Calibration and validation of FAO-AquaCrop model to estimate the total biomass and yacon root yield

Ramon Amaro de Sales, Alexandre Cândido Xavier, Evandro Chaves de Oliveira, Fábio Luiz de Oliveira, Diego Mathias Natal da Silva, Sávio da Silva Berilli

Abstract


Due to the current water scarcity in the world, it is extremely important to improve the use of this natural and exhaustible resource in agriculture, by contributing to increase agricultural production and sustainability. Several models of crop growth simulation were developed to predict the edaphoclimatic effects on crop yield. These models are calibrated and validated for a given region using the data generated from field experiments. Therefore, the objective of this study was to calibrate and validate the FAO AquaCrop model for yacon (Smallanthus sonchifolius) crop in a tropical climate. The experiment was conducted in an experimental area located in the municipality of Ibatiba, state of Espírito Santo (Brazil) during the years of 2013 and 2014. The calibration was done using the Autumn planting and validation with the Winter and Spring plantings. For the statistical analysis, the coefficient of determination, Willmott concordance index, bias for the systematic error, root mean square error and the mean absolute error to test the model performance were used. In general, the FAO AquaCrop model predicted the root yield, total biomass and harvest index with acceptable accuracy, and with deviations of less than 6% for total and root biomass. Late planting of yacon showed a reduction in yield as well as total biomass.
Keywords: Smallanthus sonchifolius, root yield simulation, modelling, agrometeorology
DOI: 10.25165/j.ijabe.20201303.5012

Citation: de Sales R A, Xavier A C, de Oliveira E C, de Oliveira F L, da Silva D M N, Berilli S S. Calibration and validation of FAO-AquaCrop model to estimate the total biomass and yacon root yield. Int J Agric & Biol Eng, 2020; 13(3): 123–128.

Keywords


Smallanthus sonchifolius, root yield simulation, modelling, agrometeorology

Full Text:

PDF

References


Abedinpour M, Sarangi A, Rajput T B S, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag., 2012; 110: 55–66.

Santos R A, Santos E P, Sales R A, Santos R L. Estimativa da evapotranspiração de referência para o município de Feira de Santana (BA). Revista Brasileira de Agricultura Irrigada, 2017; 11(4): 1617–1626. (in Brazilian)

Sales R A, Louzada J M, Oliveira E C, Pinheiro M A B, Sales R A. Estimativa das necessidades hídricas do milho cultivado nas condições edafoclimáticas de São Mateus – ES. Enciclopédia Biosfera, 2016; 13(23): 598–609. (in Brazilian)

Oliveira E C D, Costa J M N, Paula Júnior T J, Ferreira W P M, Justino F B, Neves L D O. The performance of the CROPGRO model for bean (Phaseolus vulgaris L.) yield simulation. Acta Sci. Agron., 2012; 34(3): 239–246.

Darko R O, Shouqi Y, Haofang Y, Liu J, Abbey A. Calibration and validation of AquaCrop for deficit and full irrigation of tomato. Int. J. Agric. & Biol. Eng., 2016; 9(3): 104–110.

Mirsafi Z S, Sepaskhah A R, Ahmadi S H, Kamgar-Haghighi A A. Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Sci. Hortic., 2016; 211: 343–351.

Rinaldi M, Garofalo P, Rubino P, Steduto P. Processing tomatoes under different irrigation regimes in Southern Italy: agronomic and economic assessments in a simulation case study. Ital. J. of Agrometeorology, 2011; 3(3): 39–56.

Suárez-Rey E M, Romero-Gámez M, Giménez C, Thompson R B, Gallardo M. Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements. Agricultural Systems, 2016; 149: 150–164.

Ávila M R, Barizão D A O, Gomes E P, Fedri G, Albrecht L P. Fall/winter bean crop loam in association with biostimulant application and foliar fertilizer in both presence and absence of irrigation. Sci. Agrar., 2010; 11(3): 221–230.

Sales R A, Ambrozim C S, Posse R P, Oliveira E, Posse S P. Satisfaction index of water and productivity demands on beans on different irrigation depths in Colatina – ES. Revista Energia na Agricultura, 2017; 32(1): 81–87.

Trombetta A, Iacobellis V, Tarantino E, Gentile F. Calibration of the AquaCrop model for winter wheat using MODIS LAI images. Agric. Water Manag., 2016; 164: 304–316.

Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J., 2009; 101(3): 438–447.

Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J., 2009; 101(3): 426–437.

Patel N, Kumar P, Singh N. Performance evaluation of AquaCrop in simulating potato yield under varying water availability conditions. Indian Agricultural Research Institute, 2008; New Delhi-110012.

Casa A, Ovando G, Bressanini L, Martínez J. Aquacrop model calibration in potato and its use to estimate yield variability under field conditions. Atmospheric and Climate Sciences, 2013; 3(3): 397–407.

Montoya F, Camargo D, Ortega J F, Córcoles J I, Domínguez A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric. Water Manag., 2016; 164: 267–280.

Santana I, Cardoso M H. Raiz tuberosa de yacon (Smallanthus sonchifolius): potencialidade de cultivo, aspectos tecnológicos e nutricionais. Cienc. Rural, 2008; 38(3): 898–905. (in Brazilian)

Fernández E C, Viehmannová I, Lachman J, Milella L. Yacon [Smallanthus sonchifolius (Poeppig & Endlicher) H. Robinson]: a new crop in the Central Europe. Plant Soil Environ., 2006; 52(12): 564–570.

Thornthwaite C W. An approach toward a rational classification of climate. Geographical Review, 1948; 38(1): 55–94.

Embrapa. Sistema brasileiro de classificação de solos. 3rd ed. Rio de Janeiro: Embrapa Solos, 2013; 353p. (in Brazilian)

Tomasella J, Pachepsky Y A, Crestana S, Rawls W J. Comparison of two approximation techiniques to develop pedotrasnfer functions for Brazilian soil. Soil Sci. Soc. Am. J., 2003; 67: 1085–1092.

Araya A, Habtu S, Hadgu K M, Kebede A, Dejene T. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated

barley (Hordeum vulgare). Agric. Water Manag., 2010; 97(11): 1838–1846.

Vanuytrecht E, Raes D, Steduto P, Hsiao T C, Fereres E, Heng L K, et al. AquaCrop: FAO's crop water productivity and yield response model. Environ. Model. Softw., 2014; 62: 351–360.

Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop - the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J., 2009; 101(3): 448–459.

Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop Reference Manual AquaCrop Version 4.0, 2012. http://www.fao.org/nr/water/aquacrop.html.

Willmott C J, Ckleson S G, Davis R E. Statistics for evaluations and comparisons of models. Journal of Geophysical, 1985; 90(C5): 8995–9005.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. https://www.R-project.org/.

Struik P C. Responses of the potato plant to temperature, in Potato Biology and Biotechnology. Elsevier Science BV, 2007; pp.367–393.

Quiroz R. Potato. In: Steduto P, Hsiao T C, Fereres E, Raes D. (Eds.), Crop Yield Response to Water. Irrigation and Drainage Paper 66. Roma: FAO, 2012; pp.184–191.

Hanks R J. Yield and water-use relationships: an overview. In: Taylor H M, Jordan W R, Sinclair T R. (Eds.), Limitations to Efficient Water Use in Crop Production. ASA, CSSA, and SSSA, Madison, WI, USA, 1983; pp. 393–411.

Struik P C, Ewing E E. Crop physiology of potato (Solanum tuberosum): responses to photoperiod and temperature relevant to crop modelling. In: Haverkort A J, Mackerron D K L (Eds.), Potato Ecology and Modelling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995; pp.19–41.

Paula F L M, Streck N A, Heldwein A B, Bisognin D A, Paula A L D, Dellai J. Thermal time of some developmental phases in potato (Solanum tuberosum L.). Cienc. Rural, 2005; 35(5): 1034–1042.

Farahani H J, Izzi G, Oweis T Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J., 2009; 101(3): 469–476.




Copyright (c) 2020 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office