Novel technique of controlled laser air-force detection for rheological properties of polymers
Abstract
Keywords: controlled laser air-force detection (CLAFD) technique, biological tissues, rheological properties, statics analysis, dynamic analysis
DOI: 10.25165/j.ijabe.20221501.6494
Citation: Xu H B, Hu R Z, Lin Y Z, Juan H, Tang X Y. Novel technique of controlled laser air-force detection for rheological properties of polymers. Int J Agric & Biol Eng, 2022; 15(1): 62–70.
Keywords
Full Text:
PDFReferences
Liang M, Su L P, Li P Z, Shi J T, Yao Z Y, Zhang J, et al. Investigating the rheological properties of carbon nanotubes/polymer composites modified asphalt. Materials (Basel), 2020; 13(18): 4077. doi: 10.3390/ma13184077.
Hsissou R, Bekhta A, Dagdag O, el Bachiri A, Rafik M, Elharfi A. Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 2020; 6(6): e04187. doi:10.1016/j.heliyon.2020.e04187.
Katashima T. Rheological studies on polymer networks with static and dynamic crosslinks. Polym. J., 2021; 53(10): 1073–1082.
Lee J, Kim H. Rheological properties and phase structure of polypropylene/polystyrene/multiwalled carbon nanotube composites. Korea-Aust. Rheol. J., 2020; 32(2): 153–158.
Da Fonsêca J H L, d’Ávila M A. Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions. Rheol Acta, 2021; 60(9): 497–509.
Mijailovic A S, Qing B, Fortunatoc D, Van K J V. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation. Acta. Biomater, 2018; 71: 388–397.
Cacopardo L, Guazzelli N, Ahluwalia A. Characterizing and engineering biomimetic materials for viscoelastic mechanotransduction studies. Tissue Engineering Part B: Reviews, 2021; Ahead of printd. doi: 10.1089/ten.TEB.2021.0151.
Zhu C Z, Wang X J, Li Z L, Liu J, Zheng J. Research on static and dynamics mechanical characteristics of flexible bearing in harmonic reducer. Int. J. Adv. Robot Syst., 2020; 17(2): 1729881420919953. doi:10.1177/1729881420919953.
Feng H, Cui X Y, Li G Y. A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Engineering Analysis with Boundary Elements, 2016; 62: 78–92.
Tanaka M, Nakahata M, Linke P, Kaufmann S. Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. Polym J 2020; 52(8): 861–870.
Prussia S E, Astleford J J, Hewlett B, Hung Y C. Non-destructive firmness measurement device. 1994; Patent No. 5372030, USA.
Hung Y C, Prussia S E, Ezeike G O I. Nondestructive firmness sensing using a laser air-puff detector. Postharvest Biol. Tec., 1999; 16(1): 15–25.
Lee Y S, Owens C M, Meullenet J F. Novel laser air puff and shape profile method for predicting tenderness of Broiler breast meat. Poultry Sci., 2008; 87(7): 1451–1457.
McGlone V A, Jordan R B. Kiwifruit and apricot firmness measurement by the non-contact laser air-puff method. Postharvest Biology and Technology, 2000; 19(1): 47–54.
Morren S, Dyck T V, Mathijs F, Luca S, Cardinaels R, Moldenaers P, et al. Applicability of the food texture puff device for rheological characterization of viscous food products. J. Texture Stud., 2015; 46(2): 94–104.
Long Y, Tang X Y, Wang W J, Peng Y K, Dong X G, Kang X L, et al. A unique method for detecting beef tenderness based on viscoelasticity principle. J. Texture Stud., 2017; 48(5): 433–438.
Li Y L, Wang W J, Long Y, Peng Y K, Li Y Y, Chao K L, et al. A feasibility study of rapid nondestructive detection of total volatile basic nitrogen (TVB-N) content in beef based on airflow and laser ranging technique. Meat Sci., 2018; 145: 367–374.
Li Y L, Tang X Y, Shen Z X, Dong J. Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chem., 2019; 87: 26–132.
Lan C, Umezuruike L. Approaches to analysis and modeling texture in fresh and processed foods-a review. Food Eng., 2013; 119(3): 497–507.
Wang Y M, Qing D D. Model predictive control of nonlinear system based on GA-RBP neural network and improved gradient descent method. Complexity, 2021; 3: 6622149. doi:10.1155/2021/6622149.
Wen H, Yan T, Liu Z Q, Chen D L. Integrated neural network model with pre-RBF kernels. Science Progress, 2021; 104(3): 1–18.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.