Integrating field images and microclimate data to realize multi-day ahead forecasting of maize crop coverage using CNN-LSTM
Abstract
Keywords: maize crop coverage, multi-day ahead forecasting, CNN-LSTM, field images, microclimatic factors
DOI: 10.25165/j.ijabe.20231602.7020
Citation: Wang X, Yang Y, Zhao X, Huang M, Zhu Q B. Integrating field images and microclimate data to realize multi-day ahead forecasting of maize crop coverage using CNN-LSTM. Int J Agric & Biol Eng, 2023; 16(2): 199-206.
Keywords
Full Text:
PDFReferences
Maes W H, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science, 2019; 24(2): 152-164.
Sui R X, Thomasson J A, Ge Y F. Development of sensor systems for precision agriculture in cotton. Int J Agric & Biol Eng, 2012; 5(4): 1-14.
Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and electronics in agriculture, 2018; 151: 61-69.
Purevdorj T S, Tateishi R, Ishiyama T, Honda Y. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998; 19(18): 3519-3535.
Guevara-Escobar A, Tellez J, Gonzalez-Sosa E. Use of digital photography for analysis of canopy closure. Agroforestry Systems, 2005; 65(3): 175-185.
Tao Z Q, Bagum S A, Ma W, Zhou B Y, Fu J D, Cui R X, et al. Establishment of the crop growth and nitrogen nutrition state model using spectral parameters canopy cover. Spectroscopy and Spectral Analysis, 2016; 36(1): 231-236. (in Chinese)
Purcell L C. Soybean canopy coverage and light interception measurements using digital imagery. Crop Science, 2000; 40(3): 834-837.
Cheng M H, Jiao X Y, Liu Y D, Shao M C, Yu X, Bai Y, et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, 2022; 264: 107530. doi: 10.1016/j.agwat.2022.107530.
Lee K J, Lee B W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. European Journal of Agronomy, 2013; 48: 57-65.
García-Martínez H, Flores-Magdaleno H, Ascencio-Hernández R, Khalil-Gardezi A, Tijerina-Chávez L, Mancilla-Villa O R, et al. Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicless. Agriculture, 2020; 10(7): 277. doi: 10.3390/agriculture10070277.
De la Casa A, Ovando G, Bressanini L, Martínez J, Díaz G, Miranda C. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 2018; 146: 531-547.
Liu Y K, Mu X H, Wang H X, Yan G J. A novel method for extracting green fractional vegetation cover from digital images. Journal of Vegetation Science, 2012; 23(3): 406-418.
Chianucci F, Lucibelli A, Dell'Abate M T. Estimation of ground canopy cover in agricultural crops using downward-looking photography. Biosystems Engineering, 2018; 169: 209-216.
Coy A, Rankine D, Taylor M, Nielsen D C, Cohen J. Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 2016; 8(7): 474. doi: 10.3390/rs8070474.
Li T Y, Hua M, Wu X. A hybrid CNN-LSTM model for forecasting particulate matter (PM2. 5). IEEE Access, 2020; 8: 26933-26940.
Matsumura K, Gaitan C F, Sugimoto K, Cannon A J, Hsieh W W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. The Journal of Agricultural Science, 2015; 153(3): 399-410.
Ferreira L B, da Cunha F F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Computers and Electronics in Agriculture, 2020; 178: 105728. doi: 10.1016/j.compag.2020.105728.
Butler E E, Huybers P. Adaptation of US maize to temperature variations. Nature Climate Change, 2013; 3(1): 68-72.
Mistry P, Bora G. Development of yield forecast model using multiple regression analysis and impact of climatic parameters on spring wheat. Int J Agric & Biol Eng, 2019; 12(4): 110-115.
Long Z H, Qin J M, Zhang T Y, Xu W. Prediction of continuous time series leaf area index based on long short-term memory network: A case study of winter wheat. Spectroscopy and Spectral Analysis, 2020; 40(3): 898-904. (in Chinese)
Sayeed A, Choi Y, Eslami E, Lops Y, Roy A, Jung J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks, 2020; 121: 396-408. doi: 10.1016/j.neunet.2019.09.033.
Livieris I E, Pintelas E, Pintelas P. A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 2020; 32(23): 17351-17360.
Ye M N, Cao Z G, Yu Z H, Bai X D. Crop feature extraction from images with probabilistic superpixel Markov random field. Computers and Electronics in Agriculture, 2015; 114: 247-260.
Wang Q L, Guo Y F, Yu L X, Li P. Earthquake prediction based on spatio-temporal data mining: an LSTM network approach. IEEE Transactions on Emerging Topics in Computing, 2017; 8(1): 148-158.
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998; 86(11): 2278-2324.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997; 9(8): 1735-1780.
Zhang X L, Lin T, Xu J F, Luo X, Ying Y B. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Analytica Chimica Acta, 2019; 1058: 48-57.
Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998; 6(2): 107-116.
Kingma D P, Ba J L. Adam: A method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR)), 2015; In press. arXiv: 1412.6980.
Zhang J F, Zhu Y, Zhang X P, Ye M, Yang J Z. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 2018; 561: 918-929.
Jung D H, Kim H S, Jhin C, Kim H J, Park S H. Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse. Computers and Electronics in Agriculture, 2020; 173: 105402. doi: 10.1016/j.compag.2020.105402.
Yan R, Liao J, Yang J Q, Sun W, Nong M Y, Li F P. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Systems with Applications, 2021; 169: 114513. doi: 10.1016/j.eswa.2020.114513.
Yue Y, Li J H, Fan L F, Zhang L L, Zhao P F, Zhou Q, et al. Prediction of maize growth stages based on deep learning. Computers and Electronics in Agriculture, 2020; 172: 105351. doi: 10.1016/j.compag.2020.105351.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.