Non-destructive measurement of chlorophyll in tomato leaves using spectral transmittance
Abstract
Keywords: chlorophyll, characteristic wavelength, characteristic spectral parameter, spectral transmittance
DOI: 10.3965/j.ijabe.20150805.1931
Citation: Wang J F, He D X, Song J X, Dou H J, Du W F. Non-destructive measurement of chlorophyll in tomato leaves using spectral transmittance. Int J Agric & Biol Eng, 2015; 8(5): 73-78.
Keywords
Full Text:
PDFReferences
Pandey D M, Kim K H, Yeo U D. Dynamic changes of photosynthetic pigments in soybean callus under high irradiance. Photosynthetica, 2003; 41(2): 311−314.
Pilarski J, Kocurek M. The content of photosynthetic pigments and the light conditions in the fruits and leaves of sweet pepper. Acta Physiologiae Plantarum, 2005; 27(2): 173−182.
Tokarz K, Pilarski J. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree. Acta Physiologiae Plantarum, 2005; 27(2): 183−191.
Anderson J M, Chow W S, Goodchild D J. Thylakoid membrane organization in sun shade acclimation. Australian Journal of Plant Physiology, 1988; 15(1-2): 11−26.
Schoefs B, Bertrand M, Lemoine Y. Changes in the photosynthetic pigments in bean leaves during the first photoperiod of greening and the subsequent dark-phase. Comparison between old (10-d-old) leaves and young (2-d-old) leaves. Photosynthesis Research, 1998; 57(2): 203−213.
Chu Z X, Tong Z, Feng L J, Zhang Q, Wen X G, Song S T, et al. Effect of different light quality on photosynthetic characteristics of cucumber leaves. Acta Botanica Sinica, 1999; 41(8): 867−870.
Bednarz C W, Oosterhuis D M. Physiological changes associated with potassium deficiency in cotton. Journal of Plant Nutrition, 1999; 22(2): 303−313.
Zhang Z G, Shang Q M. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress. Scientia Agricultura Sinica, 2010; 43(1): 123−131. (in Chinese with English abstract)
Jiao W J, Min Q W, Lin K, Zhu Q K, Zhang J J. Progress and perspective on nutrition diagnosis of plant nitrogen. Chinese Agricultural Science Bulletin, 2006; 22(12): 351−355. (in Chinese with English abstract)
Roberts D A, Ustin S L, Ogunjemiyo S, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scale. Ecosystems, 2004; 7(5): 545−562.
Houborg R, Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sensing of Environment, 2008; 112(1): 186–202.
Ustin S L, Gitelson A A, Jacquemoud S, Schaepman M, Asner G P, Gamon J A, et al. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment, 2009; 113(9): 67–77.
Benedict H M, Swidler R. Nondestructive method for estimating chlorophyll content of leaves. Science, 1961; 133(346): 2015.
Yue Y M, Wang K L, Li R, Liu B, Chen H S. New spectral indices for quantifying chlorophyll content of paddy rice. Journal of Food Agriculture & Environment, 2012; 10(3-4):
−1284.
Babar M A, Reynolds M P, Van Ginkel M, Klatt A R, Raun W R, Stone M L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Science, 2006; 46(3): 1046−1057.
Daughtry C S T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000; 74(2): 229−239.
Salas E A L, Henebry G M. Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Israel Journal of Plant Sciences, 2012; 60(1-2): 65−76.
Main R, Cho M A, Mathieu R, O'Kennedy M M, Ramoelo A, Koch S. An investigation into robust spectral indices for leaf chlorophyll estimation. Isprs Journal of Photogrammetry and Remote Sensing, 2011; 66(6): 751−761.
Botha E J, Leblon B, Zebarth B, Watmough J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. International Journal of Applied Earth Observation and Geoinformation, 2007; 9(4): 360−374.
Merzlyak M N, Solovchenko A E, Gitelson A A. Reflectance characteristic spectral and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 2003; 27(2): 197−211.
Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 1998; 3(4): 151−156.
Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal, 1972; 64(1): 11−13.
Bauerle W L, Weston D J, Bowden J D, Dudley J B, Toler J E. Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species. Scientia Horticulturae, 2004; 101(1-2): 169−178.
Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal, 1977; (5): 799−802.
He D X, Hu J X. Plant nutrition indices using leaf spectral transmittance for nitrogen detection. Transactions of the CSAE, 2011; 27(4): 214−218. (in Chinese with English abstract)
Ding Y J, Li M Z, An D K, Li S Q. Prediction of chlorophyll content using spectral response characteristics of greenhouse tomato. Transactions of the CSAE, 2011; 27(5): 244−247. (in Chinese with English abstract)
Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 2002; 153(1): 185−194.
Copyright (c)