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Abstract: Efficient and non-destructive detection of rubber tree diseases is of great significance for optimizing disease control

measures for pesticide application and fertilization. In this study, the feasibility of rubber yellow-leaf disease monitoring based

on a low-altitude unmanned aerial vehicle (UAV) remote sensing platform was explored, and a low-cost method for detecting

yellow-leaf disease based on visible light sensors was proposed. We compared the difference between the spectral response of

each band of the visible light sensor in the diseased area and the healthy area, and then decorrelated and stretched the image in

the RGB color space, thereby enhancing the color separation between highly correlated channels and enhancing the color

difference of the image. Then we converted the image to the HSV color space, comparing the detection effect of different

morphological parameters on yellow-leaf diseases and optimizing the extraction of the diseased area. The experimental results

showed that this study provides the distribution information of yellow-leaf disease of rubber trees, and the R* of the regression

model of rubber trees was greater than 0.8. This study holds significance for optimizing disease control and sustainable

development of the rubber industry.
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1 Introduction

Natural rubber plays a crucial role in the development of the
national economy, modern industry, and national defense. It not
only supplies essential rubber products for daily use, medical
purposes, and light industries, but also provides rubber components
for machinery manufacturing, the automobile industry, national
defense, and aerospace industries!”. As a valuable resource with
limited availability, natural rubber possesses unique characteristics
that make it essential in the production and performance of various
products. This has solidified the strategic position of the global
natural rubber industry. In addition, due to many factors such as
global warming, continuous cropping challenges, and irreversible
ecological damage caused by human activities, new rubber diseases
have emerged. Therefore, the monitoring, prevention, and control of
natural rubber diseases have become one of the important ways for
the sustainable development of the rubber industry™*.

Rubber trees are tall, growing to a height of up to 43 m in the
wild”. They require specialized monitoring and early warning for
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diseases and pests. This work demands a high level of
professionalism and scientific knowledge. The effectiveness of the
monitoring technology directly affects the reliability of the results
and the workload of those conducting the monitoring. At present,
pest monitoring of natural rubber mainly relies on manual surveys
for forecasting. For a long time, the concept of emphasizing
treatment and neglecting prevention has not fundamentally changed.
Disaster relief after severe disasters and pre-disaster defense has led
to the failure to take preventive and countermeasures when some
rubber tree diseases and insect pests break out, often causing large
economic losses and destroying the ecological balance of the rubber
forest system!""'!. Therefore, there is an urgent need to adopt
modern advanced technology to replace traditional manual
investigation.

To address these challenges, researchers have been exploring
new technologies and approaches for detecting and monitoring
rubber tree diseases. Hyperspectral reflectance data (350-2500 nm)
of healthy and powdery mildew-infected leaves were measured and
classified in the laboratory using a spectroradiometer by Cheng et
al."” Kaewboonma et al.'" used currently popular deep learning
algorithms in the lab to detect individual rubber leaves with the
disease. Deep learning algorithms are popular in the field of
detecting leaf diseases. Li et al.'¥ proposed the EfficientNet-B1
model for detecting tea diseases and developed a mini program. Yin
et al.l"” proposed a simple and effective method to improve the
accuracy of grape leaf disease recognition based on deep transfer
learning and an improved MobileNetV3 model (GLD-TTL). Lang
et al."" fused hyperspectral and deep learning techniques to rapidly
evaluate wheat resistance to Fusarium head blight. However, these
studies were only conducted in the laboratory and cannot achieve
large-scale disease detection.
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Remote sensing technology has played a crucial role in crop
management. It involves analyzing the spectrum of energy
absorbed, reflected, and transmitted by plants to improve the input
efficiency of agronomic practices, i.e. fertilizer, irrigation, and
pesticides. With the miniaturization of image sensors and the
development of low-altitude drones, especially small commercially
available drones, unmanned aerial vehicles (UAVs) have begun to
be seen as a potential remote sensing platform because of their
ability to provide higher spatial resolution and time-sensitive
results'™?. The technological advancements in producing digital
images and extracting meaningful information from images provide
the potential for automation to replace traditional manual
investigation®?'. Tao et al.” combined UAV and spectroscopic
techniques to conduct a comprehensive survey of breeding
populations of slash pine at two sites to monitor spectral bands,
vegetation indices (VIs), and tree growth characteristics. Based on
the UAV remote sensing method, Zhou et al.” used image
processing methods to estimate the coverage of surface crop
residues in farmland. Rastogi et al.*” proposed a semi-automatic
image segmentation algorithm for plant leaf diseases to distinguish
between diseased areas and disease-free areas in leaves, but the
algorithm is only for leaf disease identification under an artificial
background, and cannot achieve real-time detection and recognition.
Wspanialy et al.””! proposed a model for crop leaf disease type
detection and disease severity detection for public datasets. The
model uses a 50-layer residual network (ResNet-50) to classify
diseases, and the U-net network assesses the severity of the disease.
Liu et al.” used hyperspectral sensors to obtain remote sensing
images of wheat scabs in the field, and combined them with BP
neural networks to identify wheat scabs. Deng et al.*” screened and
evaluated 30 different VIs and their optimal band combinations
based on airborne hyperspectral data of wheat stripe rust, to
quantitatively assess wheat stripe rust disease. Gao et al.”® proposed
a corn disease detection method based on an improved MobileNet
V3 small, which uses drones to collect corn disease images and
applies MobileNet V3 small to detect corn diseases. Wang et al.*”!
tested the effectiveness of the band optimization method for UAV
hyperspectral images using RF and GBDT models, and obtained an
effective hyperspectral feature band selection method and a model
approach for high-precision monitoring of rice blast disease. Li et
al.? collected hyperspectral drone data in southeast China and used
linear discriminant analysis (LDA) to determine the separability of
healthy trees and trees at an early stage of infection. In addition,
drones can carry a variety of sensors to estimate chlorophyll content
and nitrogen deficiency symptoms in crop leaves®'**. However, the
high cost of hyperspectral imaging devices carried by drones makes
it difficult to promote their widespread application. Currently, there
is no research on using low-cost visible light images for monitoring
rubber tree diseases.

A major disease affecting rubber trees is yellow-leaf disease.
Yellow-leaf disease occurs due to the lack of nutrients nitrogen,
potassium, and magnesium throughout the plant’s growth process.
In addition, yellow leaves are produced by infectious diseases®.
Yellow-leaf disease will affect the growth of rubber trees, impede
photosynthesis, and reduce rubber production. The more serious
impact is that the whole rubber tree will turn yellow, and the tree
will become weak until death. Due to the high height of rubber
trees, it is difficult to assess the disease situation by manpower
alone at present.

In past research work, rubber-using UAVs have been rare.
Hamid et al.® mapped the NDVI of rubber plantations, and the

overall results showed that the trees in the rubber plantations were
generally healthy, so the study is not very representative. However,
there is not any disease monitoring research for rubber trees
utilizing inexpensive and visible light images at this time. To the
best of our knowledge, this study is the first to report a study using
visible light images to monitor rubber tree diseases.

dThis study aimed to detect yellow-leaf disease in rubber trees
by using low-altitude remote sensing images obtained by UAV
platforms. The potential of this research will benefit rubber tree
growers who will be able to adopt this technology to achieve rapid
and large-scale yellow-leaf disease monitoring in their rubber
growing areas. Yellow-leaf disease causes changes in the
appearance of the infected rubber tree canopy, such as yellowing
and wilting of the leaves, which in turn affects the color and
morphological characteristics of the rubber tree canopy in drone
images. Considering the low cost of visible light image sensors, this
study explored the feasibility of rubber yellow-leaf disease
monitoring based on a low-altitude UAV visible light remote
sensing platform. We monitored the situation of yellow-leaf disease
by monitoring the yellow condition of the canopy. We analyzed and
compared the differences in the spectral response of each band of
visible light sensor in the diseased area and the healthy area, and
decorrelated and stretched the image in the RGB color space,
thereby enhancing the color separation between highly correlated
channels and enhancing the color difference of the image. Then, the
image was converted to the HSV color space, the detection effect of
the parameters of different morphological algorithms on yellow-leaf
diseases was compared, and the extraction of the diseased area was
optimized (Figure 1).
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Figure 1 Research content and significance

2 Materials and methods

2.1 Study area and drone image collection

The experimental site of this study is located in Danzhou City,
Hainan Province, China. Its geographic coordinates are 109°28'44"E
and 19°31'42''N. It has a tropical monsoon island climate with an
average annual temperature of 23.9°C. The highest temperature is in
July and the lowest temperature is in January. The average annual
precipitation is 1721.6 mm, and the rainy season lasts from May to
October each year. Rubber is the leading industry in the local area.
The rubber trees planted at this experimental site were 6 years old
and of the variety Reyan 7-33-97 (Hevea brasiliensis, Reyan 7-33-
97), which has a fast growth rate and excellent characteristics of
strong resistance, great glue production potential, and good physical
and chemical properties of dry glue®"\. There were a total of 1693
rubber trees, divided into healthy and infected trees. Although there
were various degrees of yellow-leaf diseases, this study categorized
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them into a single group of infections. According to the field survey
results, there were 921 healthy rubber trees and 772 infected trees.
Figure 2 shows the location of the experimental site.

100 m

Figure 2 Location of the study areas

Drone images were collected on May 3 and 8, 2021. The
experimental site covers an area of about 15 hm? and the drone
used in the experiment is DJI’s Phantom 4 multispectral drone
equipped with a 2M pixel RGB camera. This study used only
images in the visible light band. The camera exposure time was
automatically matched to the ambient conditions. The UAV
maintained an altitude of 50 m from the ground, a flight speed of 3
m/s, a camera trigger frequency of 0.8 s, a forward overlap rate of
80%, and a side overlap rate of 70%. The spatial resolution (GSD)
of the image was 4 cm. The drone used the D-RTK 2 high-precision
GNSS mobile station to acquire real-time differential data and

a. Image acquisition

b. SLIC segmention

collect the exact coordinates of the target point (Figure 3). Finally,
231 images of rubber trees were obtained.

Figure 3 D-RTK 2 high-precision GNSS mobile station

2.2 Rubber crown division

In this study, the simple linear iterative cluster (SLIC)
superpixel method® was used to segment and extract canopy
samples from the rubber canopy in the acquired images. The SLIC
algorithm was chosen because it uses K-means clustering to
efficiently generate a series of small regions-superpixels-of pixels
that are located next to each other and have similar characteristics
such as color, luminance texture, etc. The SLIC algorithm is fast
and memory efficient. The sample extraction process of the rubber
trees canopy superpixel block is shown in Figure 4. First, the UAV
captured images of the rubber tree canopy. Then, the SLIC
algorithm was applied to process the image and generate superpixel
blocks. Lastly, three individuals with expertise classified the pixel
blocks and obtained samples.

4

mp  Healthy Healthy -
A =
Diseased Diseased
c. Samples

Note: SLIC: Simple linear iterative cluster.

Figure 4 Workflow of SLIC segmentation

To obtain samples, the image acquired by the drone was
segmented according to the parameters (K and sigma, etc.) using the
SLIC algorithm. The segmentation of individual rubber trees can be
adjusted by three parameters: K, sigma, and n_segments. In this
study, K was set to 2000 to divide the plantation image into 2000
superpixel segments, which corresponded to an average size for
segmenting the leaf area. A sigma value of 10 was chosen to ensure
the compactness limit of the superpixel segments adhered to the
SLIC algorithm.

The dimensions of each image were 1600x1300 pixels, for a
total of 2 080 000 pixels. Each image contained about 110 rubber
trees and had centimeter-level positioning coordinates. DJI Terra
was used to reconstruct large fields covering thousands of rubber
trees, ensuring the adaptability of this approach. Therefore, the
segmentation parameter n_segments could be determined to be 110.
In addition, the canopy image of rubber trees obtained by UAV
revealed that the crown size did not change significantly after it was

infected with yellow-leaf disease, which may be because the disease
was not very serious when the UAV flew. Therefore, the same
parameters K, sigma, and n_segments were maintained in this study.
In the end, 3043 superpixel blocks were produced.
2.3 HSYV color model and decorrstretch

The digital image was stored in the computer in the form of a
matrix, and the color image was usually stored in the RGB format.
The color digital image is a three-dimensional matrix, in which the
first dimension matrix is the red component (R), the second
dimension matrix is the green component (G), and the third
dimension matrix is the blue component (B). The value of each
dimension element in the matrix ranges from 0 to 255. In the
computer system, 8-bit bytes represent an element value, each
dimension can represent 2° kinds of color levels, and the three
dimensions can represent 2** kinds of colors in total. The number of
colors that human eyes can roughly distinguish is relative to this, so
the color image formed by RGB is usually called true color. Since



248  December, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 6

R, G, and B components of object color in digital images are all
related to the amount of light irradiated on the object, all three
components of an image obtained in darkness are low, and all three
components of an image obtained in full sunlight are high, so the
three color components of an RGB image are positively correlated
with brightness, which is not conducive to processing and analysis
of the image.

In contrast, the HSV model has its unique advantages in image
processing. The hue component H, saturation component S, and
brightness component V" are independent of each other. Secondly,
the HSV model is more intuitive than the RGB model to show the
hue, vividness, and brightness of the color, which is more consistent
with the perception of color by human eyes. Therefore, this study
converted RGB images into HSV color space for subsequent
processing.

As shown in Figure 5, any point within the cone corresponds to
a color. The central angle of the bottom side represents the hue H,
which ranges from 0° to 360°. The value is calculated
counterclockwise from red, which is 0° for red, 120° for green, and
240° for blue. The distance between a point on the bottom and the
center of the circle represents the saturation S. The higher the
saturation, the darker and brighter the color. The value range of S is
0%-100%. The vertical distance of a point in the cone to the bottom
indicates lightness ¥, which indicates how bright the color is and
ranges from 0% to 100% (black to white).

Figure 5 HSV color space
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where, R, G, and B respectively represent the Digital Number (DN)
values of image Red (R), Green (G), and Blue (B) channels. F(x)
represents the value of color hue, which ranges from 0° to 360°. f{x)
represents the value of color tone, and its range is in 0°-360°.

If the calculated H value is less than 0, add 360 to the value to
get the final H value:

H = H+360 (7)

where, H represents the hue value of images.
Since OpenCV needs to do the visualization of HSV images, it
is finally necessary to convert each value to between 0-255:

H
H=> @®)
S = 8§ x255 )
V =Vx255 (10)

where, H represents hue value, S represents saturation, and V'
represents lightness.

Images can be correlated to adapt to contrast through
MATLAB’s (MathWorks, Natick, MA, USA) decorrstretch
function. This feature highlights diseased areas by enhancing plot
color differences. MATLAB provides a variety of settable
parameters for decorrelated stretching. S=decorrstretch(A, ‘Tol’,
0.01) applies decorrelation stretch to a multichannel image, where S
is the image to be enhanced, specified as an RGB image; Tol is the
degree of stretch to perform a linear contrast stretch after a
decorrelation stretch, since the pixel grayscale value must be at [0,
255]; and 0.01 is the value of specific linear contrast stretching.

2.4 Grayscale-based method

The grayscale method is a widely used technique in digital
image processing. It is used to convert color images into grayscale
images. By converting images to grayscale, we can enhance visual
contrast, highlight specific areas of interest, and facilitate the
extraction of the rubber tree canopy area affected by yellow-leaf
disease. Additionally, grayscale images have a lower dimension
compared to color images, resulting in reduced memory usage and
making image processing more convenient. Some common methods
for graying images include the visual formula, decolorization
formula, and lightness formula.

Visual formula:

Gray (i, j) = 0.299R (i, j) + 0.587G (i, j) + 0.114B(, j)  (11)

R@, j) =G, )) = B, j) = Gray(i, )) 12)
As the human eye has different sensitivities to different colors
(i.e., different wavelengths of light), the human eye is most
sensitive to green light and less sensitive to blue and red light. The
above formula, which weights the three RGB channels of color to
obtain a grayscale image, reflects this physiological characteristic of
the human eye and is a reasonable formula for graying, and is also
the most classic grayscale formula. Python’s grayscale function
convert (‘L’) and the MATLAB library function rgb2gray principle
are based on visual formulas.
Desaturation formula:

_ [max(R(@, ), GG, ), B, J)) +min(R(, j) +G(, j) + B, )]

2
(13)

R(@i, ) = G(, )) = B(, j) = Gray(i, j) (14)

The desaturation formula is a grayscale formula that takes into

Gray(i, j)

account the contrast information of the image, which can better
highlight the color contrast, and will be more obvious in some
images with closer colors. Its algorithm is relatively simple: find the
maximum and minimum values of the RGB three-channel value of
each pixel, then calculate the mean of the two, and use the mean as
the grayscale result. The desaturation formula is the principle of the
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“Desaturate” function of the image processing software Photoshop.
Lightness formula:
[RGi, )+ GG, )+ B, )]
3

Gray(i, j) = (15)

R(@i,))=G(,)) =B, j) = Gray (i, j) (16)

The lightness formula is actually to take the red, green, and
blue three-channel average of a pixel, and use the average value as
the gray value of the pixel to achieve the grayscale effect.

2.5 Creation of color histograms

Color feature is a global feature based on image pixel. Color
histogram is a widely used color feature. Color histogram
quantitatively describes the statistical distribution of color in an
image. Swain et al.’” point out that color histograms are not
sensitive to image geometric transformation (image rotation,
translation, scaling, etc.) and image quality change (blur, etc.). This
property makes the color histogram more suitable for the
interpretation of global color-similar image features.

Each RGB image can be divided into three component
grayscale images, and so correspondingly can be created as three
histograms: a red component histogram, a green component channel
histogram, and a blue component histogram. The horizontal axis of
the histogram ranges from 0 to 255, representing the brightness of
the corresponding color, where a value of 0 is all black, and 255 is
the brightest white. The vertical axis represents the number of pixels
at a certain level of brightness. Creating a color histogram helps to
get more information from the image!***!l.

2.6 Morphological algorithms

Some of the sparse diseased canopies correspond to pixels that
are also sparse, and the morphological dilation method used in this
paper fills the gaps between the leaves, which can minimize the
difference between the number of diseased rubbers counted
manually and by image processing. In this study, fill was performed
by the dilation command, J=imdilate(/, SE) for expanding
grayscale, binary, or compressed binary image I, returning the
expanded image J. SE is an array of structure element objects or
structure element objects, returned by the strel or offsetstrel
function.

Morphological dilation makes objects more visible and fills in
small holes in objects. Lines appear thicker, and filled shapes
appear larger. Morphological transformation dilation combines two
sets using vector addition (or Minkowski set addition, such as
(a,b)y+(c,d)=(a+tc, b+d)). The result of the operation A ® B is the set
of all possible combinations of vectors obtained by adding vectors
from A and B.

A@B:{pEeZ,p=x+b,xeA,beB} (17)

where A represents the original image; B represents the structure of
the expansion element; and p represents the dilated image.

The dilation operation is an incremental operation, and when a
dilation operation is performed on a binary image, only the
processing of the boundary has an effect on the final result. The
process of the dilation operation is as follows:

Initial set A and structure B (Figure 6).

Invert structure element B along the origin of structure element
B, because structure element B is symmetric with respect to the
origin, so the inverted is consistent with the uninverted.

The translation reverses the origin of the structural element B to
the origin of the set A (the upper left corner of A) (Figure 7).

A B

Figure 6 Initial set A and structure B

Figure 7 Origin of structural element B to origin of set A

Translate the inverted structure B of z, and find that the
intersection of the inverted structure B and the set A after the first
translation z is not empty (Figure 8).

Figure 8 The intersection of B and set A is not empty

The z of the same translation is referenced to the origin, so it is
the red position as shown in Figure 9.

Figure 9 Original set image A and structural element Z
before computation

Until all translations z are found that the intersection of the
inverted structure element B with the set A is not empty. Get the
result as shown below (Figure 10).

Figure 10 Expansion results

Among these, both blue and red represent the location resulting
from the dilation after being processed by the inverted structural
element B. The red represents the additional location after dilation,
while the blue represents the original set A location. In other words,
blue represents the dilated boundary of set A by one circle, which
corresponds to the point that can be relatively close to the isolated
point in the image operation.

2.7 Data analysis

The analysis of color information from RGB remote sensing

images is of great importance for rubber tree yellow-leaf disease
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monitoring. Due to changes in the structure and physicochemical
properties of the rubber tree canopy caused by yellow-leaf infection,
there are differences in the color information of the rubber canopy
of healthy rubber trees and those with yellow-leaf disease. The color
features used in this study included color coordinate values (R, G,
B) and color-luminance-saturation (HSV) color space values
derived from RGB images.

The RGB image data obtained by UAV was processed; this
process is described in the previous sections. Firstly, the DN values
of R, G, and B channels of rubber tree canopy images obtained by
UAYV were extracted, and the spectral responses of different bands
of visible light sensors in the lesion area and healthy area were
analyzed and compared. Then we enlarged the data difference of
DN value, converted it into gray image, and tried to use a threshold
to obtain the lesion area, but this method was not effective.

Subsequently, the image was decorrelated and stretched in the
RGB color space, and the color separation between highly
correlated channels was enhanced to enhance the color difference of
the image. Then, the image was converted to the HSV color space,
the diseased area was extracted through the threshold (Figure 11),
and regression analysis was carried out to analyze the ability of
UAV-derived lesion area pixels to predict the number of diseased
rubber trees.

Original image

Image after decorrstretch

HSV model has its unique advantages in image processing
®H:Hue, The hue H parameter represents the color
information, that i, the position of the spectral color. This
parameter is represented by an angle, and its value range is
Bo360°

60°.
@S:Saturation, purity of color. A more intuitive is

the brightness of the color, with a value range of 0.0~1.0.
®V:Valie, the intensity of color. The value range is
0.0 (black)-1.0 (white)

Morphological algorithms is an image processing method

based on mathematical morphology.

oFill is performed by the expansion command.

eJ-imdilate(l, SE) for expanding grayscale, binary, or
compressed binary image I, returning the expanded image

1
#SE is an array of structure element objects or structure
clement objects, returned by the strel or offsetstrel function.

Figure 11 Flowchart of the theoretical image processing steps

3 Results and discussion

3.1 Attention mechanism comparison results
3.1.1 Analysis of radiation

As shown in Figure 12, the superpixel color features of yellow-
leaf disease infection and healthy rubber trees were extracted.
Figure 12 presents the statistical information of DN values for both
healthy and diseased rubber tree canopy sample images.

By analyzing this statistical information, the contrast between
the DN values of healthy and diseased areas can be enhanced,
allowing us to accurately extract the diseased regions. Due to
changes in the structure and physicochemical properties of rubber
canopy caused by yellow-leaf infection, significant differences in
the DN value of healthy rubber trees and those infected with yellow-
leaf disease can be observed. As shown in Figure 12, the DN values
of the three channels of rubber tree canopy R, G, and B with yellow-
leaf disease were lower than those of healthy rubber trees. Further
analysis revealed that the difference in DN value was most
pronounced in the R channel. The median DN value of the rubber
tree R channel with yellow-leaf disease was higher than the median
DN value of the healthy rubber tree R channel is more than 20.

3.1.2 Different grayscale methods

Binarization of an image is to set the grayscale value of the
pixels on the image to 0 or 255, showing the entire image in
obvious black and white, that is, dividing the image into two parts:
background and foreground. Image binarization can extract areas of
diseased rubber trees. Image binarization first requires converting a
color image to a grayscale image, and then determining the
binarization boundaries (thresholds) of the background and
foreground to complete the binarization. At present, there are three
commonly used algorithms for color image grayscale: lightness
formula, visual formula, and color removal formula. In this study,
the R channel with the largest difference was extracted separately,
and the gray value of the R channel was expanded by 1.8 times
(Figure 13).
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Note: R represents the DN value of the red channel in a healthy rubber tree crown
image; RD represents the DN value of the red channel in a rubber tree crown
image with yellow-leaf disease; G represents the DN value of the green channel
in a healthy rubber tree crown image; GD represents the DN value of the green
channel in a rubber tree crown image with yellow-leaf disease; B represents the
DN value of the blue channel in a healthy rubber tree crown image; and BD
represents the DN value of the blue channel in a rubber tree crown image with
yellow-leaf disease.
Figure 12 Distribution of DN values of each color channel in
areas with yellow-leaf disease and healthy rubber

This maximizes the gray value of the vast majority of diseased
rubber trees and maximizes the difference in DN values. In this
study, the three commonly used grayscale methods were also used
to grayscale the rubber tree images of drones (Figure 14).

3.1.3 Disease estimation

Three seasoned experts were assigned the task of tallying the
quantity of diseased rubber trees in the UAV image. Their
observations were later compared to the counting results foreseen
by the algorithm through regression analysis. Using the “bwlabel”
function to count the pixel clusters, the number of pixel clusters was
considered the number of diseased rubber trees. In the image of
RGB color space, the number of diseased rubber trees obtained after
image segmentation was less correlated with the number of manual
observations, the lightness formula, the decolorization formula, and
the visual formula grayscale, and the number of counts after image
segmentation was less than 0.1. This study analyzed the information
of the R, G, and B channels of superpixel blocks of yellow-leaf
disease rubber trees, and expanded the color difference. The
correlation was the highest among the four grayscale methods
(R*=0.18), indicating that numerical detection of yellow-leaf disease
rubber trees by threshold segmentation within the RGB color space
is not feasible (Figure 15).

RGB is suitable for display systems, but not for image
segmentation and analysis. The RGB color space uses a linear
combination of the three color components to represent colors, so
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Figure 14 Binary plot obtained after threshold segmentation
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c. Lightness formula

Figure 15
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d. Proposed method

Correlation between the percentage (%) of yellow pigment quantity and the number of artificial statistics of yellow-leaf disease

rubber in the experimental area

different colors are difficult to represent with accurate numerical
values, and quantitative analysis is difficult. Because the R, G, and
B components of the object color in the digital image are related to
the amount of light shining on the object, the three components of
the image obtained in the dark are very low, while the three
components of the image obtained in the full sunlight are very high.
Therefore, the three color components of the RGB image are
actually positively correlated with the brightness, and the method of
selecting the channel with the largest difference in DN value
actually discards the rich information of the other two channels.
Therefore, this characteristic of RGB color space is not suitable

for image processing in this paper. It is necessary to find another

method to extract the yellow-leaf disease region from the

UAYV image.

3.2 Counting accuracy regression analysis and evaluation of

diseased rubber trees in HSV color space

3.2.1
This transformation helps to enhance the contrast and highlight

subtle variations in the image. By stretching the color values based

on their statistical properties, decorrstretch can bring out important

Contrast enhancement

details in the image, making it easier to analyze and interpret
(Figure 16).
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Figure 16  Scatter plot of image before and after decorrelation stretching.

c. Heavily diseased region after threshold segmentation

Figure 17

We used the decorrstretch command to perform a decorrelation
stretch so that the color differences in the image were expanded
(Figure 17a). This study used thresholds to select yellow pixels in
the range of 30-45 (V=channel 1, HSV model) and red pixels in the
range of 0-20 (V=channel 1, HSV model) from the image. Yellow
pixel areas corresponded to areas of mild infection, and red areas
corresponded to areas The two were
superimposed to obtain the diseased area. This provided reliable
information for assessing the degree of rubber tree disease, was able
to digitally count the inconspicuous yellow-leaf disease rubber trees
under the drone, and also provided a basis for taking precise disease
control measures (Figure 17).

of severe infection.

d. Disease area

Image processing step flowchart in MATLAB

3.2.2 Disease estimation based on morphological algorithms

In order to improve accuracy, the morphological algorithm was
applied to fill the gap in the canopy, and the different morphological
algorithm parameters were compared and analyzed (Figure 18).

As shown in Figure 19, the percentage error was the lowest at
SE=5, and the median was around 5%. The 75th percentile was
below 10%. In contrast, the counting performance at SE=7 was only
lower than SE=5, and the counting performance at SE=3 was only
better than SE=10. The percentage error in diseased rubber trees
counted at SE=10 was the highest, with a median above 15%, which
was caused by the large difference between actual and image
processing counts of diseased rubber trees.
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The percentage error is calculated as the error = (number of
plants obtained by the method in this paper—actual number of
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Figure 19 Box plots representing the percentage error between the
actual number of rubber trees in all plots and the numerically

calculated number of plants

The precise segmentation of the diseased area depends on the
type of object and/or area. A clear distinction between two adjacent
pixels or superpixel blocks relies on sharp color edges. Therefore, if
the row spacing of rubber trees and plant spacing is larger, and there
is no excessive overlap between the canopies, it will be more
conducive to segmentation. If the rubber canopies are too close to
each other, it will enhance the overlapping effect, which may lead to
fewer counted diseased plants. Higher resolution and image clarity
means sharper color edges, which means more accurate counting
results than low resolution. Image clarity, flight altitude, or image
sensor parameters can also affect image resolution and sharpness.
Blurry images do not represent a significant error in visually and
numerically distinguishing rubber trees. Figure 19 shows that when
SE=5, the percentage error between the actual amount of diseased
rubber trees and the amount obtained by the method in this paper
was minimal. As shown in Figure 20, the R* of the regression model
was 0.82. When SE=5, the correlation between the yellow-leaf spot
rubber tree counts using the visual method as the reference method
and the yellow-leaf spot rubber tree counts using the image

processing method is shown in Figure 20.

50

. e y=1.1018x+1.8239
30 . R’=0.8243

Predicted number of
diseased rubber trees

30 35 40 45 50 55 60
Number of diseased rubber trees observed manually

Figure 20  Performance of the method proposed in this study

The difference between artificial vision and digital counting of
diseased rubber trees can be caused by a variety of factors. The
uneven distribution of disease can result in overestimation or
underestimation of the actual number of infected rubber trees.
Another possible source of error is the presence of weeds, which
have spectral reflectance similar to that of diseased areas in the
visible spectrum, leading to overestimation of the number of
diseased rubber trees and differences from artificial visual counting
methods. In this study, after acquiring images and processing them,
it was possible to create a map showing the occurrence of diseases
(Figure 21).

50m

- 7

Figure 21 Rubber tree yellow-leaf disease detection map

4 Conclusions

This study proposed a method to extract the yellow-leaf disease
area of the rubber tree canopy. The images were decorrelated and
stretched, and the color separation between highly correlated
channels was enhanced to enhance the color difference of the
image. By using the “decorrstretch” command in MATLAB and
combining it with a morphological algorithm, the yellow-leaf
disease region in the HSV color space was able to be extracted.
However, since the diseased rubber canopy in the image was sparse,
there may have been errors in the counting of diseased rubber trees.
To reduce these errors, this study manually selected the
morphological filling parameters. This study found that when using
a structuring element (SE) of 5, the percentage error between the
actual number of diseased rubber trees and the number obtained by
this method was the smallest. The coefficient of determination (R?)
between the number of diseased rubber trees obtained by image
processing and the reference manual counting was 0.82.

In the future, rubber tree disease detection using image
processing methods can be used to implement precise disease
control measures and calculate potential yield forecasts.
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