Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level
Abstract
Keywords: Chinese hickory nut, endogenous foreign body, hyperspectral spectral imaging, pixel level, detection
DOI: 10.25165/j.ijabe.20221502.6881
Citation: Feng Z, Li W H, Cui D. Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level. Int J Agric & Biol Eng, 2022; 15(2): 204–210.
Keywords
Full Text:
PDFReferences
Huang Y J, Xiao L H, Zhang Z R, Zhang R, Wang Z J, Huang C Y, et al. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience, 2019; 8(5): giz036. doi: 10.1093/gigascience/giz036.
Hu L S, Du M H, Zhang J P. Physicochemical properties and nutritional ingredients of kernel oil of Carya cathayensis Sarg. American Journal of Plant Sciences, 2018; 9(12): 2494–2503.
Edwards M C, Stringer M F. Observations on patterns in foreign material investigations. Food Control, 2007; 18(7): 773–782.
Jiang L, Zhu B, Rao X Q, Berney G, Tao Y. ICA based band selection for black walnut shell and meat classification in hyperspectral fluorescence imagery. In: 2007 ASAE Annual Meeting, 2007; Paper No. 073088. doi: 10.13031/2013.22947.
Mohd Khairi M T, Ibrahim S, Md Yunus M A, Faramarzi M. Noninvasive techniques for detection of foreign bodies in food: A review. Journal of Food Process Engineering, 2018; 41(6): e12808. doi: 10.1111/jfpe.12808.
Jiang L, Zhu B, Rao X Q, Berney G, Tao Y. Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using Gaussian kernel function approach. Journal of Food Engineering, 2006; 81(1): 108–117.
Jiang L, Zhu B, Jing H, Chen X, Rao X Q, Tao Y. Gaussian mixture model-based walnut shell and meat classification in hyperspectral fluorescence imagery. Transactions of the ASABE, 2007; 50(1): 153–160.
Al-Sarayreh M, Reis M M, Yan W Q, Klette R. Detection of red-meat adulteration by deep spectral-spatial features in hyperspectral images. Journal of Imaging, 2018; 4(5): 63. doi: 10.3390/jimaging4050063.
Jin X, Jie L, Wang S, Qi H J, Li S W. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field. Remote Sensing, 2018; 10(3): 395. doi: 10.3390/rs10030395.
Fuentes A, Yoon S, Kim S C, Park D S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 2017; 17(9): 2022. doi: 10.3390/s17092022.
Kang H W, Chen C. Fast implementation of real-time fruit detection in apple orchards using deep learning. Computers and Electronics in Agriculture, 2020; 168: 105108. doi: 10.1016/j.compag.2019.105108.
Zhu S S, Zhou L, Gao P, Bao Y D, He Y, Feng L. Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties. Molecules, 2019; 24(18): 3268. doi: 10.3390/ molecules24183268.
Qin J W, Chao K L, Kim M S, Lu R F, Burks T F. Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 2013; 118(2): 157–171.
Fan S X, Li J B, Zhang Y H, Tian X, Wang Q Y, He X, et al. On line detection of defective apples using computer vision system combined with deep learning methods. Journal of Food Engineering, 2020; 286: 110102. doi: 10.1016/j.jfoodeng.2020.110102.
Hossain M S, Al-Hammadi M, Muhammad G. Automatic fruit classification using deep learning for industrial applications. IEEE Transactions on Industrial Informatics, 2018; 15(2): 1027–1034.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436–444.
Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC. In: 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland: IEEE, 2016; pp.1–4. doi: 10.1109/FPL.2016.7577314.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997; 9(8): 1735–1780.
Zhou F, Hang R L, Liu Q S, Yuan X T. Hyperspectral image classification using spectral-spatial LSTMs. Neurocomputing, 2019; 328: 39-47.
Schaffer C. Overfitting avoidance as bias. Machine Learning, 1993; 10(2): 153–178.
Qu Z, Mei J, Liu L, Zhou D Y. Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model. IEEE Access, 2020; 8: 54564–54573.
Kingma D P, Ba J. Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings. International Conference on Learning Representations, ICLR, 2017; arXiv: 1412.6980.
Farrell M D, Mersereau R M. On the impact of PCA dimension reduction for hyperspectral detection of difficult targets. IEEE Geoscience and Remote Sensing Letters, 2005; 2(2): 192–195.
Singh S, Kasana S S. Efficient classification of the hyperspectral images using deep learning. Multimedia Tools and Applications, 2018; 77(20): 61–74.
Mishra S, Datta-Gupta A. Applied statistical modeling and data analytics: A practical guide for the petroleum geosciences. Elsevier, 2018; 250p.
Qin J, Lu R. Detection of pits in tart cherries by hyperspectral transmission imaging. Transactions of the ASAE, 2005; 48(5): 1963–1970.
Belousov A I, Verzakov S A, von Frese J. Applicational aspects of support vector machines. Journal of Chemometrics, 2002; 16(8–10): 482–489.
Zhang R, Shen J, Wei F, Li X, Sangaiah A K. Medical image classification based on multi-scale non-negative sparse coding. Artificial Intelligence in Medicine, 2017; 83: 44–51.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.