Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method
Abstract
Keywords: coefficient of rolling friction, maize, irregularly shaped model, angle of repose, discrete element method
DOI: 10.25165/j.ijabe.20201302.4688
Citation: Shi L R, Zhao W Y, Sun B G, Sun W. Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method. Int J Agric & Biol Eng, 2020; 13(2): 15–25.
Keywords
Full Text:
PDFReferences
Owen P J, Cleary P W. Prediction of screw conveyor performance using the discrete element method (DEM). Powder Technology, 2012; 193(3): 269–282.
Wang Y X, Liang Z J. Calibration method of contact characteristic parameters for corn seeds based on EDEM. Transactions of the CSAE, 2016; 32(22): 36–42. (in Chinese)
Wensrich C M, Katterfeld A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 2012; 217(2): 409–417.
Wiącek J, Molenda M, Horabik J, Jin Y O. Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology, 2012; 217(2): 435–442.
Chen Z R, Yu J Q, Xue D M, Wang Y, Zhang Q, Ren L Q. An approach to and validation of maize-seed-assembly modelling based on the discrete element method. Powder Technology, 2018; 328(4): 167–183.
Wiacek J, Molenda M, Horabik J, Ooi J Y. Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling. Powder Technology, 2012; 217(2): 435–442.
Höhner D, Wirtz S, Scherer V. Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technology, 2013; 235: 614–627.
Khazeni A, Mansourpour Z. Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technology, 2018; 332(6): 265–278.
Balevičius R, Sielamowicz I, Mróz Z, Kačianauskas R. Effect of rolling friction on wall pressure, discharge velocity and outflow of granular materialfrom a flat-bottomed bin. Particuology, 2012; 10(6): 672–682.
Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q. Influence of granular coefficient of rolling friction on accumulation characteristics. Acta Physica Sinica, 2014; 63(17): 533–538.
Zeng Y, Jia F, Meng X, Han Y, Xiao Y. The effects of friction characteristic of particle on milling process in a horizontal rice mill. Advanced Powder Technology, 2018; 29(5): 1280–1290.
Jayasundara C T, Yang R Y, Yu A B, Curry D. Discrete particle simulation of particle flow in IsaMill—effect of grinding medium properties. Chemical Engineering Journal, 2008; 135(1): 103–112.
He Y, Evans T J, Yu A B, Yang R Y. DEM investigation of the role of friction in mechanical response of powder compact. Powder Technology, 2017; 319: 183–190.
Wang L, Li R, Wu B, Wu Z, Ding Z. Determination of the coefficient of rolling friction of an irregularly shaped maize particle group using physical experiment and simulations. Particuology, 2017; 38(6): 185–195.
Cui T, Liu J, Yang L, Zhang D X, Zhang R, Lan W. Experiment and simulation of rolling friction characteristic of corn seed based on high-speed photography. Transactions of the CSAE, 2013; 29(15): 34–41. (in Chinese)
Wang Y X, Liang Z J, Zhang D X, Cui T, Shi S, Li K H, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM. Transactions of the CSAE, 2016; 32(22): 36–42. (in Chinese)
Tanaka H, Momozo M, Oida A, Yamazaki M. Simulation of soil deformation and resistance at bar penetration by distinct element method. Journal of Terramechanics, 2000; 37(1): 41–56.
ASAE. Compression test of food materials of convex shape, ASAE Standards 2002: Standards Engineering Practices 49, 2002; pp.592–599.
Boac J M, Casada M E, Maghirang R G, Harner J P. Material and interaction properties of selected grains and oilseeds for modeling discrete particles, Trans. ASABE. 2010; 53(4): 1201–1216.
Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosystems Engineering, 2016, 147, 206–225.
González-Montellano C, Fuentes J M, Ayuga-Téllez E, Ayuga F. Determination of the mechanical properties of corn grains and olives required for use in DEM simulations. Journal of Food Engineering, 2012; 111(4): 553–562.
Wang L J, Zhou W X, Ding Z J, Li X X, Zhang C G.. Experimental determination of parameter effects on the coefficient of restitution of differently shaped maize in three-dimensions. Powder Technology, 2015;
(10): 187–194.
Shi L R, Zhao W Y, Wu J M, Zhang F W, Sun W, Dai F, et al. Application of slice modeling technology in finite element analysis of agricultural products. Journal of Chinese Agricultural Mechanization, 2013; 6: 110–112. (in Chinese)
Markauskas D, Kačianauskas R, Džiugys A, Navakas R. Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granular Matter, 2010; 12(1): 107–123.
Markauskas D, Ramírez-Gómez Á, Kačianauskas R, Zdancevičius E. Maize grain shape approaches for DEM modeling. Computers & Electronics in Agriculture, 2015; 118(C): 247–258.
Shi S. Design and experimental study of corn precision seed metering device with air pressure combined hole. Beijing: China Agricultural University, 2015; pp.27–51.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.