Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network
Abstract
Keywords: cotton, waterlogging, hyperspectral image, convolutional neural network
DOI: 10.25165/j.ijabe.20211402.6023
Citation: Zhao J, Pan F J, Li Z M, Lan Y B, Lu L Q, Yang D J, et al. Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network. Int J Agric & Biol Eng, 2021; 14(2): 167–174.
Keywords
Full Text:
PDFReferences
Hodgson A S, Chan K Y. The effect of short-term waterlogging during furrow irrigation of cotton in a cracking grey clay. Aust J Agric Res, 1982; 33(1): 109–116.
Reicosky D C, Meyer W S, Schaefer N L, Sides R D. Cotton response to short-term waterlogging imposed with a water-table gradient facility. Agricultural Water Management, 1985; 10(2): 127–143.
Hocking P J, Reicosky D C, Meyer W S. Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant Soil, 1987; 101: 211–221.
Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging. Field Crop Res, 2004; 88(2-3): 129–142.
Zhang Y J, Chen Y Z, Lu H Q, Kong X Q, Dai J L, Li Z H, et al. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crop Res, 2016; 194: 83–93.
Milroy P S, Bange P M. Reduction in radiation use efficiency of cotton (Gossypium hirsutum L.) under repeated transient waterlogging in the field. Field Crop Res, 2013; 140: 51–58.
Kuai J, Zhou Z G, Wang Y H, Meng Y L, Chen B L, Zhao W Q. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. Europ. J. Agronomy, 2015; 67: 61–74.
Zhang Y J, Song X Z, Yang G Z, Li Z H, Lu H Q, Kong X Q, et al. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crop Res, 2015; 179: 164–172.
Milroy P S, Bange P M, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crop Res, 2009; 34: 246–255.
Wang H M, Chen Y L, Hu W, Snider J L, Zhou Z G. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf. Plant Physiol Bioch, 2019; 139: 333–341.
Najeeb U, Bange P M, Atwell B J, Tan D K Y. Understanding of the interactive effect of waterlogging and shade on cotton (Gossypium hirsutum L.) growth and yield. Procedia Environmental Sciences, 2015; 29: 85–86.
Baranowski P, Jedryczka M, Mazurek W, Babula-Skowronska D, Siedliska A, Kaczmarek J. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus alternaria. Plos One, 2015; 10(3): e0122913.
Xia J A, Cao H X, Yang Y W, Zhang W X, Wan Q, Xu L, et al. Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.). Comput Electron Agr, 2019; 159: 59–68.
Moshou D, Pantazi X E, Kateris D, Gravalos I. Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosyst Eng, 2014; 117: 15–22.
Mahlein A K, Steiner U, Hillnhütter C, Dehne W H, Oerke E C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 2012; 8(1): 3.
Gu Q, Sheng L, Zhang T H, Lu Y W, Zhang Z J, Zheng K F, et al. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms. Comput Electron Agr, 2019; 167: 105066.
Xie C Q, Shao Y N, Li X L, He Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Scientific Reports, 2015; 5: 16564.
Khan I H, Liu H Y, Cheng T, Tian Y C, Cao Q, Zhu Y, et al. Detection of wheat powdery mildew based on hyperspectral reflectance through SPA and PLS-LDA. Int J Precis Agric Aviat, 2020; 3(1): 13–24.
Zhang M Y, Li C Y, Yang F Z. Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR) hyperspectral transmittance imaging. Comput Electron Agr, 2017; 139: 75–90.
Zhang R Y, Li C Y, Zhang M Y, Rodgers J. Shortwave infrared hyperspectral reflectance imaging for cotton foreign matter classification. Comput Electron Agr, 2016; 127: 260–270.
Prabhakar M, Prasad Y G, Thirupathi M, Sreedevi G, Dharajothi B, Venkateswarlu B. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput Electron Agr, 2011; 79: 189–198.
Yang C H, Everitt J H, Fernandez C J. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosyst Eng, 2010; 107(2): 131–139.
Yi Q X, Wang F M, Bao A M, Jiapaer G. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative transfer models. Int J Appl Earth Obs, 2014; 33: 67–75.
Yi Q X, Bao A M, Wang Q, Zhao J. Estimation of leaf water content in cotton by means of hyperspectral indices. Comput Electron Agr, 2013; 90: 144–151.
Han X, Yu J Y, Lan Y B, Kong F X, Yi L L. Determination of application parameters for cotton defoliants in the Yellow River Basin. Int J Precis Agric Aviat, 2019; 2(1): 1–5.
Schafer R W. What is a Savitzky-Golay filter?.[lecture notes] IEEE Signal Proc Mag, 2011; 28(4): 111–117.
Chen J, Jonsson P, Tamura M, Gu Z H, Matsushita B, Eklundh L. A simple method for reconstructing a high quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 2004; 91(3-4): 332–344.
Canny J. A computational approach to edge detection. IEEE T Pattern Anal, 1986; 8(6): 679–698.
Liu Z Y, Wu F H, Huang J F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Comput Electron Agr, 2010; 72(2): 99–106.
Golzarian M R, Frick R A. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods, 2011; 7(28): 1–11.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv: 1512.00567, 2016.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521: 436–444.
Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks, 2015; 61(1): 85–117.
Abadi M, Agarwal A, Barham P, Brevdo E, Zhifeng C, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. 2016. Available: https://blog.csdn.net/ynsshzwxhzyx/ article/details/79448631. Accessed on [2020-06-26].
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
Akash A, Jinha J, Chang A J, Sungchan O, Murilo M, Juan L. A comparative study of RGB and multispectral sensor-based cotton canopy cover modelling using multi-temporal UAS data. Remote Sensing, 2019; 11(23): 2757. doi : 10.3390/rs11232757.
Pedro H A M, Fabio H R B, Túlio H D M, João V P F F, Larissa P R T, Carlos A S J, et al. Estimating spray application rates in cotton using multispectral vegetation indices obtained using an unmanned aerial vehicle. Crop Protection, 2021; 40: 105407.
Sungchan O, Chang A J, Akash A, Jinha J, Nothabo D, Murilo M, et al. Plant counting of cotton from UAS imagery using deep learning-based object detection framework. Remote Sensing, 2020; 12(18): 2981. doi : 10.3390/rs12182981.
Feng A J, Zhou J F, Vories E, Sudduth K A. Evaluation of cotton emergence using UAV-based imagery and deep learning. Computers and Electronics in Agriculture, 2020; 177: 105711. doi: 10.1016/j.compag.2020.105711
Adão N A, Witenberg S R S, Díbio L B. Cotton pests classification in field-based images using deep residual networks. Computers and Electronics in Agriculture, 2020; 174: 105488. doi: 10.1016/j.compag.2020.105488.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.