Method for detecting 2D grapevine winter pruning location based on thinning algorithm and Lightweight Convolutional Neural Network
Abstract
Keywords: grapevine winter pruning, Lightweight Convolutional Neural Network, thinning algorithm, detection method
DOI: 10.25165/j.ijabe.20221503.6750
Citation: Yang Q H, Yuan Y H, Chen Y Q, Xun Y. Method for detecting 2D grapevine winter pruning location based on thinning algorithm and Lightweight Convolutional Neural Network. Int J Agric & Biol Eng, 2022; 15(3): 177–183.
Keywords
Full Text:
PDFReferences
Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
Liu S, Whitty M. Automatic grape bunch detection in vineyards with an SVM classifier. Journal of Applied Logic, 2015; 13(4): 643–653.
Botterill T, Green R, Mills S. Finding a vine's structure by bottom-up parsing of cane edges. In: 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), Wellington, New Zealand: IEEE, 2013; pp.112–117. doi: 10.1109/IVCNZ.2013.6727001.
Diago M-P, Correa C, Millán B, Barreiro P, Valero C, Tardaguila J. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Sensors, 2012; 12(12): 16988–17006.
Xu S, Xun Y, Jia T M, Yang Q H. Detection method for the buds on winter vines based on computer vision. In: 2014 Seventh International Symposium on Computational Intelligence and Design, Hangzhou: IEEE, 2014; pp.44–48. doi: 10.1109/ISCID.2014.26
Rosenfeld A. A characterization of parallel thinning algorithms. Information and Control, 1975; 29(3): 286–291.
Harris C G, Stephens M J. A combined corner and edge detector. Alvey Vision Conference, 1988; pp.147–152. doi: 10.5244/c.2.23.
Pérez D S, Bromberg F, Diaz C A. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Computers and Electronics in Agriculture, 2017; 135: 81–95.
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004; 60(2): 91–110.
Csurka G, Dance C R, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision ECCV 2004, 2004; pp.1–22.
Vapnik V N, Mulier F M. Statistical learning theory. In: Learning from Data: Concepts, Theory, and Methods, IEEE, 2007; pp.99–150.
Díaz C A, Pérez D S, Miatello H, Bromberg F. Grapevine buds detection and localization in 3D space based on structure from motion and 2D image classification. Computers in Industry, 2018; 99: 303–312.
Zabawa L, Kicherer A, Klingbeil L, Toepfer R, Kuhlmann H, Roscher R. Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2020; 164: 73–83.
Palacios F, Bueno G, Salido J, Diago M P, Hernandez I, Tardaguila J. Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Computers and Electronics in Agriculture, 2020; 178: 105796. doi: 10.1016/j.compag.2020.105796.
Cruz A, Ampatzidis Y, Pierro R, Materazzi A, Panattoni A, Bellis L D, et al. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Computers and Electronics in Agriculture, 2019; 157: 63–76.
Marset W V, Perez D S, Diaz C A, Bromberg F. Towards practical 2D grapevine bud detection with fully convolutional networks. Computers and Electronics in Agriculture, 2021; 182: 105947. doi: 10.1016/j.compag.2020.105947.
Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 1984; 27(3): 236–239.
Naccache N J, Shinghal R. An investigation into the skeletonization approach of Hilditch. Pattern Recognition, 1984; 17(3): 279–284.
Lu H E, Wang P S P. A comment on “A fast parallel algorithm for thinning digital patterns”. Communications of the ACM, 1986; 29(3): 239–242.
Lu H E, Wang P S P. An improved fast parallel thinning algorithm for digital patterns. In: Proceedings CVPR '85: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1985; pp.364–367.
Zhao D D, Wang H B, Tao L, Zhou J. Improved EPTA parallel thinning algorithm. Computer Engineering and Applications, 2016; 52(9): 196–201. (in Chinese)
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L-C. MobileNetV2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA: IEEE, 2018; pp.4510–4520. doi: 10.1109/ CVPR.2018.00474.
Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, et al. Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision, IEEE, 2019; pp.1314–1324.
Ma N, Zhang X, Zheng H-T, Sun J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (Eds). Computer Vision - ECCV 2018, Springer, 2018; pp. 122–138. doi: 10.1007/978-3-030-01264-9_8.
Mingxing T, Le Q V. EfficientNet: Rethinking model scaling for Convolutional Neural Networks. arXiv, 2019; arXiv: 1905.11946 doi: 10.48550/arXiv.1905.11946.
Iandola F N, Han S, Moskewicz M W, Ashraf K, Dally W J, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv, 2016; arXiv: 1602.07360. doi: 10.48550/arXiv.1602.07360.
Rosenfeld A, Thurston M. Edge and curve detection for visual scene analysis. IEEE Transactions on Computers, 1971; C-20(5): 562–569.
Panigrahi S, Nanda A, Swarnkar T. A survey on transfer learning. IEEE Transactions on Knowledge and Data Eengineering, 2010; 22(10): 1345–1359.
Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning. Journal of Big Data, 2019; 6(1): 60. doi: 10.1186/ s40537-019-0197-0.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017; 39(6): 1137–1149.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.