural applications. Journal of Electrostatics, 2003; 57(2): 129-42. doi: 10.1016/S0304-3886(02)00122-5.
Belhadef A, Vallet A, Amielh M, Anselmet F. Pressure-swirl atomization: Modeling and experimental approaches. International Journal of Multiphase Flow, 2012; 39: 13-20. doi: 10.1016/j.ijmultiphaseflow.2011.09.009.
Santolaya J L, Aísa L A, Calvo E, García I, García JA. Analysis by droplet size classes of the liquid flow structure in a pressure swirl hollow cone spray. Chemical Engineering and Processing: Process Intensification, 2010; 49(1): 125-131. doi: 10.1016/j.cep.2009.12.003.
Hamid AHA, Atan R. Spray characteristics of jet–swirl nozzles for thrust chamber injector. Aerospace Science and Technology, 2009; 13(4-5): 192-196. doi: 10.1016/j.ast.2008.10.003.
Sun Y, Alkhedhair A M, Guan Z, Hooman K. Numerical and experimental study on the spray characteristics of full-cone pressure swirl atomizers. Energy, 2018; 160: 678-692. doi: 10.1016/j.energy.2018.07.060.
Hewitt A J. Spray drift: impact of requirements to protect the environment. Crop Protection, 2000; 19(8): 623-627. doi: 10.1016/S0261-2194(00)00082-X.
Hilz E, Vermeer A W P, Cohen Stuart M A, Leermakers F A M. Mechanism of perforation based on spreading properties of emulsified oils. Atomization and Sprays, 2012; 22(12): 1053-1075. doi: 10.1615/AtomizSpr.2013006728.
Makhnenko I, Alonzi E R, Fredericks S A, Colby C M, Dutcher C S. A review of liquid sheet breakup: Perspectives from agricultural sprays. Journal of Aerosol Science, 2021; 157: 105805. doi: 10.1016/j.jaerosci.2021.105805.
Durdina L, Jedelsky J, Jicha M. Investigation and comparison of spray characteristics of pressure-swirl atomizers for a small-sized aircraft turbine engine. International Journal of Heat and Mass Transfer, 2014; 78: 892-900. doi: 10.1016/j.ijheatmasstransfer.2014.07.066.
Zhang T, Dong B, Chen X, Qiu Z, Jiang R, Li W. Spray characteristics of pressure-swirl nozzles at different nozzle diameters. Applied Thermal Engineering, 2017; 121: 984-991. doi: 10.1016/j.applthermaleng.2017.04.089.
Santolaya JL, Aísa L A, Calvo E, García I, Cerecedo L M. Experimental study of near-field flow structure in hollow cone pressure swirl sprays. Journal of Propulsion and Power, 2007; 23(2): 382-389. doi:10.2514/1.20713.
Patel M K, Kundu M, Sahoo H K, Nayak M K. Enhanced performance of an air-assisted electrostatic nozzle: Role of electrode material and its dimensional considerations in spray charging. Engineering in Agriculture, Environment and Food, 2016; 9(4): 332-338. doi: 10.1016/j.eaef.2016.05.002.
Senecal P K, Schmidt D P, Nouar I, Rutland C J, Reitz R D, Corradini M L. Modeling high-speed viscous liquid sheet atomization. International Journal of Multiphase Flow, 1999; 25(6): 1073-1097. doi: 10.1016/S0301-9322(99)00057-9.
Saha A, Lee J D, Basu S, Kumar R. Breakup and coalescence characteristics of a hollow cone swirling spray. Physics of Fluids, 2012; 24(12): 124103. doi: 10.1063/1.4773065.
Davanlou A, Lee J D, Basu S, Kumar R. Effect of viscosity and surface tension on breakup and coalescence of bicomponent sprays. Chemical Engineering Science, 2015; 131: 243-255. doi: 10.1016/j.ces.2015.03.057.
Song S R, Sun D Z, Xue X Y, Dai Q F, Li Z, Li Z, et al. Design of pipeline constant pressure spraying equipment and facility in mountainous region orangery. IFAC-Papersonline, 2018; 51(17): 495-502. doi: 10.1016/j.ifacol.2018.08.161.
Walzel P. Spraying and atomizing of liquids. Ullmann's encyclopedia of industrial chemistry, 2000: 1-30. doi: 10.1002/14356007.b02_06.pub3.
Wilson C. Chin. Managed pressure drilling. Elsevier, 2012. doi: 10.1016/C2010-0-66595-3.
Lefebvre A H, McDonell V G. Atomization and sprays: CRC press; 2017. doi: 10.1201/9781315120911
Shrigondekar H, Chowdhury A, Prabhu S V. Characterization of solid-cone simplex mist nozzles. Fire Safety Journal, 2020; 111: 102936. doi: 10.1016/j.firesaf.2019.102936.
Bade K M, Schick R J. Phase Doppler Interferometry volume flux sensitivity to parametric settings and droplet trajectory. Atomization and sprays, 2011; 21(7): 537-51. doi: 10.1615/AtomizSpr.2012001407.
Datta A, Som S K. Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle. International Journal of Heat and Fluid Flow, 2000; 21(4): 412-419. doi: 10.1016/S0142-727X(00)00003-5.
Dombrowski N, Hooper P C. The effect of ambient density on drop formation in sprays. Chemical Engineering Science, 1962; 17(4): 291-305. doi: 10.1016/0009-2509(62)85008-8.
Sivakumar D, Vankeswaram S K, Sakthikumar R, Raghunandan BN. Analysis on the atomization characteristics of aviation biofuel discharging from simplex swirl atomizer. International Journal of Multiphase Flow, 2015; 72: 88-96. doi: 10.1016/j.ijmultiphaseflow.2015.02.009.
Rezaei S, Vashahi F, Ryu G, Lee J. On the correlation of the primary breakup length with fuel temperature in pressure swirl nozzle. Fuel, 2019; 258: 116094. doi: 10.1016/j.fuel.2019.116094.
Xia Y, Alshehhi M, Hardalupas Y, Khezzar L. Spray characteristics of free air-on-water impinging jets. International Journal of Multiphase Flow, 2018; 100: 86-103. doi: 10.1016/j.ijmultiphaseflow.2017.12.007.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.