Automatic greenhouse pest recognition based on multiple color space features
Abstract
Keywords: ensemble learning classifier, greenhouse sticky trap, automated pest recognition and counting, HSI and Lab color spaces, multiple color space features
DOI: 10.25165/j.ijabe.20211402.5098
Citation: Yang Z K, Li W Y, Li M, Yang X T. Automatic greenhouse pest recognition based on multiple color space features. Int J Agric & Biol Eng, 2021; 14(2): 188–195.
Keywords
Full Text:
PDFReferences
Qiao M, Lim J, Ji C W, Chung B K, Kim H Y, Uhm K B, et al. Density estimation of Bemisia tabaci (Hemiptera: Aleyrodidae) in a greenhouse using sticky traps in conjunction with an image processing system. J. Asia-Pacific Entomol, 2008; 11(1): 25–29.
Pinto-Zevallos D M, Vänninen I. Yellow sticky traps for decision-making in whitefly management: what has been achieved? Crop Prot, 2013; 47: 74–84.
Allen W A, Rajotte E G. The changing role of extension entomology in the IPM era. Annu. Rev. Entomol, 1990; 35: 379–397.
Hu Y Q, Song L T, Zhang J, Xie C J, Li R. Pest image recognition of multi-feature fusion based on sparse representation. Pattern Recognition and Artificial Intelligence, 2014; 27(5): 985–992. (in Chinese)
Kang S H, Song S H, Lee S H. Identification of butterfly species with a single neural network system. J. Asia-Pacific Entomol, 2012; 15(3): 431–435.
Kang S H, Cho J H, Lee S H. Identification of butterfly based on their shapes when viewed from different angles using an artificial neural network. J. Asia-Pacific Entomol, 2014; 17(2): 143–149.
Tofilski A. DrawWing, a program for numerical description of insect wings. Journal of Insect Science, 2004; 4(1): 17. doi: 10.1673/ 031.004.1701.
Wang J, Lin C, Ji L, Liang A. A new automatic identification system of insect images at the order level. Knowl.-Based Syst, 2012; 33: 102–110.
Li W Y, Li M, Qian J P, Sun C H, Du S F, Chen M X. Segmentation method for touching pest images based on shape factor and separation points location. Transactions of the Chinese Society of Agricultural Engineering, 2015; 31(6): 175–180. (in Chinese)
Larios N, Soran B, Shapiro L G, Martínez-Muñoz G, Lin J, Dietterich T G. Haar random forest features and SVM spatial matching kernel for stonefly species identification. In: 2010 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010; pp.2624–2627.
Larios N, Deng H L, Zhang W, Sarpola M, Yuen J, Paasch R, et al. Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects. Machine Vision and Applications, 2008; 19: 105–123.
Martinez-Munoz G, Larios N, Mortensen E, Zhang W, Yamamuro A, Paasch R, et al. Dictionary-free categorization of very similar objects via stacked evidence trees. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009; pp.549–556.
Lytle D A, Martínez-Muñoz G, Zhang W, Larios N, Shapiro L, Paasch R, et al. Automated processing and identification of benthic invertebrate samples. J. North Am. Benthol. Soc, 2010; 29(3): 867–874.
Boissard P, Martin V, Moisan S. A cognitive vision approach to early pest detection in greenhouse crops. Comput. Electron. Agric, 2008; 62(2): 81–93.
Xia C L, Chon T S, Ren Z M, Lee J M. Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecol Inform, 2015; 29(6): 139–146.
Wang X, Hänsch R, Ma L Z, Hellwich O. Comparison of different color spaces for image segmentation using graph-cut. In: 2014 International Conference on Computer Vision Theory and Applications. Lisbon: IEEE, 2014; pp.301–308.
Maharlooei M, Sivarajan S, Bajwa S G, Harmon J P, Nowatzki J. Detection of soybean aphids in a greenhouse using an image processing technique. Comput. Electron. Agric, 2017; 132: 63–70.
Ebrahimi M A, Khoshtaghaza M H, Minaei S, Jamshidi B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric, 2017; 137(6): 52–58.
Sun Y R, Cheng H, Cheng Q, Zhou H Y, Li M H, Fan Y H, et al. A smart-vision algorithm for counting whiteflies and thrips on sticky traps using two-dimensional Fourier transform spectrum. Biosystems Engineering, 2017; 153: 82–88.
Heinz K M, Parrella M P, Newman J P. Time-efficient use of yellow sticky traps in monitoring insect populations. Journal of Economic Entomology, 1992; 85(6): 2263–2269.
Steiner M Y, Spohr L J, Barchia I, Goodwin S. Rapid estimation of numbers of whiteflies (Hemiptera: Aleurodidae) and thrips (Thysanoptera: Thripidae) on sticky traps. Australian Journal of Entomology, 1999; 38: 367–372.
Cho J, Choi J, Qiao M, Ji C W, Kim H Y, Uhm K, et al. Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis. International Journal of Mathematics and Computers in Simulation, 2007; 1(1): 46–53.
Espinoza E, Valera D L, Torres J A, López A, Molina-Aiz F D. Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Comput. Electron. Agric, 2016; 127(3): 495–505.
Solis-Sánchez L O, García-Escalante J J, Castañeda-Miranda R, Torres-Pacheco I, Guevara-González R. Machine vision algorithm for whiteflies (Bemisia tabaci Genn.) scouting under greenhouse environment. Journal of Applied Entomology, 2009; 133: 546–552.
Solis-Sánchez L O, Castañeda-Miranda R, García-Escalante J J, Torres-Pacheco I, Guevara-González R G, Castañeda Miranda C L, et al. Scale invariant feature approach for insect monitoring. Computers and Electronics in Agriculture, 2011; 75(1): 92–99.
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004; 60: 91–110.
Xiao D Q, Feng J Z, Lin T Y, Pang C H, Ye Y W. Classification and recognition scheme for vegetable pests based on the BOF-SVM model. Int J Agric & Biol Eng, 2018; 11(3): 190–196.
Deng L M, Wang Y J, Han Z Z, Yu R S. Research on insect pest image detection and recognition based on bio-inspired methods. Biosystems Engineering, 2018; 169(8): 139–148.
Kohavi R, Provost F. Glossary of terms: special issue on applications of machine learning and the knowledge discovery process. Mach. Learn, 1998; 30: 271–274.
Xia C L, Lee J M, Li Y, Chung B K, Chon T S. In situ detection of small-size insect pests sampled on traps using multifractal analysis.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.