Litchi detection in the field using an improved YOLOv3 model
Abstract
Keywords: deep learning; residual network; dense connection; feature pyramid network
DOI: 10.25165/j.ijabe.20221502.6541
Citation: Peng H X, Xue C, Shao Y Y, Chen K Y, Liu H N, Xiong J T, et al. Litchi detection in the field using an improved YOLOv3 model. Int J Agric & Biol Eng, 2022; 15(2): 211–220.
Keywords
Full Text:
PDFReferences
Wei X Q, Ji K, Lan J H, Li Y W, Zeng Y L, Wang C M. Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot. Optik, 2014; 125(19): 5684–5689.
Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications. Computers and Electronics in Agriculture, 2018; 152: 64–73.
Tao Y T, Zhou J. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Computers and Electronics in Agriculture, 2017; 142(Part A): 388–396.
Ni X D, Wang X, Wang S M, Wang S B, Yao Z, Ma Y B. Structure design and image recognition research of a picking device on the apple picking robot. IFAC-PapersOnLine, 2018, 51(17): 489–494.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012; 60: 84–90.
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA: IEEE, 2015; pp.1–9. doi: 10.1109/CVPR.2015.7298594.
Peng H X, Xue C, Shao Y Y, Chen K Y, Xiong J T, Xie Z H, et al. Semantic segmentation of litchi branches using DeepLabV3+ model. IEEE Access, 2020; 8: 164546–164555.
Kang H W, Zhou H Y, Wang X, Chen C. Real-time fruit recognition and grasping estimation for robotic apple harvesting. Sensors, 2020; 20(19): 5670. doi: 10.3390/s20195670.
He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016; pp.770–778.
Sa I, Ge Z Y, Dayoub F, Upcroft B, Perez T, McCool C. DeepFruits: A fruit detection system using deep neural networks. Sensors, 2016; 16(8): 1222. doi: 10.3390/s16081222.
Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics, 2017; 34(6): 1039–1060.
Zhang Y D, Dong Z C, Chen X Q, Jia W J, Du S D, Muhammad K, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications, 2019; 78: 3613–3632.
Kestur R, Meduri A, Narasipura O. MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard. Engineering Applications of Artificial Intelligence, 2019; 77: 59–69.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016; 39(6): 1137–1149.
Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016; pp.779–788.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD: Single Shot MultiBox Detector. In: European Conference on Computer Vision-ECCV 2016, Springer, 2016; 9905: 21–37. doi: 10.1007/ 978-3-319-46448-0_2.
Tian Y N, Yang G D, Wang Z, Wang H, Li E, Liang, Z Z. Apple detection during different growth stages in orchards using the improved YOLO-v3 model. Computers and Electronics in Agriculture, 2019; 157: 417–426.
Zhao J Y, Qu J H. Healthy and diseased tomatoes detection based on YOLOv2. In: International Conference on Human Centered Computing-HCC 2018, Springer, 2018; 11354: 347–353. doi: 10.1007/ 978-3-030-15127-0_34.
Liu G X, Nouaze J C, Touko Mbouembe P L, Kim J H. YOLO-Tomato: A robust algorithm for tomato detection Based on YOLOv3. Sensors, 2020(7); 2145. doi: 10.3390/s20072145.
Neubeck A, Gool L J V. Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR'06), HongKong, China: IEEE, 2006; pp.850–855. doi: 10.1109/ICPR.2006.479.
He K M, Zhang X Y, Ren S Q, Jian S. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016; pp.770–778. doi: 10.1109/ CVPR.2016.90.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA: IEEE, 2017; pp.2261–2269. doi: 10.1109/CVPR.2017.243.
in T Y, Dollár P, Girshick R, He K, Hariharan B. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA: IEEE, 2017; pp.936–944. doi: 10.1109/CVPR.2017.106.
Ye M, Liu G Y. Facial expression recognition method based on shallow small convolution kernel capsule network. Journal of Circuits, Systems and Computers, 2020; 30(10): 2150177. doi: 10.1142/S0218126621501772.
Tek F B, Çam I, Karlı D. Adaptive convolution kernel for artificial neural networks. Journal of Visual Communication and Image Representation, 2021; 75: 103015. arXiv: 2009.06385.
Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, et al. Accurate, large minibatch SGD: Training ImageNet in 1 hour. 2017. arXiv: 1706.02677v1.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.