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Abstract: Recent approaches to the internal quality inspection of apples with the application of hyperspectral imaging
technology are highly cost-intensive because of labor involvement for the data collection on a fixed posture and manual
selection of the region of interest (Rol). In addition, several studies have repeated the data acquisition for the same apple.
Current methods cannot meet the automation requirements of the sorting line. Therefore, this study proposed a novel method
for automatically selecting Rol in hyperspectral images of apples with random poses. Firstly, the preliminary Rol selection of
apple hyperspectral image was carried out, followed by the performance of histogram statistics of each pixel with spectral
intensity at 700 nm wavelength. The top 40% area of the spectral intensity was reserved to obtain the magnitude relationship of
the spectral intensity of each pixel point and a morphological erosion operation. Original apple Rol was acquired and
overexposed pixels were removed with spectral intensity greater than 3900 (maximum 4095) in the reserved area at 700 nm.
Secondly, the relationship between apple size and prediction accuracy was measured for the in-depth Rol analysis. A partial
least square regression (PLSR) model was established between the average spectrum and apple sugar content of Rol with
different sizes. Finally, the established model with the top 70% of the spectral intensity achieved the best prediction accuracy.
Non-destructive estimation of apple sugar content was performed through hyperspectral imaging technology with reference to
the proposed Rol selection method. A competitive adaptive reweighted sampling algorithm along the PLSR (CARS-PLSR)
model was established after black-and-white correction and standard normal transformation (SNV) preprocessing and obtained
the highest prediction accuracy. The determination coefficient of cross-validation (R.,) and root mean square error of cross-
validation (RMSECV) were 0.9595 and 0.3203°Brix, respectively. The determination coefficient of prediction (R,) was 0.9308,
and the root mean square error of prediction (RMSEP) was 0.4681°Brix. Results proved that the auto-selection of Rol is an
efficient and accurate method, which can provide a foundation in practical application for online apple grading systems with

hyperspectral imaging technology.
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1 Introduction

Nowadays, hyperspectral imaging technology is used as a non-
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destructive detection system!" and collects a large amount of data'*.
In non-destructive testing using hyperspectral imaging, region of
interest (Rol) selection is an important step in model establishment™!
and provides the original characteristic of spectral data. Rol helps to
obtain the average spectrum of Rol as the characteristic spectrum of
the sample®. This process directly reduces the data size, which
helps to decrease calculation complexities as well as improve the
selection of

model establishment

hyperspectral images is an important step in data analysis which

speed. Therefore, Rol

influences the model accuracy.

Various researchers have explored hyperspectral imaging
technology to determine internal fruit quality with different Rol
selection methods®. Normally, in the hyperspectral imaging data
collection stage, the imaging spectrometer is placed vertically at a
90° angle above the fruit with perpendicular movement. Xu et al.”!
detected apple quality by using photon transmission simulation and
a convolutional neural network with a selected Rol of 40x40 pixels.
In another study, the whole apple was chosen as Rol to determine
its hardness!"”. To predict apple sugar content, Guo'" used the light
intensity correction method in hyperspectral visualization by
selecting a circular area as Rol with a diameter of 150 pixels from
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the intersection of the apple pedicel-calyx connecting line and the
equatorial plane. Rol is also manually selected and labeled for some
prediction modeling. To avoid errors in manual labeling, there are a
few certain rules in the selection of Rols!"*'. Zha!""! determined the
soluble solids and hardness by rotating apples parallel with the core
and collected hyperspectral data at every 120°. Three horizontal
hyperspectral images were captured from one apple with a circular
area (as Rol) with a 150-pixel radius. Then, the model was
developed using the average spectrum of Rol as the characteristic
spectrum. Feng et al.' focused on the soluble solid contents and
collected hyperspectral data from two sides of apples by rotating it
180° along the core axis. The aim was to select four squared Rols of
50 pixels with a 300-pixel distance from the central point from each
side. A total of eight squared Rols were obtained on both sides, and
the average spectrum was indicated as a characteristic spectrum for
modeling. Xu'” collected a hyperspectral image from both (front
and back) sides of each sample for the analysis of soluble solids in
Dangshan pear. Furthermore, each collected image was normalized,
and the whole pear was considered as Rol with an average
spectrum. It is worth noting that the hyperspectral data was
collected from fixed posture with human involvement, and the
selection of the Rol was also manual, using software. It can be seen
from the above literature that the manual Rol selection artificially
avoids the pedicel or calyx, which is only suitable for laboratory
research. These manual Rol selections raise the issue of accuracy
and indicate practical application gaps in an assembly line.

This study proposes an automatic method for Rol selection of
hyperspectral images in apples with random positions. A non-
destructive testing was established and the actual measurement and
verification analysis were carried out to evaluate the correctness and
effectiveness of the proposed method. Apple sugar contents were
determined as a reference study for the automatic detection on the
sorting line.

2 Materials and methods

2.1 Experiment material

A total of 135 Yantai Fuji apples of different sizes, shapes, and
colors (slice red and striped red) were randomly purchased from the
market. Before testing, apples were placed in the laboratory environ-
ment for 12 h. After reaching room temperature, all samples were
washed to remove surface dirt and dried with blotting papers.
2.2 Equipment and instruments
2.2.1 Sorting line

The sorting line setup is shown in Figure 1, containing different
parts such as an apple loading unit, conveying unit, flip device,
machine vision unit, hyperspectral imaging system, sorting channel,
control unit, and computer processing unit.
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Figure 1 Physical photo of apple sorting line with the

hyperspectral imaging system

2.2.2  Hyperspectral imaging system

The schematic diagram of the hyperspectral imaging system
used in this research is shown in Figure 2, which includes an
imaging spectrometer (Pika XC2, Resonon, Bozeman, United
States), lens (focal length of 23 mm), data acquisition software,
mobile platform, and a pair of 100 W halogen lamp cups (JCR 12 V
100 W BAU, Ushio, Tokyo, Japan). Light sources are controlled by
a power supply switch.
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Figure 2 Schematic diagram of the structure and internal photo of
the hyperspectral imaging system

An imaging spectrometer was used for real-time hyperspectral
image acquisition and adopted the line-scanning method. The
parameters of the image acquisition system were 400-1000 nm
spectral range with 1.3 nm spectral resolution, 462 spectral
channels, 1600 spatial channels, and a maximum of 165 frames/s
with 12 bits depth. In order to avoid the influence of surrounding
stray light, the imaging spectrometer, lens, light source, and mobile
device were placed in a dark box.

2.2.3  Brix meter

Apple sugar contents were measured by using an LH-B55
digital refractometer manufactured by Hangzhou Luheng Biological
Technology Co., Ltd, China. The Brix measuring range of the
device was 0.0-55.0 with 0.1 resolution.

2.3 Data acquisition
2.3.1 Hyperspectral image data acquisition

The hyperspectral imaging system was used to collect data as

shown in Figure 2. The sample exposure time to the imaging


https://www.ijabe.org

February, 2025 QiK K, etal.

Novel method for selecting Rols in hyperspectral images of apples with random poses on the sorting line

Vol. 18 No. 1 201

spectrometer was set at 5.5 ms with a 150 Hz frame rate and 0 gain.
The light source was turned on for 20 min before capturing the dark-
field hyperspectral images, and reflection data was collected
followed by black-and-white correction. Afterward, apples were
placed in fruit cups on the mobile unit and passed through the
imaging spectrometer with random poses, where spectral data of
135 images was obtained using self-written software.
2.3.2  Brix data collection

Apples were sliced at 10 mm thickness using a knife from
every 90° angle of the central location of captured images.
Furthermore, the peel (Figure 3(1)) was removed and cut into
20 mm-thick cubes (Figure 3(3)). Four cubes (Figure 3(2))
were blended in a manual juicer to obtain 5 mL juice. Brix was
determined with an LH-BS5 digital refractometer with triplicate
measurements by averaging the three data.

Figure 3 Apple pulp selection area for the Brix data collection

2.4 Rol selection

It can be observed from Figure 4 that the apple occupies only a
central area. Based on the maximum horizontal distance of the
largest apple among all samples, any area beyond 450 pixels from
the horizontal center point is directly discarded, retaining only the
central 900-pixel region.

Note: (1) Central region of the apple with high spectral intensity; (2) Apple edge
region with low spectral intensity; (3) Apple pedicel region; (4) Normal
background area; (5) Overexposed area of apple; (6) Highly reflective areas in the
background.
Figure 4 Display of six different regions of hyperspectral images
on an apple

The selection of Rol involves choosing a target area within the
apple region of the collected hyperspectral image so that it
represents the spectral information of the entire apple. Due to the
curvature of the apple’s surface, the spectral intensity is higher in
the central area of the apple and lower around the edges. The
spectral curves of different regions in the hyperspectral image
exhibit distinct characteristics as shown in Figure 5. These
characteristics were the basis of the selection of Rol.
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Note: (1) Regions with high spectral intensity; (2) Low spectral intensity;
(3) Pedicel; (4) Background; (5) Overexposed; (6) Highly reflective areas in the
background.

Figure 5 Spectral curves of the six different regions

2.4.1 Principles for Rol selection

Rol must be of smaller size for the assurance of operation
speed and region with higher spectral intensity and signal-to-noise
ratio. For the improvement of model stability, it is necessary to
eliminate the pedicel and calyx regions to avoid complex structure
interruption and variation of spectral curves of normal tissues.
Additionally, time spent on the Rol selection method should be less
due to the large amount of hyperspectral image data.

2.4.2 Rol selection process

According to the above principles, the selection process of
apple Rol is as follows:

Step 1: Threshold segmentation: the spectral curves feature of
six different regions shown in Figure 4 demonstrates that maximum
spectral intensity approached near 700 nm. Therefore, the spectral
intensity of each pixel at 700 nm is used for the threshold
segmentation.

Step 2: Morphological etching: the histogram of each pixel of
the hyperspectral image was calculated at 700 nm and the
relationship between spectral intensity values of each pixel was
determined. The pixels with low intensity were removed, and a
morphological etching function was performed to remove the areas
of high reflection such as pedicel, calyx, and background.

Step 3: Spectral intensity screening: The area (5) in Figure 4
showed high spectral intensity approaching the maximum range of
4095 of the spectrometer, which required elimination owing to a
negative impact on spectral data accuracy. Big apple size and more
shining skin were the two main factors that generated high
reflection. Spectral intensity screening was performed at 700 nm to
eliminate higher reflection and specify the area overexposed when
intensity was greater than 3900. (The maximum value 4095 was
found near 700 nm, not exactly at 700 nm but maybe at 710 nm or
690 nm, so 3900 was selected as the overexposed spectral intensity
threshold, with 195 buffs.)

Step 4: After that, to achieve Rol, a histogram of pixels was
calculated about spectral intensity value at 700 nm wavelength. The
pixel point sets for the first 10%, 20%, 30%, 40%, 50%, 60%, 70%,
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80%, 90%, and 100% of the spectral intensity. The partial least
squares regression (PLSR) prediction models were established for
Rols of different sizes. During PLSR prediction model
development, black-and-white correction of hyperspectral data was
carried out for the pixels in Rol, and the average spectrum was
calculated as the characteristic spectrum of the apple. Further, the
dataset was divided into calibration and test sets at a ratio of 3:1 by
the sample partition method based on the joint X-Y distance.
However, the PLSR model between characteristic spectrum and
sugar content was established in the calibration set. Finally, the
characteristic spectrum of the test set used in the established model,
and predicted sugar contents were obtained. The prediction
accuracy was further used as the basis for the selection of the final
Rol size.
2.5 Model establishment

The imaging spectrometer possessed 1600 sampling points per
frame and 462 wavelengths of data. For this study, an average of
750 frames were obtained with a hyperspectral image size of
1600x462x750 pixels. Hyperspectral image data size was about
1 GB by considering 12 bits depth, and one spectrum covered the
space of up to 2 bytes. Raw data has high computational complexity
and affects speed and accuracy in model development, though the
average spectrum of Rol was used as the characteristic spectra in
the prediction model.
2.5.1 Black-and-white correction of Rol

After the selection of the Rol of the apple, the signal-to-noise
ratio was improved through the elimination of the influence of noise
caused by dark current, background light, and uneven distribution of
light sources"®. The black-and-white correction was performed in
two steps to overcome noise. In one step, image of the standard
white positive plate (thermoplastic resin) with 99% reflection was
observed to obtain full white standard image /7. At a later stage, the
light source was turned off and the lens was attached for the
collection of the full black calibration image D"™. The black-and-
white correction formula is Equation (1).

S =D

R/l.n =4 N
Wi, — Dy,

x 10 000 (1
where, R, ,, S; ,, and D, , represent the corrected, original, and dark-
field hyperspectral data, respectively. W, , is the total reflection,
while subscript A and » are the n" pixel at A wavelength.
2.5.2  Spectral data preprocessing

Various noise signals were observed in collected hyperspectral
image data due to instrumental electric noise, vibration, stray light
of the surrounding environment, and differences in apple shape. The
noise signal reduction was necessary for the improvement in the
stability of the regression model®. In this study, several common
spectral preprocessing methods were used for comparative analysis,
including standardization, centralization, Savitzky-Golay (S-G)
polynomial convolution™, first-order derivative (D1), multiplicative
scatter correction (MSC)*%, and standard normal variation (SNV)#,
2.5.3 Characteristic band extraction

High resolution of spectral data produces multiple dimension
bands and a significant correlation between bands and redundancy.
The model was built with full bands and affected the prediction
accuracy with complex calculations. Therefore, extraction of
featured waveband data was required for the improvement of
calculation time and prediction accuracy™. Five methods, including
successive projection algorithm (SPA)!"**?", principal component
analysis (PCA)™*) backward interval partial least squares
(BiPLS)"", ant colony optimization (ACO)"'", and competitive

adaptive reweighting sampling (CARS)"™ were used to extract the
characteristic band data and compare the extraction effects.
2.5.4 Model establishment

PLSR is a multiple linear regression algorithm and is especially
suited for datasets with more variables than samples®. It was first
used for the processing of hyperspectral data by Martens and Jensen
in 1983, Nowadays it is one of the most used regression
algorithms in hyperspectral imaging and has been commonly
applied to develop accurate models in predicting properties or
composition parameters from hyperspectral data®. In this study,
five related PLSR models were established and contrasted to obtain
the optimal model.

3 Results and discussion

3.1 Selection of original Rol

Experimental results showed that pedicle or calyx and
background bright spot regions were efficiently removed with the
selection of the first 40% of pixels with high spectral intensity and
eliminated 60% of pixels with low spectral intensity.
Simultaneously, regions with low spectral intensity and background
were removed. The threshold value of spectral intensity above 3900
at 700 nm was used to remove the overexposed region. In this
method, two simple and fast threshold segmentation and one
etching operation were performed to select the Rol, as shown in
Figure 6.

Figure 6 Mask of selected apple’s original Rol

3.2 Influence of different Rol sizes on the accuracy of the
model

The pixel mask of the first 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, and 100% of spectral intensity values in the
original Rol of apple are shown in Figure 7.

8866600

First 100% First 90% First 80% First 70% First 60%

First 50%
Figure 7 Mask of Rol with different sizes

First 40% First 30% First 20% First 10%

PLSR prediction model was established with different Rol sizes
and RMSEP trend of test set, as shown in Figure 8. An inversely
proportional relation was observed between RMSEP and Rol, while
prediction error decreased with increment of region size. The higher
Rol size provided more spectral information of the whole apple,
which led to reduction in RMSEP. However, the first 70% of
original Rol generated lowest RMSEP, and no significant changes
were observed with the selection of high regions. This phenomenon
occurred due to the noise data in Rol. Therefore, the first 70% of the
spectral intensity value in the original Rol was considered as the
final Rol, and average spectrum of this data was further used for
model development.


https://www.ijabe.org

February, 2025

QiK K, etal. Novel method for selecting Rols in hyperspectral images of apples with random poses on the sorting line

Vol. 18 No. 1 203

0.80
0.75
0.70
0.65
0.60

RMSEP/°Brix

0.55

5010 20 30 40 50 60 70 80 90 100
Region size/%
Note: Lowest RMSEP occurred at first 70% of original Rol and no significant
changes with the selection of high regions.
Figure 8 RMSEP variation trend of PLSR model with different
Rol sizes

3.3 Removal of abnormal samples and sample set division
3.3.1 Removal of abnormal samples

There were chances of irregular patterns of collected
hyperspectral data or apple sugar content due to human errors.
However, the change in the surrounding environment and
instrument can also affect the accuracy of the final model.
Therefore, abnormal data should be rejected before modeling.
Monte Carlo cross-validation (MCCV) reduces the risks caused by
the masking effect and effectively identifies an abnormal lattice
along with the spectral array and feature array. It has a greater
ability to identify abnormal samples than traditional methods®. So,
MCCYV elimination method was used in this study"”. In the model
development, data was randomly divided into 80% and 20% in
calibration and test sets, respectively. A set of predictive values for
each sample was obtained after 2000 cycles to calculate the
parameters such as mean value (Mean) and standard deviation
(STD), as presented in Figure 9. The mean and STD thresholds
were 1.5 and 0.5, respectively, while samples with higher mean
values were rejected. A total of 11 abnormal samples at No.5, 11,
22,26, 45, 54, 55, 59, 61, 111, and 112 were rejected, and analysis
was performed with the remaining 124 samples.
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Figure 9 Mean-STD diagram (No. 5, 11, 22, 26, 45, 54, 55, 59,
61, 111, and 112 are not within the threshold)

3.3.2  Sample set division
The total 124 samples were divided into calibration and test
sets with a 3:1 ratio by Sample Set Partitioning based on the Joint X-
Y Distance (SPXY) method. The distribution of sugar content data
is listed in Table 1. It can be seen that the maximum and minimum
sugar contents were included in both datasets, and the STD of the
test set was less than the calibration set, which expressed proper
data division.
3.4 Selection of preprocessing methods for hyperspectral data
The image acquisition system has a 400-1000 nm spectral
range with 462 bands. The reflection data on both ends were

removed due to the lower intensity and signal-to-noise ratio.
Therefore, 387 bands were used with a range of 436-940 nm in this
study. Furthermore, the original data was preprocessed by
standardization, decentralization, S-G polynomial convolution
(second-order 33 points, which is the optimal value of many
experiments), first-order derivative, multiple scattering correction
(MSC), and standard normal variate (SNV), respectively. The
results in Table 2 show that SNV achieved the lowest RMSEP and
highest prediction accuracy and was able to effectively remove the
noise signal. Therefore, the SNV method was selected to preprocess
the spectral data.

Table 1 Sugar content data distribution of calibration set and
test set
Sample set Quantity Miyér;qiim/ Mao)g;rilrm/ ]:A];ir;/ OS];?)Z
Calibration set 93 7.6000 14.9000 12.1271 1.5812
Test set 31 9.0000 14.6000 12.2785  1.3699
Total 124 7.6000 14.9000 12.1649  1.5271

Table 2 Influence of different preprocessing methods of
hyperspectral data on model accuracy

Pretreatment method Number of R, RMSE.CV/ R, RMSEP/
variables °Brix ! °Brix
Untreated 31 0.8708 0.7829 0.8465  0.6821
Standardized 21 0.9250 0.6050 0.8513  0.6722
Decentralized 27 0.9304 0.5836 0.8703  0.6310
S-G Convolution 32 0.8869 0.7356 0.8000  0.7686
D1 18 0.7913 0.9737 0.8198  0.7335
MSC 27 0.9317 0.5786 0.8749  0.6204
SNV 27 0.9305 0.5833 0.8785 0.6119

Note: D1: First-order derivative; MSC: Multiplicative scatter correction; and SNV:
Standard normal variation.

3.5 Analysis on the selection results of characteristic bands by
different methods
3.5.1 Successive projection algorithm (SPA)

SPA is a forward characteristic band selection method that can
minimize the collinearity between selected variables by using
simple operations in vector space. During input calibration of the
dataset into SPA, the maximum number of extracted bands were
adjusted up to 30 and were used to analyze the change in root mean
square error of cross-validation (RMSECV) with the selected
characteristic bands. The results in Figure 10 show that RMSECV
approached to minimum with 19 selected bands. The selected
characteristic band is shown in Figure 11.

13
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Figure 10 RMSECYV variation trend of SPA with the number of
selected characteristic bands: RMSECV approached the minimum
with 19 selected bands

3.5.2 Principal component analysis (PCA)
PCA provides a data dimensional reduction technique to
simplify a large number of related variables. Additionally, this
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method optimizes the analysis process and determines the data
potential relationship by selecting a few features™. PCA can project
the original high-dimensional data into low-dimensional
characteristic space to select comprehensive variables®. In this
algorithm, the number & of the extracted principal components was
essential. A small £ value will affect the extracted principal
components by losing some important information in the original
hyperspectral data. Similarly, a larger & value causes a failure to
reduce the amount of required computation and results in a high
number of principal components. However, Figure 12 presents the
changing trend of RMSECV and graphs show a gradual decrease in
RMSECV with the increment of k. A non-significant change was
found in RMSECV as the k reached 41 and increased model
calculation complexity. Finally, 41 principal components were
selected with a cumulative contribution rate greater than 99%.
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Figure 12 RMSECYV variation trend with the number of principal
components in PCA: RMSECYV with no significant change when the
number is larger than 41

3.5.3 Backward interval partial least square (BiPLS)

BiPLS divides the whole band and selects the most
representative spectral intervals combination. It is very important to
determine the number of subintervals in the BiPLS algorithm which
directly affect the accuracy of subsequent models. Therefore, this
study set a total of 12 values from 5 to 60 subintervals with an
increment of 5. RMSECYV variation analysis in relation to different
subintervals (Figure 13) demonstrated the lowest values at 25"
interval. Removal of subintervals was performed for the
optimization. Figure 14 demonstrates that initially, RMSECV tends
to decrease, while an increasing trend was found at a later stage
with the increment of the number of removed subintervals, and
removing 17 subintervals resulted in the lowest RMSECV.
However, the remaining 8 subintervals of the No.11, 13, 15, 16, 18,
20, 22, and 24 were finalized, and band distribution is shown in
Figure 15.

3.5.4 Ant colony algorithm (ACO)

ACO is defined as a probabilistic algorithm for optimization
and possesses the characteristics of information positive feedback
distributed computing and heuristic search®™. The application of
ACO in screening characteristic bands is required to determine

hyperparameters in the algorithm through multiple experiments.
Therefore, the maximum number of iterations, population size,
selected bands, volatilization, and significant factor were set as 50,
40, 50, 0.65, and 0.01, respectively. Figure 16 shows the
arrangement of the selected frequency of each targeted band.
Furthermore, the PLSR model was applied to the first 60 bands and
found RMSECV at the minimum level for the first 38 bands.
Therefore, these 38 bands were selected as characteristic bands, and
their distribution on the spectral curve is shown in Figure 17.
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Figure 13 RMSECYV variation trend with the number of
subintervals in BiPLS: lowest RMSECV at 25" interval
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Figure 14 RMSECYV variation trend with the number of removed
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Figure 16 Selected frequency distribution of bands in ACO

3.5.5 Competitive
(CARS)
The CARS method can effectively use the regression

adaptive reweighted sampling algorithm

coefficient of PLSR to select the optimal band combination in the
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whole spectrum. The calibration dataset adopted the CARS
algorithm and adjusted the maximum number of iterations up to 100
for the characteristic band. The results in Figure 18 show a rapid
decreasing trend in the number of retained bands with the increasing
iterations. This was due to the rough selection performance at the
early stage followed by fine selection. At the 20" cycle sampling,
RMSECYV reached the lowest value with 40 reserved bands selected
as characteristic bands, and the distribution is shown in Figure 19.
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3.5.6 Establishment of regression model and selection of optimal
model

After SNV preprocessing, the five methods of SPA, PCA,
BiPLS, ACO, and CARS were used to extract characteristic bands
for 436-940 nm hyperspectral data and establish the related
regression models of SPA-PLSR, PCA-PLSR, BiPLS-PLSR, ACO-
PLSR, and CARS-PLSR. A full-spectrum regression model was
established to compare the advantages and disadvantages according
to prediction results. The results in Table 3 describe that all models
achieved higher prediction accuracy except SPA-PLSR. However,
slightly higher prediction accuracy was observed in PCA-PLSR and
BiPLS-PLSR with comparison of full-spectrum FS-PLSR, and the
prediction accuracy of ACO-PLSR was also improved. CARS-
PLSR model showed the highest prediction accuracy and best
stability and obtained 5.95% higher R, and 23.50% lower RMSECV
by comparing with FS-PLSR. In addition, the CARS-PLSR model

reduced the original 380 to 40 dimensions, eliminated maximum
redundant information, significantly reduced the computational
complexity, and improved the calculation speed.

Table 3 Prediction results of the PLSR model on different
numbers of variables

Modemame  NEET R MR om SR
FS-PLSR 27 0.9305 0.5833 0.8785 0.6119
SPA-PLSR 17 0.9327 0.5744 0.8303 0.7139
PCA-PLSR 27 0.9223 0.6154 0.8879 0.5894
BiPLS-PLSR 16 0.9499 0.4976 0.8943 0.5733
ACO-PLSR 23 0.9645 0.4205 0.9056 0.5432
CARS-PLSR 24 0.9595 0.3203 0.9308 0.4681

In this study, a method was established for the selection of Rol
of apple during the application of hyperspectral imaging. After
black-and-white correction, spectral data processing and removal of
abnormal samples were performed by SNV and MCCV methods,
respectively. CARS algorithm was used to extract the characteristic
bands, and the PLSR model was applied for prediction of apple
sugar content. The determination coefficient R, and RMSECV of
cross-validation were 0.9595 and 0.3203°Brix, respectively. The
determination coefficient R, and RMSEP of prediction value with
higher accuracy were 0.9308 and 0.468°Brix, respectively. The
predicted apple sugar content and the scatter plots of measured
value in calibration and test sets are shown in Figures 20 and 21.
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Figure 20  Scatter plot of calibration set prediction results
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Figure 21  Scatter plot of test set prediction results

4 Conclusions

This study proposed an online Rol selection strategy in a
hyperspectral imaging system of random-passed apples. The
method showed a significant difference as compared to the manual
selection of Rol of fixed-position apple and was found most suitable
in sorting line automation. The Rol selection method reduced the
time consumption and investigation cost of internal quality
inspection.



206  February, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 1

The first 40% spectral intensity at 700 nm of each pixel was
used for threshold segmentation, and intensity optimization was
achieved through the removal of variation-causing areas. The PLSR
model performed well with the first 70% of Rol for non-destructive
prediction of sugar contents. SPXY method was used to divide 124
samples into calibration and prediction sets in a 3:1 ratio. Minimum
and maximum sugar contents in the calibration set were 7.6000 and
14.9000, while in the test set they were 9.0000 and 14.6000,
respectively. Among all preprocessing methods, SNV demonstrated
the best efficiency and obtained 0.8785 R, and 0.6119°Brix RMSEP
followed by MSC. The characteristic bands were extracted through
the CARS algorithm, and the PLSR model was used for the
prediction of sugar content. The model performed well with high
accuracy and obtained 0.9595 of R, and 0.3203°Brix of RMSECV.
However, efficient prediction capability exhibited high R, and low
RMSEP, at about 0.9308 and 0.4681°Brix, respectively. CARS-
PLSR also showed the best stability and obtained 5.95% higher R,
and 23.50% lower RMSECV compared to FS-PLSR. Moreover, the
established model was highly stable, with less computational
complexity and fast calculation speed. Rol selection is a promising
approach and provides a theoretical foundation to design an online
apple grading system with hyperspectral imaging technology.
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