Control design of an unmanned hovercraft for agricultural applications
Abstract
Keywords: controller, direct Lyapunov method, nonholonomic constraint, underactuated system, unmanned hovercraft
DOI: 10.3965/j.ijabe.20150802.1468
Keywords
Full Text:
PDFReferences
National Agriculture and Food Research Organization (NARO). Food and agriculture for the future Retrieved Available: http://www.naro.affrc.go.jp/publicity_report/ publication/files/naro_en2013.pdf. Accessed on [2014-7-09]
Xue X Y, Tu Kang, W C Qin, Y B Lan, Zhang H H. Drift and deposition of ultra-low altitude and low volume application in paddy field. Int J Agric & Biol Eng, 2014; 7(4): 23–28.
Huang Y B, Thomson S J, Hoffmann W C, Lan Y B, Fritz B K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int J Agric & Biol Eng, 2013; 6(3): 1–10.
Wang, P, Y B Lan, X W Luo, Z Y Zhou, Z Wang, Y Wang Integrated sensor system for monitoring rice growth conditions based on unmanned ground vehicle system. Int J Agric & Biol Eng, 2014; 7(2): 75–81.
Marconett A L. A study and implementation of an autonomous control system for a vehicle in the zero drag environment of space. University of California, Davis, 2003.
Aguiar A P, Pascoal A M. Regulation of a nonholonomic autonomous underwater vehicle with parametric modeling uncertainty using lyapunov functions. 40th IEEE Conference on Decision and Control, Orlando, 2001.
Fantoni I, Lozano R, Mazenc F, Pettersen K Y. Stabilization of a nonlinear underactuated hovercraft. International Journal of Robust and Nonlinear Control, 2000; 10(8): 645–654.
Fantoni I. Non-Linear control for underactuated mechanical system. Springer-Verlag London, 2002; ch 2.
Chaos D, Moreno-Salinas D, Muñoz-Mansilla R, Aranda J. Nonlinear control for trajectory tracking of a nonholonomic rc-hovercraft with discrete inputs. Hindawi Publishing Corporation, Mathematical Problems in Engineering, 2013; Article ID589267, 16p http://dx.doi.org/10.1155/2013/ 589267
Wang C L, Liu Z Y, Fu M Y, Bian X Q. Amphibious hovercraft course control based adaptive multiple model approach. IEEE Transaction of International Conference on Mechatronics and Automation (ICMA), 2010; 601–604. DOI: 10.1109/ICMA.2010.5588410
Lindsey H. Hovercraft kinematic modelling. Center of Applied Mathematics, University of St Thomas, 2005.
Ogata K. Modern control engineering (3rd ed). Englewood Cliffs, NJ, Prentice-Hall, 1998; ch 15.
White W N, Foss M, Patenaude J, Guo X, Garcia D. Improvements in direct Lyapunov stabilization of underactuated, mechanical systems. American Control Conference IEEE, 2008: pp 2927–2932. DOI: 10.1109/ ACC.2008.4586940
White W N, Foss M, Guo X. A direct Lyapunov approach for stabilization of underactuated mechanical systems. American Control Conference, New York, IEEE, 2007: pp 4817–4822. DOI: 10.1109/ACC.2007.4282944
White W N, Foss M, Guo X. A direct Lyapunov approach for a class of underactuated mechanical systems. American Control Conference, IEEE, 2006. DOI: 10.1109/ACC.2006. 1655338
Khalil H K. Nonlinear systems. Englewood Cliffs, NJ: Prentice Hall, 2002.
Slotine J E, Li W. Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall 1991.
Sira-Ramirez H. Dynamic second-order sliding mode control of the hovercraft vessel. IEEE Transaction on Control System Technology, 2002; pp 860 – 865.
Sira-Ramirez H, Ibanez C. The control of the hovercraft system: a flatness based approach. Proceedings of the IEEE International Conference on Control Applications, 2000; pp692 –697.
Sira-Ramirez H, Ibanez C. On the control of the hovercraft system. Dynamics and Control, 2000; 10: 151–163.
Fantoni I, Lozano R, Mazenc F, Pettersen K Y. Stabilization of a nonlinear underactuated hovercraft. Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, 1999; Vol. 3, pp 2533-2538
Garcia D. Solvability of the Direct Llyapunov First Matching Condition in Terms of the Generalized Coordinates. Doctoral dissertation, Manhattan, Kansas State University, 2012; 387 p.
Copyright (c)