Automatic sweet pepper detection based on point cloud images using subtractive clustering
Abstract
Keywords: sweet pepper detection, point cloud, subtractive clustering, computer vision
DOI: 10.25165/j.ijabe.20201303.5460
Citation: Zhao X K, Li H, Zhu Q B, Huang M, Guo Y, Qin J W. Automatic sweet pepper detection based on point cloud images using subtractive clustering. Int J Agric & Biol Eng, 2020; 13(3): 154–160.
Keywords
Full Text:
PDFReferences
Shamshiri R R, Hameed I A, Karkee M, Weltzien C. Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB. In: Kulshreshtha S N (Ed.). Automation in Agriculture-Securing Food Supplies for Future Generations, London: InTechOpen, 2018; pp.81–105.
Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.
Gongal A, Amatya S, Karkee M, Zhang Q, Lewis K. Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 2015; 116: 8–19.
Edan Y, Rogozin D, Flash T, Miles G E. Robotic melon harvesting. IEEE Transactions on Robotics and Automation, 2000; 16(6): 831–835.
Lu Q, Cai J R, Liu B, Deng L, Zhang Y J. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int J Agric & Biol Eng, 2014; 7(2): 115–121.
Tabb A L, Peterson D L, Parker J. Segmentation of Apple fruit from video via background modeling. In: ASABE Annual International Meeting Presentation. St. Joseph: ASABE, 2006; pp.60–63.
Kurtulmus F, Lee W S, Vardar A. Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture, 2014; 15: 57–79.
Khoshroo A, Arefi A, Khodaei J. Detection of red tomato on plants using image processing techniques. Agricultural Communications, 2014; 2(4): 9–15.
Kuang H L, Liu C R, Chan L L H, Yan H. Multi-class fruit detection based on image region selection and improved object proposals. Neurocomputing, 2018; 283: 241–255.
Sa I, Ge Z Y, Dayoub F, Upcroft B, Perez T, McCool C. Deepfruits: A fruit detection system using deep neural networks. Sensors, 2016; 16(8): 1222.
Shamshiri R R, Hameed I A, Pitonakova L, Weltzien C, Balasundram S K, Yule I J. Simulation software and virtual environments for acceleration of agricultural robotics: Features highlights and performance comparison. Int J Agric & Biol Eng, 2018; 11(4): 15–31.
Wang Q, Nuske S, Bergerman M, Singh S. Automated crop yield estimation for apple orchards. Experimental Robotics, 2013; 88: 745-758.
Xiang R, Jiang H, Ying Y. Recognition of clustered tomatoes based on binocular stereo vision. Computers and Electronics in Agriculture, 2014; 106: 75–90.
Wei X, He J C, Ye D P, Jie D F. Navel orange maturity classification by multispectral indexes based on hyperspectral diffuse transmittance imaging. Journal of Food Quality, 2017; 7: 1–7.
Underwood J P, Hung C, Whelan B, Sukkarieh S. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Computers and Electronics in Agriculture, 2016; 130: 83–96.
Stein M, Bargoti S, Underwood J. Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors, 2016; 16(11): 1915.
Gan H, Lee W S, Alchanatis V, Ehsani R, Schueller J K. Immature green citrus fruit detection using color and thermal images. Computers and Electronics in Agriculture, 2018; 152: 117–125.
Gongal A, Silwal A, Amatya S, Karkee M, Zhang Q, Lewis K. Apple crop-load estimation with over-the-row machine vision system. Computers and Electronics in Agriculture, 2016; 120: 26–35.
Tao Y T, Zhou J. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Computers and Electronics in Agriculture, 2017; 142(A): 388–396.
Qureshi W S, Payne A, Walsh K B, Linker R, Cohen O, Dailey M N. Machine vision for counting fruit on mango tree canopies. Precision Agriculture, 2017; 18: 224–244.
Sa I, Lehnert C, English A, Mccool C, Dayoub F, Upcroft B, et al. Peduncle detection of sweet pepper for autonomous crop harvesting— combined color and 3-D information. IEEE Robotics and Automation Letters, 2017; 2(2): 765–772.
Lehnert C, Sa I, McCool C, Upcroft B, Perez T. Sweet pepper pose detection and grasping for automated crop harvesting. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockolm: IEEE, 2016; pp.2428–2434.
Rusu R B, Cousins S. 3D is here: Point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011; pp.1–4.
Rusu R B, Marton Z C, Blodow N, Dolha M, Beetz M. Towards 3d point cloud based object maps for household environments. Robotics and Autonomous Systems, 2008; 56(11): 927–941.
Fernandez D, Parra I, Sotelo M A, Revenga P, Gavilan M. 3D candidate selection method for pedestrian detection on non-planar roads. In: 2007 IEEE Intelligent Vehicles Symposium. Istanbul: IEEE, 2007; pp.1162–1167.
Wu G, Zhu Q B, Huang M, Guo Y, Qin J W. Automatic recognition of juicy peaches on trees based on 3D contour features and colour data. Biosystems Engineering, 2019; 188: 1–13.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.