Development status and trend of agricultural robot technology
Abstract
Keywords: agricultural robot, type, selective, non-selective, trend
DOI: 10.25165/j.ijabe.20211404.6821
Citation: Jin Y C, Liu J Z, Xu Z J, Yuan S Q, Li P P, Wang J Z. Development status and trend of agricultural robot technology. Int J Agric & Biol Eng, 2021; 14(4): 1–19.
Keywords
Full Text:
PDFReferences
Oliveira L, Moreira A P, Silva M F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics, 2021; 10(2): 52. doi: 10.3390/robotics10020052.
Saiz V, Rovira F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 2020; 10(2): 207. doi: 10.3390/ agronomy10020207.
Palli P, Liew C T, Drozda A, Mwunguzi H, Pitla S K, Walia H, et al. Robotic gantry for automated imaging, sensing, crop input application, and high-throughput analysis. In: 2019 ASABE Annual International Meeting, ASABE, 2019; Paper number: 1901519. doi: 10.13031/aim.201901519.
Hang L, Tang L, Steven W, Mei Y. A robotic platform for corn seedling morphological traits characterization. Sensors, 2017; 17(9): 2082. doi: 10.3390/s17092082.
Xie Z J, Gu S, Chu Q, Li B, Fan K J, Yang Y L, et al. Development of a high-productivity grafting robot for Solanaceae. Int J Agric & Biol Eng, 2020; 13(1): 82–90.
Jiang K, Zhang Q, Chen L P, Guo W Z, Zheng W G. Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit. Int J Agric & Biol Eng, 2020; 13(5): 117–124.
Treiber M, Hillerbrand F, Bauerdick J, Bernhardt H. On the current state of agricultural robotics in crop farming - chances and risks. In: 47th Int Symposium "Actual Tasks Agr Eng", Croatia, 2019; pp.27–33.
Scholz C, Moeller K, Ruckelshausen A, Hinck S, Goettinger, M. Automatic soil penetrometer measurements and gis-based documentation with the autonomous field robot platform bonirob. 12th Int Conf Precision Agr, 2014.
Saiz V, Rovira F, Millot C. Performance improvement of a vineyard robot through its mechanical design. In: 2017 ASABE Annual International Meeting, 2017; Paper number: 1701120. doi: 10.13031/ aim.201701120.
Annalisa M, Giulio R, Michael N. A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precision Agriculture, 2018; 20(2): 423–444.
Xu E, Hou B M, JiaNa B I, Shen Z G, Wang B. Smart agriculture based on internet of things. In: 2nd Int Conf Robotics, Electr & Signal Process Tech, 2021; pp.157-162. doi: 10.1049/et.2014.0926.
Bayati M, Fotouhi R. A mobile robotic platform for crop monitoring. Advances in Robotics & Automation, 2018; 7(1): 1000186. doi: 10.4172/2168-9695.1000186.
Dos Santos Xaud M F, Leite A C, Barbosa E S, Faria H D, Loureiro G, From P J. Robotic tankette for intelligent bioenergy agriculture: design, development and field tests. XXII Congresso Brasileiro de Automatica (CBA2018). Joao Pessoa, Brazil, 2018; 1357. doi: 10.20906/CPS/CBA2018-1357.
Dos Santos F N, Sobreira H M P, Campos D F B, Morais R, Moreira A P G M, Contente O M S. Towards a reliable monitoring robot for mountain vineyards. In: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions. Vila Real, Potugal: IEEE, 2015; pp.37–43. doi: 10.1109/ICARSC.2015.21.
Gupta G S, Seelye M, Seelye J, Bailey D. Autonomous anthropomorphic robotic system with low-cost colour sensors to monitor plant growth in a laboratory. In-Tech, 2012; 22p.
Ota T, Iwasaki Y, Nakano A, Kuribara H, Higashide T. Development of yield and harvesting time monitoring system for tomato greenhouse production. Eng in Agr, 2018; 12(1): 41–47.
Rizk H, Habib M K. Robotized early plant health monitoring system. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. Washington, DC: IEEE, 2018; pp.3795–3800. doi: 10.1109/IECON.2018.8592833.
Vidoni R, Gallo R, Ristorto G, Carabin G, Mazzetto F, Scalera L, et al. ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming. In: ASME International Mechanical Engineering Congress & Exposition, 2017; Paper No. IMECE2017-71216, V04AT05A057. doi: 10.1115/IMECE2017-71216.
Bietresato M, Carabin G, Auria D, Gallo R, Ristorto G, Mazzetto F, et.al. A tracked mobile robotic lab for monitoring the plants volume and health. In: 2016 12th IEEE/ASME Int Conf on Mechatronic and Embedded Systems and Applications (MESA). Auckland: IEEE, 2016; pp.1–6. doi: 10.1109/MESA.2016.7587134.
Ahmadi A, Nardi L, Chebrolu N, Stachniss C. Visual servoing-based navigation for monitoring row-crop fields. In: 2020 IEEE Int Conf on Robotics and Automation (ICRA). IEEE, 2020; pp.4920–4926. https://arxiv.org/abs/1909.12754.
Ollero A, Sanfeliu A, Montano L, Lau N, Cardeira C. Grape: ground robot for vineyard monitoring and protection. Third Iberian Robotics Conf, 2017; pp.249–260. doi: 10.1007/978-3-319-70833-1_21.
Rey B, Aleixos N, Cubero S, Blasco J. Xf-Rovim. A field robot to detect olive trees infected by Xylella fastidiosa using proximal sensing. Remote Sensing, 2019; 11(3): 221. doi: 10.3390/rs11030221.
Cubero S, MarcoNoales E, Aleixos N, Barbé S, Blasco J. Robhortic: A field robot to detect pests and diseases in horticultural crops by proximal sensing. Agriculture, 2020; 10(7): 276. doi: 10.3390/ agriculture10070276.
Roviramás F, Millot C, Sáizrubio V. Navigation strategies for a vineyard robot. In: 2015 ASABE Annual International Meeting, 2015; Paper number: 152189450. doi: 10.13031/aim.20152189750.
Schmitz A. Row crop navigation by autonomous ground vehicle for crop scouting. Doctoral dissertation. Manhattan: Kansas State University, 2017; 86p.
Mancini A, Frontoni E, Zingaretti P. Satellite and uav data for precision agriculture applications. Int Conf on Unmanned Aircraft Syst (ICUAS), 2019; pp.491–497. doi: 10.1109/ICUAS.2019.8797930
Liebisch F, Pfeifer J, Khana R, Lottes P, Stachniss C, Falck T. Flourish-A robotic approach for automation in crop management. 14th International Conference on Precision Agriculture, Quebec, 2018; Available: https://www.researchgate.net/publication/301921276. Accessed on [2021-7-29].
Usher C T, Daley W D, Joffe B P, Muni A. Robotics for poultry house management. In: 2017 ASABE Annual International Meeting, 2017; 1701103. doi: 10.13031/aim.201701103.
EsnaolaGonzalez I, Gomez M, Ferreiro S, Fernandez I, Garcia E. An IoT platform towards the enhancement of poultry production chains. Sensors, 2020; 20(6): 1549. doi: 10.3390/s20061549.
Qi H X, Banhazi T M, Zhang Z G, Low T, Brookshaw I J. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings. Int J Agric & Biol Eng, 2016; 9(2): 29–39.
Mayer K, Ellis K, Taylor K. Cattle health monitoring using wireless sensor networks. In: Proc of the Communication and Comput Networks Conference, 2004; pp. 8–10.
Pastell M, Aisla A M, Hautala M, Ahokas J, Veermäe I. Automatic cow health measurement system in a milking robot. In: 2006 ASAE Annual Meeting, 2006; Paper number 064037. doi: 10.13031/ 2013.20915.
Pastell M, Takko H, Hautala M, Poikalainen V, Praks J, Veermäe I, et al. Monitoring cow health in a milking robot. Precision Livestock Farming, 2005; 5: 187–192.
McMeniman J. Prototype feedlot autonomous mobile robot for bunk calling. Meat & Livestock Australia Limited ABN, 2019; 13p.
Luna F, Aguilar E, Naranjo J S, Jagüey J G. Robotic system for automation of water quality monitoring and feeding in aquaculture shadehouse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017; 47(7): 1575–1589.
Huang L W, Li Z W, Li S R, Liu L, Shi Y G. Design and application of a free and lightweight aquaculture water quality detection robot. J Européen des Systèmes Automatisés, 2020; 53(1): 111–122.
Borstel F V, Suárez J, Edgar D, Gutiérrez J. Feeding and water monitoring robot in aquaculture greenhouse. Industrial Robot, 2013; 40(1): 10–19.
Livanos G, Zervakis M, Chalkiadakis V, Moirogiorgou K, Papandroulakis N. Intelligent navigation and control of a prototype autonomous underwater vehicle for automated inspection of aquaculture net pen cages. In: 2018 IEEE International Conference on Imaging Systems and Techniques. Krakow, Poland: IEEE, 2018; pp.1–6. doi: 10.1109/ IST.2018.8577180.
Huang L W, Li Z W, Li S, Liu L, Shi Y G. Design and application of a free and lightweight aquaculture water quality detection robot. J Européen des Systèmes Automatisés, 2020; 53(1): 111–122.
Wang K S, Huang C K. Intelligent robotic lawn mower design. In: 2018 International Conference on System Science and Engineering (ICSSE), 2018; pp.1–5. doi: 10.1109/ICSSE.2018.8520053.
Ibrahim B, Brahmaiah V S, Sharma P. Design of smart autonomous remote monitored solar powered lawnmower robot. Materials Today: Proceedings, 2020; 28: 2338–2344. doi: 10.1016/j.matpr.2020.04.633.
Chung C H, Wang K C, Liu K T, Wu Y T, Lin C C, Chang C Y. Path planning algorithm for robotic lawnmower using RTK-GPS localization. International Symposium Community-centric Systems (CcS). Tokyo: IEEE, 2020; pp.1-4. doi: 10.1109/CcS49175.2020.9231484.
Daniyan I, Balogun V, Adeodu A, Oladapo B, Peter J K, Mpofu K. Development and performance evaluation of a robot for lawn mowing. Procedia Manufacturing, 2020; 49: 42–48. doi: 10.1016/ j.promfg.2020.06.009.
Opiyo S, Okinda C, Zhou J, Mwangi E, Makange N. Medial axis-based machine-vision system for orchard robot navigation. Computers and Electronics in Agriculture, 2021; 185: 106153. doi: 10.1016/ j.compag.2021.106153.
Peng W, Pengbo W, Changxing G. A combined visual navigation method for greenhouse spray robot. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control and Intelligent Systems (CYBER), IEEE, 2019; pp.604–608. doi: 10.1109/CYBER46603.2019.9066557.
Cariou C, Roux J C, Lenain R. Laser beam deflection of a 2D LiDAR for canopy detection on an autonomous spraying robot. In: 2021 7th International Conference on Automation, Robotics and Applications (ICARA), IEEE, 2021; pp.80–84. doi: 10.1109/ICARA51699.2021. 9376553.
Liu J Z, Zhao S Y, Li N, Faheem M, Zhou T, Cai W J, et al. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Applied Engineering in Agriculture, 2019; 35(6): 1067–1078. doi: 10.13031/aea.13236.
Liu J Z, Peng H J, Li N, Jiang S J, Ju J. Design and experiments of automatic mobile substrate paver for elevated cultivation. Transactions of the CSAM, 2018; 49(1): 58–67. (in Chinese)
Ju J, Liu J Z, Li N, Li P P. Curb-following detection and navigation of greenhouse vehicle based on arc array of photoelectric switches. Transactions of the CSAE, 2017; 33(18): 180–187. (in Chinese)
Zhou T. Research and experiment of high-ridge automatic transplanter for double-row strawberry plug seedlings. Master dissertation. Zhenjiang: Jiangsu University, 2019; 79p. (in Chinese)
Feng Q, Wang X. Design of disinfection robot for livestock breeding. Procedia Computer Science, 2020; 166: 310–314.
Feng Q C, Wang X, Qiu Q, Zhang C F, Li B, Xu R F, et al. Design and test of disinfection robot for livestock and poultry house. Smart Agriculture, 2020; 2(4): 79–88. (in Chinese)
House H, Eng P. Manure handling options for robotic milking barns. Dairy Housing, 2016; pp.1-8.
Hou Y T, Yao L H, Cai X H, Wang Q. Research and realization of automatic barn cleaner path planning. Journal of Agricultural Mechanization Research, 2017; 39(6): 23–26. (in Chinese)
Zhou C, Xu D M, Lin K, Sun C H, Yang X T. Intelligent feeding control methods in aquaculture with an emphasis on fish: A review. Reviews in Aquaculture, 2018; 10(4): 975–993.
Ruan C Z, Zhao D A, Sun Y P, Hong J Q, Ding S H, Luo J. Design and testing of a control system associated with the automatic feeding boat for farming Chinese river crabs. Computers & Electronics Agriculture, 2018; 150: 14–25.
Sun Y P, Zhao D A, Hong J Q, Zhang J, Li F Z. Design of automatic and uniform feeding system carried by workboat and effect test for raising river crab. Transactions of the CSAE, 2015; 31(11): 31–39. (in Chinese)
Pribadi W, Prasetyo Y, Juliando D E. Design of fish feeder robot based on arduino-android with fuzzy logic controller. Int. Res. J. Adv. Eng. Sci, 2020; 5(4): 47–50.
Hu Y B, Ni Q, Huang D, Li J G. Analysis on the positioning accuracy of fishpond cleaning robot in industrial aquaculture. Fishery Modernization, 2021; 48(2): 16–21, 28. (in Chinese)
Kaizu Y, Shimada T, Takahashi Y, Igarashi S, Yamada H, Furuhashi K, et al. Development of a small electric robot boat for mowing aquatic weeds. Transactions of the ASABE, 2021; 64(3): 1073-1082.
Strisciuglio N, Tylecek R, Blaich M, Petkov N, Biber, P, et al. Trimbot2020: An outdoor robot for automatic gardening. In: 50th Int Symp Robotics., 2018; pp.1–6.
Silwal A, Davidson J R, Karkee M, Mo C, Zhang Q, Lewis K. Design, integration, and field evaluation of a robotic apple harvester. Journal of Field Robotics, 2017; 34(2): 1140–1159. doi: 10.1002/rob.21715.
Li T, Qiu Q, Zhao C J, Xie F. Task planning of multi-arm harvesting robots for high-density dwarf orchard. Transactions of the CSAE, 2021; 37(2): 1–10. (in Chinese)
Williams H, Ting C, Nejati M, Jones M H, Penhall N, Lim J Y, et al. Improvements to and large-scale evaluation of a robotic kiwifruit harvester. Journal of Field Robotics, 2020; 37(2): 187–201.
Williams H A M, Jones M H, Nejati M, Seabright M J, Bell J, Penhal N D, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosystems Engineering, 2019; 181: 140–156.
Zhang S S. Control method of dual arm picking robot for kiwifruit. Master dissertation. Yangling: Northwest A&F University, 2018; 106p. (in Chinese)
Mu L T, Cui G P, Liu Y D, Cui Y J, Fu L S, Gejima Y. Design and simulation of an integrated end-effector for picking kiwifruit by robot. Information Prcessing in Agriculture, 2020; 7(1): 58–71.
SepúLveda D, Fernández R, Navas E, Armada M, GonzálezDeSantos P. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access, 2020; 8: 121889–121904.
Peng Y, Liu J, He M, Shan H, Xie B, Hou G Y, et al. Research progress of urban dual-arm humanoid grape harvesting robot. In: 2021 Cyber IEEE Int Conf, 2021; Paper number: 459.
Chen X, Chaudhary K, Tanaka Y, Nagahama K, Yaguchi H, Okada K, et al. Reasoning-based vision recognition for agricultural humanoid robot toward tomato harvesting. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015; pp.6487–6494. doi: 10.1109/IROS.2015.7354304.
Zion B, Mann M, Levin D, Shilo A, Rubinstein D, Shmulevich I. Harvest-order planning for a multiarm robotic harvester. Computers & Electronics in Agriculture, 2014; 103: 75–81.
Mann M P, Zion B, Shmulevich I, Rubinstein D, Linker R. Combinatorial optimization and performance analysis of a multi-arm cartesian robotic fruit harvester—extensions of graph coloring. J of Intell & Robotic Syst, 2016; 82(3-4): 399–411.
Liu X K, Li B, Chang J, Zhang G W, Wang C. Structure design and analysis of wolfberry picking robot’s dual manipulator. Chinese High Technology Letters, 2019; 29(2): 175–182. (in Chinese)
Davidson J R, Hohimer C J, Mo C, Karkee M. Dual robot coordination for apple harvesting. In: 2017 ASABE Annual International Meeting, Spokane, WA: ASABE, 2017; Paper number: 1700567. doi: 10.13031/ aim.201700567.
Zhao Y, Gong L, Liu C, Huan, Y. Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-Papers OnLine, 2016; 49(16): 161–165.
Ling X, Zhao Y S, Gong L, Liu C L, Wang T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics & Autonomous Systems, 2019; 114: 134–143.
Santhi P V, Kapileswar N, Chenchela V K, Prasad C V S. Sensor and vision based autonomous AGRIBOT for sowing seeds. In: 2017 International Conference on Energy, Communication, Data Analytics & Soft Computing (ICECDS). Chennai, India: IEEE, 2017; pp.242–245. doi: 10.1109/ICECDS.2017.8389873.
Zhou X. Design and tests of intelligent sorting-transplanting-replanting integrated machine for plug seedlings in greenhouse. Master dissertation. Zhenjiang: Jiangsu University, 2019; 141p. (in Chinese)
Danton A, Roux J C, Dance B, Cariou C, Lenain R. Development of a spraying robot for precision Agr: An edge following approach. In: 2020 IEEE Conference Control Technology & Applications (CCTA), 2020; pp.267–272. doi: 10.1109/CCTA41146.2020.9206304.
Cantelli L, Bonaccorso F, Longo D, Melita C D, Schillaci G, Muscato G. A small versatile electrical robot for autonomous spraying in agriculture. AgriEngineering, 2019; 1(3): 391–402.
Reiser D, Sehsah E S, Bumann O, Morhard J, Griepentrog H W. Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture, 2019; 9(1): 18. doi: 10.3390/ agriculture9010018.
Katyara S, Ficuciello F, Caldwell D G, Chen F, Siciliano B. Reproducible pruning system on dynamic natural plants for field agricultural robots. In: Human-Friendly Robotics 2020, 13th International Workshop, 2020; pp. 1–15. doi: 10.1007/978-3-030- 71356-0_1.
You A, Sukkar F, Fitch R, Karkee M, Davidson J R. An efficient planning and control framework for pruning fruit trees. In: 2020 IEEE International Conference on Robotics & Automation (ICRA). Paris: IEEE, 2020; pp.3930–3936. doi: 10.1109/ICRA40945.2020.9197551.
Kaljaca D, Vroegindeweij B, Van Henten E. Coverage trajectory planning for a bush trimming robot arm. J Field Robotics, 2020; 37(2): 283–308.
Polishchuk M, Tkach M, Parkhomey I, Boiko J, Eromenko O. Walking mobile robot for trimming trees: design and modeling. International J Control & Autom, 2020; 13(2): 1760–1772.
Van Tuijl B A J, Tielen A P M, Mencarelli A, Hemming J. Structured design of a novel end-effector for a bush trimming robot. Proc European Conf Agr Eng, 2018; pp.188–196.
Kondo N, Monta M, Shibano Y. Multi-operation robot for fruit production. In: Proc Korean Soc Agr Mach Conf, 1996; pp. 621–631.
Lyons D J, Heinemann P H, Schupp J R, Baugher T A, Liu J. Development of a selective automated blossom thinning system for peaches. Transactions of the ASABE, 2015; 58(6): 1447–1457. doi: 10.13031/trans.58.11138.
Zhang K, Zhao L N, Zhe S, Geng C X, Li W. Design and experiment of intelligent grape bagging robot. Appl Mech & Mater., 2013; 389: 706–711. doi: 10.4028/www.scientific.net/AMM.389.706.
Monta M, Kondo N, Shibano Y, Mohri K. End-effectors for agricultural robot to work in vineyard. Greenhouse Environ Control & Autom, 1994; 399: 247–254.
Van Henten E J, Van Tuijl B A J, Hoogakker G J, Van Der Weerd M. J, Hemming J, Kornet J G, et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 2006; 94(3): 317–323.
Ota T, Bontsema J, Hayashi S, Kubota K, Van Henten E J, Can Os E A, et al. Development of a cucumber leaf picking device for greenhouse production. Biosystems Engineering, 2007; 98(4): 381–390.
Ohi N, Lassak K, Watson R, Strader J, Du Y, Li W. Design of an autonomous precision pollination robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS). Madrid: IEEE, 2018; pp.7711–7718. doi: 10.1109/IROS.2018.8594444.
Yuan T, Zhang S, Sheng X, Wang D, Gong Y, et al. An autonomous pollination robot for hormone treatment of tomato flower in greenhouse. 3rd Int Conf Syst & Inform (ICSAI). IEEE, 2016; pp.108–113. doi: 10.1109/ICSAI.2016.7810939.
Strader J, Nguyen J, Tatsch C, Du Y X, Lassak K, Buzzo B, et al. Flower interaction subsystem for a precision pollination robot. In: 2019 IEEE/RSJ Int Conf Intell Robots & Syst (IROS), 2019; pp. 5534–5541.
Williams H, Nejati M, Hussein S, Penhall N, Lim J Y, Jones M H, et al. Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator. J Field Robotics, 2020; 37(2): 246–262.
Barnett J, Seabright M, Williams H A, Nejati M, Scarfe A J, Bell J, et al. Robotic pollination-targeting kiwifruit flowers for commercial application. In: 7th Asian-Australasian Conference on Precision Agriculture, 2017.
Ye Y, He L, Wang Z, Jones D, Hollinger G A, Taylor M E, et al. Orchard manoeuvring strategy for a robotic bin-handling machine. Biosystems Engineering, 2018; 169: 85–103.
Zhang Y, Ye Y, Wang Z, Taylor M E, Hollinger G A, Zhang Q. Intelligent in-orchard bin-managing system for tree fruit production. In: Proc of the Robotics in Agr Workshop at the 2015 IEEE Int Conf Robotics & Autom, 2015; 30: 1-4.
Ye Y, Wang Z, Jones D, He L, Taylor M E, Hollinger G A, et al. Bin-dog: A robotic platform for bin management in orchards. Robotics, 2017; 6(2): 12. doi: 10.3390/robotics6020012.
Jang W J, Lewis G, Hoachuck J, Slaughter D, Wilken K, Vougioukas S. Vibration-reducing path tracking control for a strawberry transport robot. In: 2014 ASABE Annual International Meeting. Montreal: ASABE, 2014; Paper number: 14194011. doi: 10.13031/aim.20141914011.
Seyyedhasani H, Peng C, Jang W J, Vougioukas S G. Collaboration of human pickers and crop-transporting robots during harvesting–Part I: Model and simulator development. Computers & Electronics in Agriculture, 2020; 172: 105324. doi: 10.1016/j.compag.2020.105324.
Qiao J, Sasao A, Shibusawa S, Kondo N. Mobile fruit grading robot-concept and prototype. In: 2004 ASAE Annual Meeting, 2004; pp.4173–4185. doi: 10.13031/2013.16725.
Cubero S, Aleixos N, Albert F, Torregrosa A, Ortiz C, García-Navarrete O, et al. Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision Agriculture, 2014; 15(1): 80–94.
Shamshiri R, Weltzien C, Hameed I A, Yule I, Grift T, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
Shi Q, Liu D, Mao H, Shen B, Liu X, Ou M. Study on assistant pollination of facility tomato by UAV. In: 2019 ASABE Annual International Meeting, Boston: ASABE, 2019; 1900055. doi: 10.13031/aim.201900055.
Berman S, Nagpal R, Halász Á. Optimization of stochastic strategies for spatially inhomogeneous robot swarms: A case study in commercial pollination. In: 2021 IEEE/RSJ International Conference Intelligent Robots & Systems. San Francisco: IEEE, 2011; pp. 3923–3930. doi: 10.1109/IROS.2011.6094771.
Chong V K, Monta M, Ninomiya K, Kondo N, Namba K, Terasaki E, et al. Development of mobile eggplant grading robot for dynamic in-field variability sensing:—manufacture of robot and performance test—. Eng Agr, Environ & Food, 2008; 1(2): 68–76.
Oudshoorn F. Mobile milking robot offers new grazing concept. Grassland Sci Europe, 2008; 13: 721–723.
Chen Y, Feng K, Jiang Y, Hu Z. Design and research on six degrees of freedom robot evisceration system for poultry. In: Proc of 3rd Int Conf E-Business, Inf Management and Comput Science., 2020; pp. 382–386.
Chen Y, Wan L, Liu Z. The study on recognition and location of intelligent robot system for eviscerating poultry. In: 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Jinzhou, China: IEEE, 2019; pp. 499–503. doi: 10.1109/ YAC.2019.8787596.
Doerfler R L, Martin R, Bernhardt H. Implications of robotic walkway cleaning for hoof disorders in dairy cattle. International Journal of Engineering Research and Application, 2017; 7(1): 98–104.
Vroegindeweij B A, Blaauw S K, IJsselmuiden J M, Van Henten E J. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosystems Engineering, 2018; 174: 295–315.
Vroegindeweij B. PoultryBot, a robot for poultry house applications: localisation, path planning, object recognition and performance evaluation. Doctor dissertation. Wageningen: Wageningen University, 2018; 218p.
Chang C L, Xie B X, Wang C H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms. Sensors, 2020; 20(22): 6624. doi: 10.3390/s20226624.
Wang C H, Xie B X, Chang C L. Design and implementation of livestock robot for egg picking and classification in the farm. In: 2019 International Symposium on Electrical and Electronics Engineering (ISEE). Ho Chi Minh City: IEEE, 2019; pp. 161–165. doi: 10.1109/ ISEE2.2019.8921255.
Joffe B P, Usher C T. Autonomous robotic system for picking up floor eggs in poultry houses. In: 2017 ASABE Annual International Meeting, 2017; 1700397. doi: 10.13031/aim.201700397.
Mu S, Qin H B, Wei J, Wen Q K, Liu S H, Wang S C, et al. Robotic 3D vision-guided system for half-sheep cutting robot. Mathematical Problems in Engineering, 2020; 1: 1–11.
Liu H W, Chen C H, Tsai Y C, Hsieh K W, Lin H T. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm. Sensors, 2021; 21(11): 3579. doi: 10.3390/s21113579.
Xie B, Liu J, He M, Wang J, Xu Z. Research progress on autonomous navigation technology of agricultural robot. In: IEEE Cyber Int Conf., 2021; Paper number: 464.
Reina G, Milella A, Galati R. Terrain assessment for precision agriculture using vehicle dynamic modelling. Biosystems Engineering, 2017; 162: 124–139. doi: 10.1016/j.biosystemseng.2017.06.025.
Zhang S, Song Y P, Xu B Y, Wang Z, Xu H J, Gao D S, et al. Design and experiment of omnidirectional agricultural measurement and control platform based on uC/OS system. Journal of Shandong Agricultural University (Natural Science Edition), 2018; 49(3): 438–443.
Tian G Z, Zhou J, Gu B X. Slipping detection and control in gripping fruits and vegetables for agricultural robot. Int J Agric & Biol Eng, 2018; 11(4): 45–51.
Liu J Z, Bai X X, Ling P P, Mao H P. Complex collision model in high-speed gripping of fruit. Transactions of the CSAM, 2014; 45(4): 49–54, 172.
Ji W, Qian Z J, Xu B, Chen G Y, Zhao D A. Apple viscoelastic complex model for bruise damage analysis in constant velocity grasping by gripper. Computers & Electronics in Agriculture, 2019; 162: 907–920.
Zhou J, Zhang N, Meng Y M, Wang M J. Online estimation of tomato viscoelastic parameters during robot grasping. Transactions of the CSAM, 2017; 48(8): 26–32. (in Chinese)
Li Z G, Zhang Z B, Thomas C. Viscoelastic-plastic behavior of single tomato mesocarp cells in high speed compression-holding tests. Innovative Food Science & Emerging Technologies, 2016; 34: 44–50.
Liu J Z, Li Z G, Li P P. Rapid damage-free robotic harvesting of tomatoes. China: Science Press & Springer, 2021; 368p.
Xiong Y, Ge Y Y, Liang Y L, Blackmore S. Development of a prototype robot and fast path-planning algorithm for static laser weeding. Computers & Electronics in Agriculture, 2017; 142(PartB): 494–503.
Bachche S, Oka K. Performance testing of thermal cutting systems for sweet pepper harvesting robot in greenhouse horticulture. Journal of System Design & Dynamics, 2013; 7(1): 36–51.
Liu J, Hu Y, Xu X Q, Li P P. Feasibility and influencing factors of laser cutting of tomato peduncles for robotic harvesting. African Journal of Biotechnology, 2011; 10(69): 15552–15563.
Zhang K, Xu L, Zhang D. Design and analysis of a 4-PPPR parallel manipulator for strawberry harvesting in the ridge cultivation model. In: 2016 2nd International Conference Control Science & Systems Engineering (ICCSSE). Singapore: IEEE, 2016; pp.248–251. doi: 10.1109/CCSSE.2016.7784391.
Bac C W, Roorda T, Reshef R, Berman S, Hemming J, can Henten E J. Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment. Biosystems Engineering, 2016; 146: 85–97. doi: 10.1016/j.biosystemseng.2015.07.004.
Van Herck L, Kurtser P, Wittemans L, et al. Crop design for improved robotic harvesting: A case study of sweet pepper harvesting. Biosystems Engineering, 2020; 192: 294–308. doi: 10.1016/j.biosystemseng. 2020.01.021.
Bloch V, Degani A, Bechar A. A methodology of orchard architecture design for an optimal harvesting robot. Biosystems Engineering, 2018; 166: 126–137. doi: 10.1016/j.biosystemseng.2017.11.006.
Shamshiri R R, Hameed I A, Pitonakova L, Weltzien C, Balasundram S K, Yule I J, et al. Simulation software and virtual environments for acceleration of agricultural robotics: features highlights and performance comparison. Int J Agric & Biol Eng, 2018; 11(4): 15–31. doi: 10.25165/j.ijabe.20181104.4032.
Mahmud M S A, Abidin M S Z, Mohamed Z, Rahman M K I A, Lida M. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Computers & Electronics in Agriculture, 2019; 157: 488–499. doi: 10.1016/j.compag.2019.01.016.
Wang H J, Zou X J, Liu C Y, Lu J, Liu T H. Study on behavior simulation for picking manipulator in virtual environment based on binocular stereo vision. In: 2008 Asia Simulation Conference-7th International Conference on System Simulation & Scientific Computing. Beijing: IEEE, 2008; pp. 27–31. doi:10.1109/ASC-ICSC.2008.4675320.
Grimstad L, From P. Thorvald II - a modular and re-configurable agricultural robot. IFAC-PapersOnLine, 2017; 50(1): 4588–4593.
Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M, Tona E, et al. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering, 2016; 146: 203–215.
Levin M, Degani A. A conceptual framework and optimization for a task-based modular harvesting manipulator. Computers & Electronics in Agriculture, 2019; 166: 104987. doi: 10.1016/j.compag.2019.104987.
Mohamed A, ShawSutton J, Green B M, Andrews W, Rolley-Parnell E J, Zhou Y, et al. Soft manipulator robot for selective tomato harvesting. In: 12th European Conf Precis Agr, 2019; pp.799–805. doi: 10.3920/978-90-8686-888-9_99.
Bartlett N, Tolley M, Overvelde J T B, Weaver J C, Mosadegh B, Bertoldi K, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015; 349(6244): 161–165.
Devi M, Udupa G, Sreedharan P. A novel underactuated multi-fingered soft robotic hand for prosthetic application. Robotics & Auto Syst, 2018; 100: 267–277.
Excell J. Fruit-picking robot solves automation challenge. 2015. Available: https://www.theengineer.co.uk/fruit-picking-robot-solves- automation-challenge/. Accessed on [2015-10-16].
Shea P, Floreano P. Intrinsic electro-adhesion for soft DEA-based grippers. 2017. Available: https://lmts.epfl.ch/electroadhesion. Accessed on [2017-08-03].
Nishida T, Okatani Y, Tadakuma K. Development of universal robot gripper using MRα fluid. Int J Humanoid Robotics, 2016; 13(4): 1650017. doi: 10.1142/S0219843616500171.
Zhang F, Wang Y F, Teng S, Zheng L M, Wang J J, Chen Z J. Development of agricultural bionic four-legged robot: Effect of head movement adjustment on the stability of goats. Int J Agric & Biol Eng, 2019; 12(4): 10–15. doi: 10.25165/j.ijabe.20191204.4287.
Zhang C, Yang M J, Chen J, Jiang M, Ma Y C, Ji J. Energy consumption optimization model of agricultural hexapod robot with self-locking joints. Transactions of the CSAE, 2016; 32(18): 73–83. (in Chinese)
Rong Y, Jin Z L, Cui B Y. Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanisms. Transactions of the CSAE, 2012; 28(15): 9–14. (in Chinese)
Zhang J Z, Jin Z L, Chen G G. Kinematic analysis of leg mechanism of six-legged walking robot. Transactions of the CSAE, 2016; 32(9): 45–52. (in Chinese)
Huang C, Chang C. Design and implementation of bio-inspired snake bone-armed robot for agricultural irrigation application. IFAC-Papers OnLine, 2019; 52(30): 98–101.
Li M J, Zeng X, Xie R Z, Zhang Y H. Development of an inchworm-like soft gripper based on sma-drive. Mechanical Engineering & Automation, 2018; 5: 35–37. (in Chinese)
Quan L Z, Zhao L, Li X H, Zhang C B, Wang J S, Cheng G. Design and test of multifunctional dragonfly claws form bio-mimetic end effector. Transactions of the CSAM, 2017; 48(8): 33–42, 52. (in Chinese)
Deng X L, Luo Z Y, Pang J Q, Zhang Y M, Yang C J, Li R Q. Design and experiment of bionic nondestructive handheld suction apple picker. Journal of China Agricultural University, 2019; 24(10): 100–108. (in Chinese)
Potts S G, Neumann P, Vaissière B, Vereecken N J. Robotic bees for crop pollination: Why drones cannot replace biodiversity. Science of the Total Environment, 2018; 642: 665–667.
Cheein F A, Steiner G, Paina G, Carelli R. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Computers & Electronics in Agriculture, 2011; 78(2): 195–207.
Soria P R, Sukkar F, Martens W, Arrue B C, Fitch R. Multi-view probabilistic segmentation of pome fruit with a low-cost RGB-D camera. In: Iberian Robotics Conference., Cham: Springer, 2017; pp.320–331. doi: 10.1007/978-3-319-70836-2_27.
Henten E, Hemming, J, van Tuijl B A J, Kornet J G, Meuleman J, Bontsema J, et al. An Autonomous robot for harvesting cucumbers in greenhouses. Autonmous Robots, 2002; 13(3): 241–258.
Yang L J, Pitla S, Yang Z D, Xia P P, Zhao C Y. Path tracking of mobile platform in agricultural facilities based on ultra wideband wireless positioning. Transactions of the CSAE, 2019; 35(2): 17–24. (in Chinese)
Dimeas F, Sako D V, Moulianitis V C, Aspragathos N A. Design and fuzzy control of a robotic gripper for efficient strawberry harvesting. Robotica, 2015; 33(5): 1085–1098.
Zhang C, Liu S Y, Huang X, Guo W, Li Y Y, Wu H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy, 2019; 62: 164–170.
Wolfert S; Goense D, Sørensen C. A future internet collaboration platform for safe and healthy food from farm to fork. In: 2014 Annual SRII Global Conference. San Jose, CA, USA: IEEE, 2014; pp.266–273. doi:10.1109/SRII.2014.47.
Dusadeerungsikul P, Nof S, Bechar A, Tao Y. Collaborative control protocol for agricultural cyber-physical system. Procedia Manufacturing, 2019; 39: 235–242.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.