System reliability analysis of downstream spillways based on collapse of upstream spillways
Abstract
Keywords: failure probability, collapse, spillway, discharge, scaling law, FLOW-3D
DOI: 10.3965/j.ijabe.20150804.1824
Citation: Choi W, Jeon J, Park J, Lee J, Yoon S. System reliability analysis of downstream spillways based on collapse of upstream spillways. Int J Agric & Biol Eng, 2015; 8(4): 140-150.
Keywords
Full Text:
PDFReferences
Ashby S F, Manteuffel T A, Saylor P E. A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal., 1990; 27: 1542–1568. doi: http://dx.doi.org/10.1137/0727091
Barrett R, Berry M, Chan T F. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Philadelphia: SIAM. 1994. doi: http://dx.doi.org/10.1137/ 1.9781611971538
Braja M D. Principles of foundation engineering, Toronto, Canada: Thomson, 1970; 390–393 p.
Burcharth H F, Sorensen J S, Christiani E. On the evaluation of failure probability of monolithic vertical wall breakwaters. Proc. International Workshop on Wave Barriers in Deepwaters, 10-14 January, Yokosuka, Japan, 1994; 458–469.
Chanel P G, Doering J C. Assessment of spillway modeling using computational fluid dynamics. Can. J. Civil Eng., 2008; 35(12): 1481–1485. doi:http://dx.doi.org/10.1139/L08- 094
Christiani E, Burcharth H F, Sorensen J D. Reliability based optimal design of vertical breakwaters modelled as a series system failure. Proc. the twenty-fifth international conf., 2-6 September, Orlando, FL, USA, 1996; 1589–1602.
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 1981; 39(1): 201–225. doi:http://dx.doi.org/10.1016/0021-9991(81) 90145-5
Hirt C W, Sicilian J M. A porosity technique for the definition of obstacles in rectangular cell meshes. Proc., 4th Int. Conf. on Numerical Ship Hydrodynamics, National Academy of Science Conf., 24-27 September, Washington, DC, USA, 1985; 1–19.
Hirt C W. Volume-fraction techniques: powerful tools for wind engineering. J. Wind Eng. Ind. Aerodyn., 1993; 46/47: 327–338. doi: http://dx.doi.org/10.1016/0167-6105(93) 90298-3
Johnson M C, Savage B M. Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater. J. Hydraulic Eng., 2006; 132(12): 1353–1357. doi: http://dx.doi.org/10.1061/(ASCE)0733-9429(2006)132: 12(1353).
Kocaman S, Hatice O-C. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol., 2012; 432/433: 145–153. doi: http://dx.doi.org/10. 1016/j.jhydrol.2012.02.035
Korea Rural Community Corporation. Emergency action plan (EAP) report. KRC, South Korea, 2008-2010.
Korea Rural Community Corporation. Precision safety inspection (PSI) report. KRC, South Korea, 2006-2010.
Ministry for Food, Agriculture, Forestry and Fisheries. Development of integrated management system for agricultural infrastructure report. MIFAFF, South Korea, 2014.
Nichols B D, Hirt C W, Hotchkiss R S. Volume of fluid (VOF) method for the dynamics of free boundaries. Los Alamos Scientific Lab. Rep., LA-8355, Los Alamos, NM, USA. 1980.
Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 1986; 7(3): 856–869. doi: http:// dx.doi.org/10.1137/0907058
Savage B M, Johnson M C. Flow over ogee spillway: physical and numerical model case study. J. Hydraulic Eng., 2001; 127(8): 640–649. doi: http://dx.doi.org/10.1061/(ASCE) 0733-9429(2001)127:8(640).
Vasquez J A, Roncal J J. Testing River2D and Flow-3D for sudden dam-break flow simulations. Proc., CDA 2009 Annual Conf., 3-8 October, Whistler, BC, Canada, 2009; 44–55.
Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics, New York: Longman Scientific and Technical. 1995.
Xu Y, Zhang L, Jia J. Lessons from catastrophic dam failures in August 1975 in Zhumadian, China. GeoCongress 2008 (2008 proc., ASCE), 9-12 March, New Orleans, LA, USA, 2008; 162–169. doi: http://dx.doi.org/10.1061/40971 (310)20.
Copyright (c)