Development status and trend of agricultural robot technology

Yucheng Jin, Jizhan Liu, Zhujie Xu, Shouqi Yuan, Pingping Li, Jizhang Wang

Abstract


In the face of the contradiction between the increasing demand for agricultural products and the sharp reduction of agricultural resources and labor force, agricultural robot technology is developing explosively on the basis of decades of technical and industrial exploration. In view of the complexity and particularity of the development of agricultural robot technology, it is of great value to summarize its development characteristics and make reasonable judgments on its development trend. In this paper, the type of agricultural robot systems was first discussed. From the classification of agricultural robot systems, the development of main types of monitoring robots, non-selective and selective working robots for crop farming, livestock and poultry farming and aquaculture were introduced in detail. Then the scientific research, core technology and commercialization of different types of agricultural robots were summarized. It is believed that navigation in complex agricultural environments, damage-free robot-crop interaction and agronomy-robot fusion have high scientific value and significance to promote the revolutionary advances in agricultural robot technology. The characteristics of inter-discipline between agricultural robot technology and new materials, artificial intelligence, bionics, agronomy are research focus. The fast damage-free operation, autonomous navigation for complex environments, target detection for complex backgrounds and special design for agricultural robots are considered to be the key technology of agricultural robot development, and the development path is given. Finally, robot-crop interaction simulation, big data support and artificial intelligence are regarded as paths to realize the breakthrough of key agricultural robot technologies. The summary and prospect of this paper are of positive significance to promote the overall development of agricultural robot technology.
Keywords: agricultural robot, type, selective, non-selective, trend
DOI: 10.25165/j.ijabe.20211404.6821

Citation: Jin Y C, Liu J Z, Xu Z J, Yuan S Q, Li P P, Wang J Z. Development status and trend of agricultural robot technology. Int J Agric & Biol Eng, 2021; 14(4): 1–19.

Keywords


agricultural robot, type, selective, non-selective, trend

Full Text:

PDF

References


Oliveira L, Moreira A P, Silva M F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics, 2021; 10(2): 52. doi: 10.3390/robotics10020052.

Saiz V, Rovira F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy, 2020; 10(2): 207. doi: 10.3390/ agronomy10020207.

Palli P, Liew C T, Drozda A, Mwunguzi H, Pitla S K, Walia H, et al. Robotic gantry for automated imaging, sensing, crop input application, and high-throughput analysis. In: 2019 ASABE Annual International Meeting, ASABE, 2019; Paper number: 1901519. doi: 10.13031/aim.201901519.

Hang L, Tang L, Steven W, Mei Y. A robotic platform for corn seedling morphological traits characterization. Sensors, 2017; 17(9): 2082. doi: 10.3390/s17092082.

Xie Z J, Gu S, Chu Q, Li B, Fan K J, Yang Y L, et al. Development of a high-productivity grafting robot for Solanaceae. Int J Agric & Biol Eng, 2020; 13(1): 82–90.

Jiang K, Zhang Q, Chen L P, Guo W Z, Zheng W G. Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit. Int J Agric & Biol Eng, 2020; 13(5): 117–124.

Treiber M, Hillerbrand F, Bauerdick J, Bernhardt H. On the current state of agricultural robotics in crop farming - chances and risks. In: 47th Int Symposium "Actual Tasks Agr Eng", Croatia, 2019; pp.27–33.

Scholz C, Moeller K, Ruckelshausen A, Hinck S, Goettinger, M. Automatic soil penetrometer measurements and gis-based documentation with the autonomous field robot platform bonirob. 12th Int Conf Precision Agr, 2014.

Saiz V, Rovira F, Millot C. Performance improvement of a vineyard robot through its mechanical design. In: 2017 ASABE Annual International Meeting, 2017; Paper number: 1701120. doi: 10.13031/ aim.201701120.

Annalisa M, Giulio R, Michael N. A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precision Agriculture, 2018; 20(2): 423–444.

Xu E, Hou B M, JiaNa B I, Shen Z G, Wang B. Smart agriculture based on internet of things. In: 2nd Int Conf Robotics, Electr & Signal Process Tech, 2021; pp.157-162. doi: 10.1049/et.2014.0926.

Bayati M, Fotouhi R. A mobile robotic platform for crop monitoring. Advances in Robotics & Automation, 2018; 7(1): 1000186. doi: 10.4172/2168-9695.1000186.

Dos Santos Xaud M F, Leite A C, Barbosa E S, Faria H D, Loureiro G, From P J. Robotic tankette for intelligent bioenergy agriculture: design, development and field tests. XXII Congresso Brasileiro de Automatica (CBA2018). Joao Pessoa, Brazil, 2018; 1357. doi: 10.20906/CPS/CBA2018-1357.

Dos Santos F N, Sobreira H M P, Campos D F B, Morais R, Moreira A P G M, Contente O M S. Towards a reliable monitoring robot for mountain vineyards. In: 2015 IEEE International Conference on Autonomous Robot Systems and Competitions. Vila Real, Potugal: IEEE, 2015; pp.37–43. doi: 10.1109/ICARSC.2015.21.

Gupta G S, Seelye M, Seelye J, Bailey D. Autonomous anthropomorphic robotic system with low-cost colour sensors to monitor plant growth in a laboratory. In-Tech, 2012; 22p.

Ota T, Iwasaki Y, Nakano A, Kuribara H, Higashide T. Development of yield and harvesting time monitoring system for tomato greenhouse production. Eng in Agr, 2018; 12(1): 41–47.

Rizk H, Habib M K. Robotized early plant health monitoring system. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. Washington, DC: IEEE, 2018; pp.3795–3800. doi: 10.1109/IECON.2018.8592833.

Vidoni R, Gallo R, Ristorto G, Carabin G, Mazzetto F, Scalera L, et al. ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming. In: ASME International Mechanical Engineering Congress & Exposition, 2017; Paper No. IMECE2017-71216, V04AT05A057. doi: 10.1115/IMECE2017-71216.

Bietresato M, Carabin G, Auria D, Gallo R, Ristorto G, Mazzetto F, et.al. A tracked mobile robotic lab for monitoring the plants volume and health. In: 2016 12th IEEE/ASME Int Conf on Mechatronic and Embedded Systems and Applications (MESA). Auckland: IEEE, 2016; pp.1–6. doi: 10.1109/MESA.2016.7587134.

Ahmadi A, Nardi L, Chebrolu N, Stachniss C. Visual servoing-based navigation for monitoring row-crop fields. In: 2020 IEEE Int Conf on Robotics and Automation (ICRA). IEEE, 2020; pp.4920–4926. https://arxiv.org/abs/1909.12754.

Ollero A, Sanfeliu A, Montano L, Lau N, Cardeira C. Grape: ground robot for vineyard monitoring and protection. Third Iberian Robotics Conf, 2017; pp.249–260. doi: 10.1007/978-3-319-70833-1_21.

Rey B, Aleixos N, Cubero S, Blasco J. Xf-Rovim. A field robot to detect olive trees infected by Xylella fastidiosa using proximal sensing. Remote Sensing, 2019; 11(3): 221. doi: 10.3390/rs11030221.

Cubero S, MarcoNoales E, Aleixos N, Barbé S, Blasco J. Robhortic: A field robot to detect pests and diseases in horticultural crops by proximal sensing. Agriculture, 2020; 10(7): 276. doi: 10.3390/ agriculture10070276.

Roviramás F, Millot C, Sáizrubio V. Navigation strategies for a vineyard robot. In: 2015 ASABE Annual International Meeting, 2015; Paper number: 152189450. doi: 10.13031/aim.20152189750.

Schmitz A. Row crop navigation by autonomous ground vehicle for crop scouting. Doctoral dissertation. Manhattan: Kansas State University, 2017; 86p.

Mancini A, Frontoni E, Zingaretti P. Satellite and uav data for precision agriculture applications. Int Conf on Unmanned Aircraft Syst (ICUAS), 2019; pp.491–497. doi: 10.1109/ICUAS.2019.8797930

Liebisch F, Pfeifer J, Khana R, Lottes P, Stachniss C, Falck T. Flourish-A robotic approach for automation in crop management. 14th International Conference on Precision Agriculture, Quebec, 2018; Available: https://www.researchgate.net/publication/301921276. Accessed on [2021-7-29].

Usher C T, Daley W D, Joffe B P, Muni A. Robotics for poultry house management. In: 2017 ASABE Annual International Meeting, 2017; 1701103. doi: 10.13031/aim.201701103.

EsnaolaGonzalez I, Gomez M, Ferreiro S, Fernandez I, Garcia E. An IoT platform towards the enhancement of poultry production chains. Sensors, 2020; 20(6): 1549. doi: 10.3390/s20061549.

Qi H X, Banhazi T M, Zhang Z G, Low T, Brookshaw I J. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings. Int J Agric & Biol Eng, 2016; 9(2): 29–39.

Mayer K, Ellis K, Taylor K. Cattle health monitoring using wireless sensor networks. In: Proc of the Communication and Comput Networks Conference, 2004; pp. 8–10.

Pastell M, Aisla A M, Hautala M, Ahokas J, Veermäe I. Automatic cow health measurement system in a milking robot. In: 2006 ASAE Annual Meeting, 2006; Paper number 064037. doi: 10.13031/ 2013.20915.

Pastell M, Takko H, Hautala M, Poikalainen V, Praks J, Veermäe I, et al. Monitoring cow health in a milking robot. Precision Livestock Farming, 2005; 5: 187–192.

McMeniman J. Prototype feedlot autonomous mobile robot for bunk calling. Meat & Livestock Australia Limited ABN, 2019; 13p.

Luna F, Aguilar E, Naranjo J S, Jagüey J G. Robotic system for automation of water quality monitoring and feeding in aquaculture shadehouse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017; 47(7): 1575–1589.

Huang L W, Li Z W, Li S R, Liu L, Shi Y G. Design and application of a free and lightweight aquaculture water quality detection robot. J Européen des Systèmes Automatisés, 2020; 53(1): 111–122.

Borstel F V, Suárez J, Edgar D, Gutiérrez J. Feeding and water monitoring robot in aquaculture greenhouse. Industrial Robot, 2013; 40(1): 10–19.

Livanos G, Zervakis M, Chalkiadakis V, Moirogiorgou K, Papandroulakis N. Intelligent navigation and control of a prototype autonomous underwater vehicle for automated inspection of aquaculture net pen cages. In: 2018 IEEE International Conference on Imaging Systems and Techniques. Krakow, Poland: IEEE, 2018; pp.1–6. doi: 10.1109/ IST.2018.8577180.

Huang L W, Li Z W, Li S, Liu L, Shi Y G. Design and application of a free and lightweight aquaculture water quality detection robot. J Européen des Systèmes Automatisés, 2020; 53(1): 111–122.

Wang K S, Huang C K. Intelligent robotic lawn mower design. In: 2018 International Conference on System Science and Engineering (ICSSE), 2018; pp.1–5. doi: 10.1109/ICSSE.2018.8520053.

Ibrahim B, Brahmaiah V S, Sharma P. Design of smart autonomous remote monitored solar powered lawnmower robot. Materials Today: Proceedings, 2020; 28: 2338–2344. doi: 10.1016/j.matpr.2020.04.633.

Chung C H, Wang K C, Liu K T, Wu Y T, Lin C C, Chang C Y. Path planning algorithm for robotic lawnmower using RTK-GPS localization. International Symposium Community-centric Systems (CcS). Tokyo: IEEE, 2020; pp.1-4. doi: 10.1109/CcS49175.2020.9231484.

Daniyan I, Balogun V, Adeodu A, Oladapo B, Peter J K, Mpofu K. Development and performance evaluation of a robot for lawn mowing. Procedia Manufacturing, 2020; 49: 42–48. doi: 10.1016/ j.promfg.2020.06.009.

Opiyo S, Okinda C, Zhou J, Mwangi E, Makange N. Medial axis-based machine-vision system for orchard robot navigation. Computers and Electronics in Agriculture, 2021; 185: 106153. doi: 10.1016/ j.compag.2021.106153.

Peng W, Pengbo W, Changxing G. A combined visual navigation method for greenhouse spray robot. In: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control and Intelligent Systems (CYBER), IEEE, 2019; pp.604–608. doi: 10.1109/CYBER46603.2019.9066557.

Cariou C, Roux J C, Lenain R. Laser beam deflection of a 2D LiDAR for canopy detection on an autonomous spraying robot. In: 2021 7th International Conference on Automation, Robotics and Applications (ICARA), IEEE, 2021; pp.80–84. doi: 10.1109/ICARA51699.2021. 9376553.

Liu J Z, Zhao S Y, Li N, Faheem M, Zhou T, Cai W J, et al. Development and field test of an autonomous strawberry plug seeding transplanter for use in elevated cultivation. Applied Engineering in Agriculture, 2019; 35(6): 1067–1078. doi: 10.13031/aea.13236.

Liu J Z, Peng H J, Li N, Jiang S J, Ju J. Design and experiments of automatic mobile substrate paver for elevated cultivation. Transactions of the CSAM, 2018; 49(1): 58–67. (in Chinese)

Ju J, Liu J Z, Li N, Li P P. Curb-following detection and navigation of greenhouse vehicle based on arc array of photoelectric switches. Transactions of the CSAE, 2017; 33(18): 180–187. (in Chinese)

Zhou T. Research and experiment of high-ridge automatic transplanter for double-row strawberry plug seedlings. Master dissertation. Zhenjiang: Jiangsu University, 2019; 79p. (in Chinese)

Feng Q, Wang X. Design of disinfection robot for livestock breeding. Procedia Computer Science, 2020; 166: 310–314.

Feng Q C, Wang X, Qiu Q, Zhang C F, Li B, Xu R F, et al. Design and test of disinfection robot for livestock and poultry house. Smart Agriculture, 2020; 2(4): 79–88. (in Chinese)

House H, Eng P. Manure handling options for robotic milking barns. Dairy Housing, 2016; pp.1-8.

Hou Y T, Yao L H, Cai X H, Wang Q. Research and realization of automatic barn cleaner path planning. Journal of Agricultural Mechanization Research, 2017; 39(6): 23–26. (in Chinese)

Zhou C, Xu D M, Lin K, Sun C H, Yang X T. Intelligent feeding control methods in aquaculture with an emphasis on fish: A review. Reviews in Aquaculture, 2018; 10(4): 975–993.

Ruan C Z, Zhao D A, Sun Y P, Hong J Q, Ding S H, Luo J. Design and testing of a control system associated with the automatic feeding boat for farming Chinese river crabs. Computers & Electronics Agriculture, 2018; 150: 14–25.

Sun Y P, Zhao D A, Hong J Q, Zhang J, Li F Z. Design of automatic and uniform feeding system carried by workboat and effect test for raising river crab. Transactions of the CSAE, 2015; 31(11): 31–39. (in Chinese)

Pribadi W, Prasetyo Y, Juliando D E. Design of fish feeder robot based on arduino-android with fuzzy logic controller. Int. Res. J. Adv. Eng. Sci, 2020; 5(4): 47–50.

Hu Y B, Ni Q, Huang D, Li J G. Analysis on the positioning accuracy of fishpond cleaning robot in industrial aquaculture. Fishery Modernization, 2021; 48(2): 16–21, 28. (in Chinese)

Kaizu Y, Shimada T, Takahashi Y, Igarashi S, Yamada H, Furuhashi K, et al. Development of a small electric robot boat for mowing aquatic weeds. Transactions of the ASABE, 2021; 64(3): 1073-1082.

Strisciuglio N, Tylecek R, Blaich M, Petkov N, Biber, P, et al. Trimbot2020: An outdoor robot for automatic gardening. In: 50th Int Symp Robotics., 2018; pp.1–6.

Silwal A, Davidson J R, Karkee M, Mo C, Zhang Q, Lewis K. Design, integration, and field evaluation of a robotic apple harvester. Journal of Field Robotics, 2017; 34(2): 1140–1159. doi: 10.1002/rob.21715.

Li T, Qiu Q, Zhao C J, Xie F. Task planning of multi-arm harvesting robots for high-density dwarf orchard. Transactions of the CSAE, 2021; 37(2): 1–10. (in Chinese)

Williams H, Ting C, Nejati M, Jones M H, Penhall N, Lim J Y, et al. Improvements to and large-scale evaluation of a robotic kiwifruit harvester. Journal of Field Robotics, 2020; 37(2): 187–201.

Williams H A M, Jones M H, Nejati M, Seabright M J, Bell J, Penhal N D, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosystems Engineering, 2019; 181: 140–156.

Zhang S S. Control method of dual arm picking robot for kiwifruit. Master dissertation. Yangling: Northwest A&F University, 2018; 106p. (in Chinese)

Mu L T, Cui G P, Liu Y D, Cui Y J, Fu L S, Gejima Y. Design and simulation of an integrated end-effector for picking kiwifruit by robot. Information Prcessing in Agriculture, 2020; 7(1): 58–71.

SepúLveda D, Fernández R, Navas E, Armada M, GonzálezDeSantos P. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access, 2020; 8: 121889–121904.

Peng Y, Liu J, He M, Shan H, Xie B, Hou G Y, et al. Research progress of urban dual-arm humanoid grape harvesting robot. In: 2021 Cyber IEEE Int Conf, 2021; Paper number: 459.

Chen X, Chaudhary K, Tanaka Y, Nagahama K, Yaguchi H, Okada K, et al. Reasoning-based vision recognition for agricultural humanoid robot toward tomato harvesting. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015; pp.6487–6494. doi: 10.1109/IROS.2015.7354304.

Zion B, Mann M, Levin D, Shilo A, Rubinstein D, Shmulevich I. Harvest-order planning for a multiarm robotic harvester. Computers & Electronics in Agriculture, 2014; 103: 75–81.

Mann M P, Zion B, Shmulevich I, Rubinstein D, Linker R. Combinatorial optimization and performance analysis of a multi-arm cartesian robotic fruit harvester—extensions of graph coloring. J of Intell & Robotic Syst, 2016; 82(3-4): 399–411.

Liu X K, Li B, Chang J, Zhang G W, Wang C. Structure design and analysis of wolfberry picking robot’s dual manipulator. Chinese High Technology Letters, 2019; 29(2): 175–182. (in Chinese)

Davidson J R, Hohimer C J, Mo C, Karkee M. Dual robot coordination for apple harvesting. In: 2017 ASABE Annual International Meeting, Spokane, WA: ASABE, 2017; Paper number: 1700567. doi: 10.13031/ aim.201700567.

Zhao Y, Gong L, Liu C, Huan, Y. Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-Papers OnLine, 2016; 49(16): 161–165.

Ling X, Zhao Y S, Gong L, Liu C L, Wang T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics & Autonomous Systems, 2019; 114: 134–143.

Santhi P V, Kapileswar N, Chenchela V K, Prasad C V S. Sensor and vision based autonomous AGRIBOT for sowing seeds. In: 2017 International Conference on Energy, Communication, Data Analytics & Soft Computing (ICECDS). Chennai, India: IEEE, 2017; pp.242–245. doi: 10.1109/ICECDS.2017.8389873.

Zhou X. Design and tests of intelligent sorting-transplanting-replanting integrated machine for plug seedlings in greenhouse. Master dissertation. Zhenjiang: Jiangsu University, 2019; 141p. (in Chinese)

Danton A, Roux J C, Dance B, Cariou C, Lenain R. Development of a spraying robot for precision Agr: An edge following approach. In: 2020 IEEE Conference Control Technology & Applications (CCTA), 2020; pp.267–272. doi: 10.1109/CCTA41146.2020.9206304.

Cantelli L, Bonaccorso F, Longo D, Melita C D, Schillaci G, Muscato G. A small versatile electrical robot for autonomous spraying in agriculture. AgriEngineering, 2019; 1(3): 391–402.

Reiser D, Sehsah E S, Bumann O, Morhard J, Griepentrog H W. Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture, 2019; 9(1): 18. doi: 10.3390/ agriculture9010018.

Katyara S, Ficuciello F, Caldwell D G, Chen F, Siciliano B. Reproducible pruning system on dynamic natural plants for field agricultural robots. In: Human-Friendly Robotics 2020, 13th International Workshop, 2020; pp. 1–15. doi: 10.1007/978-3-030- 71356-0_1.

You A, Sukkar F, Fitch R, Karkee M, Davidson J R. An efficient planning and control framework for pruning fruit trees. In: 2020 IEEE International Conference on Robotics & Automation (ICRA). Paris: IEEE, 2020; pp.3930–3936. doi: 10.1109/ICRA40945.2020.9197551.

Kaljaca D, Vroegindeweij B, Van Henten E. Coverage trajectory planning for a bush trimming robot arm. J Field Robotics, 2020; 37(2): 283–308.

Polishchuk M, Tkach M, Parkhomey I, Boiko J, Eromenko O. Walking mobile robot for trimming trees: design and modeling. International J Control & Autom, 2020; 13(2): 1760–1772.

Van Tuijl B A J, Tielen A P M, Mencarelli A, Hemming J. Structured design of a novel end-effector for a bush trimming robot. Proc European Conf Agr Eng, 2018; pp.188–196.

Kondo N, Monta M, Shibano Y. Multi-operation robot for fruit production. In: Proc Korean Soc Agr Mach Conf, 1996; pp. 621–631.

Lyons D J, Heinemann P H, Schupp J R, Baugher T A, Liu J. Development of a selective automated blossom thinning system for peaches. Transactions of the ASABE, 2015; 58(6): 1447–1457. doi: 10.13031/trans.58.11138.

Zhang K, Zhao L N, Zhe S, Geng C X, Li W. Design and experiment of intelligent grape bagging robot. Appl Mech & Mater., 2013; 389: 706–711. doi: 10.4028/www.scientific.net/AMM.389.706.

Monta M, Kondo N, Shibano Y, Mohri K. End-effectors for agricultural robot to work in vineyard. Greenhouse Environ Control & Autom, 1994; 399: 247–254.

Van Henten E J, Van Tuijl B A J, Hoogakker G J, Van Der Weerd M. J, Hemming J, Kornet J G, et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 2006; 94(3): 317–323.

Ota T, Bontsema J, Hayashi S, Kubota K, Van Henten E J, Can Os E A, et al. Development of a cucumber leaf picking device for greenhouse production. Biosystems Engineering, 2007; 98(4): 381–390.

Ohi N, Lassak K, Watson R, Strader J, Du Y, Li W. Design of an autonomous precision pollination robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots & Systems (IROS). Madrid: IEEE, 2018; pp.7711–7718. doi: 10.1109/IROS.2018.8594444.

Yuan T, Zhang S, Sheng X, Wang D, Gong Y, et al. An autonomous pollination robot for hormone treatment of tomato flower in greenhouse. 3rd Int Conf Syst & Inform (ICSAI). IEEE, 2016; pp.108–113. doi: 10.1109/ICSAI.2016.7810939.

Strader J, Nguyen J, Tatsch C, Du Y X, Lassak K, Buzzo B, et al. Flower interaction subsystem for a precision pollination robot. In: 2019 IEEE/RSJ Int Conf Intell Robots & Syst (IROS), 2019; pp. 5534–5541.

Williams H, Nejati M, Hussein S, Penhall N, Lim J Y, Jones M H, et al. Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator. J Field Robotics, 2020; 37(2): 246–262.

Barnett J, Seabright M, Williams H A, Nejati M, Scarfe A J, Bell J, et al. Robotic pollination-targeting kiwifruit flowers for commercial application. In: 7th Asian-Australasian Conference on Precision Agriculture, 2017.

Ye Y, He L, Wang Z, Jones D, Hollinger G A, Taylor M E, et al. Orchard manoeuvring strategy for a robotic bin-handling machine. Biosystems Engineering, 2018; 169: 85–103.

Zhang Y, Ye Y, Wang Z, Taylor M E, Hollinger G A, Zhang Q. Intelligent in-orchard bin-managing system for tree fruit production. In: Proc of the Robotics in Agr Workshop at the 2015 IEEE Int Conf Robotics & Autom, 2015; 30: 1-4.

Ye Y, Wang Z, Jones D, He L, Taylor M E, Hollinger G A, et al. Bin-dog: A robotic platform for bin management in orchards. Robotics, 2017; 6(2): 12. doi: 10.3390/robotics6020012.

Jang W J, Lewis G, Hoachuck J, Slaughter D, Wilken K, Vougioukas S. Vibration-reducing path tracking control for a strawberry transport robot. In: 2014 ASABE Annual International Meeting. Montreal: ASABE, 2014; Paper number: 14194011. doi: 10.13031/aim.20141914011.

Seyyedhasani H, Peng C, Jang W J, Vougioukas S G. Collaboration of human pickers and crop-transporting robots during harvesting–Part I: Model and simulator development. Computers & Electronics in Agriculture, 2020; 172: 105324. doi: 10.1016/j.compag.2020.105324.

Qiao J, Sasao A, Shibusawa S, Kondo N. Mobile fruit grading robot-concept and prototype. In: 2004 ASAE Annual Meeting, 2004; pp.4173–4185. doi: 10.13031/2013.16725.

Cubero S, Aleixos N, Albert F, Torregrosa A, Ortiz C, García-Navarrete O, et al. Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision Agriculture, 2014; 15(1): 80–94.

Shamshiri R, Weltzien C, Hameed I A, Yule I, Grift T, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.

Shi Q, Liu D, Mao H, Shen B, Liu X, Ou M. Study on assistant pollination of facility tomato by UAV. In: 2019 ASABE Annual International Meeting, Boston: ASABE, 2019; 1900055. doi: 10.13031/aim.201900055.

Berman S, Nagpal R, Halász Á. Optimization of stochastic strategies for spatially inhomogeneous robot swarms: A case study in commercial pollination. In: 2021 IEEE/RSJ International Conference Intelligent Robots & Systems. San Francisco: IEEE, 2011; pp. 3923–3930. doi: 10.1109/IROS.2011.6094771.

Chong V K, Monta M, Ninomiya K, Kondo N, Namba K, Terasaki E, et al. Development of mobile eggplant grading robot for dynamic in-field variability sensing:—manufacture of robot and performance test—. Eng Agr, Environ & Food, 2008; 1(2): 68–76.

Oudshoorn F. Mobile milking robot offers new grazing concept. Grassland Sci Europe, 2008; 13: 721–723.

Chen Y, Feng K, Jiang Y, Hu Z. Design and research on six degrees of freedom robot evisceration system for poultry. In: Proc of 3rd Int Conf E-Business, Inf Management and Comput Science., 2020; pp. 382–386.

Chen Y, Wan L, Liu Z. The study on recognition and location of intelligent robot system for eviscerating poultry. In: 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Jinzhou, China: IEEE, 2019; pp. 499–503. doi: 10.1109/ YAC.2019.8787596.

Doerfler R L, Martin R, Bernhardt H. Implications of robotic walkway cleaning for hoof disorders in dairy cattle. International Journal of Engineering Research and Application, 2017; 7(1): 98–104.

Vroegindeweij B A, Blaauw S K, IJsselmuiden J M, Van Henten E J. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosystems Engineering, 2018; 174: 295–315.

Vroegindeweij B. PoultryBot, a robot for poultry house applications: localisation, path planning, object recognition and performance evaluation. Doctor dissertation. Wageningen: Wageningen University, 2018; 218p.

Chang C L, Xie B X, Wang C H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms. Sensors, 2020; 20(22): 6624. doi: 10.3390/s20226624.

Wang C H, Xie B X, Chang C L. Design and implementation of livestock robot for egg picking and classification in the farm. In: 2019 International Symposium on Electrical and Electronics Engineering (ISEE). Ho Chi Minh City: IEEE, 2019; pp. 161–165. doi: 10.1109/ ISEE2.2019.8921255.

Joffe B P, Usher C T. Autonomous robotic system for picking up floor eggs in poultry houses. In: 2017 ASABE Annual International Meeting, 2017; 1700397. doi: 10.13031/aim.201700397.

Mu S, Qin H B, Wei J, Wen Q K, Liu S H, Wang S C, et al. Robotic 3D vision-guided system for half-sheep cutting robot. Mathematical Problems in Engineering, 2020; 1: 1–11.

Liu H W, Chen C H, Tsai Y C, Hsieh K W, Lin H T. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm. Sensors, 2021; 21(11): 3579. doi: 10.3390/s21113579.

Xie B, Liu J, He M, Wang J, Xu Z. Research progress on autonomous navigation technology of agricultural robot. In: IEEE Cyber Int Conf., 2021; Paper number: 464.

Reina G, Milella A, Galati R. Terrain assessment for precision agriculture using vehicle dynamic modelling. Biosystems Engineering, 2017; 162: 124–139. doi: 10.1016/j.biosystemseng.2017.06.025.

Zhang S, Song Y P, Xu B Y, Wang Z, Xu H J, Gao D S, et al. Design and experiment of omnidirectional agricultural measurement and control platform based on uC/OS system. Journal of Shandong Agricultural University (Natural Science Edition), 2018; 49(3): 438–443.

Tian G Z, Zhou J, Gu B X. Slipping detection and control in gripping fruits and vegetables for agricultural robot. Int J Agric & Biol Eng, 2018; 11(4): 45–51.

Liu J Z, Bai X X, Ling P P, Mao H P. Complex collision model in high-speed gripping of fruit. Transactions of the CSAM, 2014; 45(4): 49–54, 172.

Ji W, Qian Z J, Xu B, Chen G Y, Zhao D A. Apple viscoelastic complex model for bruise damage analysis in constant velocity grasping by gripper. Computers & Electronics in Agriculture, 2019; 162: 907–920.

Zhou J, Zhang N, Meng Y M, Wang M J. Online estimation of tomato viscoelastic parameters during robot grasping. Transactions of the CSAM, 2017; 48(8): 26–32. (in Chinese)

Li Z G, Zhang Z B, Thomas C. Viscoelastic-plastic behavior of single tomato mesocarp cells in high speed compression-holding tests. Innovative Food Science & Emerging Technologies, 2016; 34: 44–50.

Liu J Z, Li Z G, Li P P. Rapid damage-free robotic harvesting of tomatoes. China: Science Press & Springer, 2021; 368p.

Xiong Y, Ge Y Y, Liang Y L, Blackmore S. Development of a prototype robot and fast path-planning algorithm for static laser weeding. Computers & Electronics in Agriculture, 2017; 142(PartB): 494–503.

Bachche S, Oka K. Performance testing of thermal cutting systems for sweet pepper harvesting robot in greenhouse horticulture. Journal of System Design & Dynamics, 2013; 7(1): 36–51.

Liu J, Hu Y, Xu X Q, Li P P. Feasibility and influencing factors of laser cutting of tomato peduncles for robotic harvesting. African Journal of Biotechnology, 2011; 10(69): 15552–15563.

Zhang K, Xu L, Zhang D. Design and analysis of a 4-PPPR parallel manipulator for strawberry harvesting in the ridge cultivation model. In: 2016 2nd International Conference Control Science & Systems Engineering (ICCSSE). Singapore: IEEE, 2016; pp.248–251. doi: 10.1109/CCSSE.2016.7784391.

Bac C W, Roorda T, Reshef R, Berman S, Hemming J, can Henten E J. Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment. Biosystems Engineering, 2016; 146: 85–97. doi: 10.1016/j.biosystemseng.2015.07.004.

Van Herck L, Kurtser P, Wittemans L, et al. Crop design for improved robotic harvesting: A case study of sweet pepper harvesting. Biosystems Engineering, 2020; 192: 294–308. doi: 10.1016/j.biosystemseng. 2020.01.021.

Bloch V, Degani A, Bechar A. A methodology of orchard architecture design for an optimal harvesting robot. Biosystems Engineering, 2018; 166: 126–137. doi: 10.1016/j.biosystemseng.2017.11.006.

Shamshiri R R, Hameed I A, Pitonakova L, Weltzien C, Balasundram S K, Yule I J, et al. Simulation software and virtual environments for acceleration of agricultural robotics: features highlights and performance comparison. Int J Agric & Biol Eng, 2018; 11(4): 15–31. doi: 10.25165/j.ijabe.20181104.4032.

Mahmud M S A, Abidin M S Z, Mohamed Z, Rahman M K I A, Lida M. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Computers & Electronics in Agriculture, 2019; 157: 488–499. doi: 10.1016/j.compag.2019.01.016.

Wang H J, Zou X J, Liu C Y, Lu J, Liu T H. Study on behavior simulation for picking manipulator in virtual environment based on binocular stereo vision. In: 2008 Asia Simulation Conference-7th International Conference on System Simulation & Scientific Computing. Beijing: IEEE, 2008; pp. 27–31. doi:10.1109/ASC-ICSC.2008.4675320.

Grimstad L, From P. Thorvald II - a modular and re-configurable agricultural robot. IFAC-PapersOnLine, 2017; 50(1): 4588–4593.

Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M, Tona E, et al. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering, 2016; 146: 203–215.

Levin M, Degani A. A conceptual framework and optimization for a task-based modular harvesting manipulator. Computers & Electronics in Agriculture, 2019; 166: 104987. doi: 10.1016/j.compag.2019.104987.

Mohamed A, ShawSutton J, Green B M, Andrews W, Rolley-Parnell E J, Zhou Y, et al. Soft manipulator robot for selective tomato harvesting. In: 12th European Conf Precis Agr, 2019; pp.799–805. doi: 10.3920/978-90-8686-888-9_99.

Bartlett N, Tolley M, Overvelde J T B, Weaver J C, Mosadegh B, Bertoldi K, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015; 349(6244): 161–165.

Devi M, Udupa G, Sreedharan P. A novel underactuated multi-fingered soft robotic hand for prosthetic application. Robotics & Auto Syst, 2018; 100: 267–277.

Excell J. Fruit-picking robot solves automation challenge. 2015. Available: https://www.theengineer.co.uk/fruit-picking-robot-solves- automation-challenge/. Accessed on [2015-10-16].

Shea P, Floreano P. Intrinsic electro-adhesion for soft DEA-based grippers. 2017. Available: https://lmts.epfl.ch/electroadhesion. Accessed on [2017-08-03].

Nishida T, Okatani Y, Tadakuma K. Development of universal robot gripper using MRα fluid. Int J Humanoid Robotics, 2016; 13(4): 1650017. doi: 10.1142/S0219843616500171.

Zhang F, Wang Y F, Teng S, Zheng L M, Wang J J, Chen Z J. Development of agricultural bionic four-legged robot: Effect of head movement adjustment on the stability of goats. Int J Agric & Biol Eng, 2019; 12(4): 10–15. doi: 10.25165/j.ijabe.20191204.4287.

Zhang C, Yang M J, Chen J, Jiang M, Ma Y C, Ji J. Energy consumption optimization model of agricultural hexapod robot with self-locking joints. Transactions of the CSAE, 2016; 32(18): 73–83. (in Chinese)

Rong Y, Jin Z L, Cui B Y. Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanisms. Transactions of the CSAE, 2012; 28(15): 9–14. (in Chinese)

Zhang J Z, Jin Z L, Chen G G. Kinematic analysis of leg mechanism of six-legged walking robot. Transactions of the CSAE, 2016; 32(9): 45–52. (in Chinese)

Huang C, Chang C. Design and implementation of bio-inspired snake bone-armed robot for agricultural irrigation application. IFAC-Papers OnLine, 2019; 52(30): 98–101.

Li M J, Zeng X, Xie R Z, Zhang Y H. Development of an inchworm-like soft gripper based on sma-drive. Mechanical Engineering & Automation, 2018; 5: 35–37. (in Chinese)

Quan L Z, Zhao L, Li X H, Zhang C B, Wang J S, Cheng G. Design and test of multifunctional dragonfly claws form bio-mimetic end effector. Transactions of the CSAM, 2017; 48(8): 33–42, 52. (in Chinese)

Deng X L, Luo Z Y, Pang J Q, Zhang Y M, Yang C J, Li R Q. Design and experiment of bionic nondestructive handheld suction apple picker. Journal of China Agricultural University, 2019; 24(10): 100–108. (in Chinese)

Potts S G, Neumann P, Vaissière B, Vereecken N J. Robotic bees for crop pollination: Why drones cannot replace biodiversity. Science of the Total Environment, 2018; 642: 665–667.

Cheein F A, Steiner G, Paina G, Carelli R. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Computers & Electronics in Agriculture, 2011; 78(2): 195–207.

Soria P R, Sukkar F, Martens W, Arrue B C, Fitch R. Multi-view probabilistic segmentation of pome fruit with a low-cost RGB-D camera. In: Iberian Robotics Conference., Cham: Springer, 2017; pp.320–331. doi: 10.1007/978-3-319-70836-2_27.

Henten E, Hemming, J, van Tuijl B A J, Kornet J G, Meuleman J, Bontsema J, et al. An Autonomous robot for harvesting cucumbers in greenhouses. Autonmous Robots, 2002; 13(3): 241–258.

Yang L J, Pitla S, Yang Z D, Xia P P, Zhao C Y. Path tracking of mobile platform in agricultural facilities based on ultra wideband wireless positioning. Transactions of the CSAE, 2019; 35(2): 17–24. (in Chinese)

Dimeas F, Sako D V, Moulianitis V C, Aspragathos N A. Design and fuzzy control of a robotic gripper for efficient strawberry harvesting. Robotica, 2015; 33(5): 1085–1098.

Zhang C, Liu S Y, Huang X, Guo W, Li Y Y, Wu H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy, 2019; 62: 164–170.

Wolfert S; Goense D, Sørensen C. A future internet collaboration platform for safe and healthy food from farm to fork. In: 2014 Annual SRII Global Conference. San Jose, CA, USA: IEEE, 2014; pp.266–273. doi:10.1109/SRII.2014.47.

Dusadeerungsikul P, Nof S, Bechar A, Tao Y. Collaborative control protocol for agricultural cyber-physical system. Procedia Manufacturing, 2019; 39: 235–242.




Copyright (c) 2021 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office