Optimal design of wind machine impeller for frost protection based on CFD and its field test on airflow disturbance
Abstract
Keywords: frost protection, wind machine impeller, CFD, reverse engineering, airflow disturbance, tea orchard
DOI: 10.3965/j.ijabe.20150805.1415
Citation: Wu W Y, Hu Y G, Yang S, Mao K Q, Zhu X Y, Li P P. Optimal design of wind machine impeller for frost protection based on CFD and its field test on airflow disturbance. Int J Agric & Biol Eng, 2015; 8(5): 43-49.
Keywords
Full Text:
PDFReferences
Gu L, Hanson P J, Mac Post W. The 2007 eastern US spring freeze: Increased cold damage in a warming world. Bio Science, 2008; 58(3): 253–262. doi: 10.1641/B580311.
Atkinson C J, Brennan R M, Jones H G. Jones H G. Declining chilling and its impact on temperate perennial crops. Environmental and Experimental Botany, 2013; 91: 48–62. doi: 10.1016/j.envexpbot.2013.02.004.
Jalili A, Jamzad Z, Thompson K, Araghi M K, Ashrafi S, Hasaninejad M, et al. Climate change, unpredictable cold waves and possible brakes on plant migration. Global Ecology and Biogeography, 2010; 19(5): 642–648. doi: 10.1111/j.1466-8238.2010.00553.x.
Leuning R, Cremer K W. Leaf temperatures during radiation frost (Part I): Observations. Agricultural Forest Meteorology, 1988; 42(2): 121–133. doi: 10.1016/0168- 1923(88)90072-X.
Hacker J, Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree physiology, 2007; 27(12): 1661–1670. doi: 10.1093/treephys/27.12.1661.
Bates E M, Lombard P B. Evaluation of temperature inversions and wind machine on frost protection in southern Oregon. Special Report 514, Agricultural Experiment Station, Oregon State University, 1978.
Meehl G A, Tebaldi C, Nychka D. Change in frost days in simulations of twenty first century climate. Climate Dynamics, 2004; 23(5): 495–511. doi: 10.1007/s00382- 004-0442-9.
Blank S C, Venner R. Evaluating the cost-effectiveness of risk-reducing inputs: wind machines for citrus. Hort Technology, 1995; 5(2): 165–170.
Ribeiro A C, De Melo-Abreu J P, Snyder R L. Apple orchard frost protection with wind machine operation. Agricultural Forest Meteorology, 2006; 141(2-4): 71–81. doi: 10.1016/ j.agrformet.2006.08.019.
Battany M C. Vineyard frost protection with upward- blowing wind machines. Agricultural and forest meteorology, 2012; 157: 39–48. doi:10.1016/j.agrformet. 2012.01.009.
Wu W Y, Hu Y G, Zhang H, Sun H W. An improved design on suction-exhaust duct for frost protection in tea fields. Paper number: 141907096rev, In: Proceedings of the ASABE Annual Meeting, Montreal, Quebec Canada, 2014. pp.3548–3555. doi: 10.13031/aim.20141907096.
Brown P. Anti-frost fan: US Patent: 4753034, 1988-6-28.
Stafford T P, Calif G. Fan blade for wind machines: US Patent: 4148594, 1979-04-10.
Maximize the performance of your wind machine with Pure Customization. http://www.orchard-rite.com/wind-machines/ head-tower. Accessed on [2014-01-04].
Frost damage to your crop can occur in as little as 20-30 minutes. http://www.hfhauff.com/blades.php. Accessed on [2013-02-07]
Wu W Y, Hu Y G, Lu H Y, Asante E A, Liu S Z. Airfoil optimization design for frost protection wind machines using Profili software. International Agricultural Engineering Journal, 2015; 24(3): 43–51.
Yang S. Design and experiment of a biconvex-airfoil wind machine for tea frost protection. Master’s dissertation. Zhenjiang: Jiangsu University. 2014.
Hu Y G, Li P P, Dai Q L, Zhang X L, Tanaka K H, Cui G L. System design and experiment on elevated wind machine for tea frost protection. Transactions of the CSAM, 2007; 20(12): 97–99, 124. doi: 10.3969/j.issn.1000-1298.2007.12. 024. (in Chinese with English abstract)
Li W C, Ren G X, Fan G X, Tang Y, Tang X L. Research status of the development and application of tea anti-frost fan. China Tea Processing, 2014; 2: 34–37. doi: 10.15905/j.cnki.33-1157/ts.2014.02.012. (in Chinese with English abstract)
Qian X Y, Ichikawa S Y, Ito N T. Optimal structure design of anti-frost fans: Vibration analysis of structure based on model. In: Proceedings of the 50th Conference of Japanese Society of Agricultural Machinery. Tokyo, Japan. 1992.
Qian X Y, Ichikawa S Y, Ito N T. Optimal design of anti-frost fans: Stress property. In: Proceedings of the 50th Conference of Japanese Society of Agricultural Machinery. Tokyo, Japan. 1992.
Hu Y G. Mechanism and control technology of late frost protection for tea plant (Camellia sinensis L.) through air disturbance. PhD dissertation. Zhenjiang: Jiangsu University. 2011.
Chang Z Z. Axial flow fan and practical technology. Beijing: China Machine Press, 2005.
Zhou J H, Yang C X. Parametric design and numerical simulation of CPU axial-flow fan with application. Acta Electronica Sinica, 2008; 36(8): 1526–1531. doi: 10.3321/j.issn:0372-2112.2008.08.010. (in Chinese with English abstract)
Yi Z Q, Xi D K, Lu S L, Zhao X, Sun G. Numerical simulation and experimental research on the fan. Machinery Design & Manufacture, 2007; 10: 98–101. doi: 10.3969/j.issn.1001-3997.2007.10.042. (in Chinese with English abstract)
Tian X D, Shi G R, Ruan X Y. Key issue of complex surface part in reverse engineering. Journal of Machine Design, 2000; 4(29): 1–5. (in Chinese with English abstract)
Vanco M, Brunnett G. Direct segmentation of algebraic models for reverse engineering. New York: Springer, 2004.
Copyright (c)