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Detection of citrus in the natural environment using Dense-TRU-YOLO

Taixiong Zheng, Yilin Zhu, Siyu Liu, Yongfu Li, Mingzhe Jiang
(School of Advanced Manufacturing Engineering. Chongqing University of Posts and Telecommunications,
Nan’an, Chongging 400065, China)

Abstract: Accurate detection of citrus in the natural orchard is crucial for citrus-picking robots. However, it has become a
challenging task due to the influence of illumination, severe shading of branches and leaves, as well as overlapping of citrus. To
this end, a Dense-TRU-YOLO model was proposed, which integrated the Denseblock with the Transformer and used
UNet++network as the neck structure. First of all, the Denseblock structure was incorporated into YOLOvS, which added
shallow semantic information to the deep part of the network and improved the flow of information and gradients. Secondly,
the deepest Cross Stage Partial Connections (CSP) bottleneck with the 3 convolutions module of the backbone was replaced by
the CSP Transformer with 3 convolutions module, which increased the semantic resolution and improved the detection
accuracy of occlusion. Finally, the neck of the original network was replaced by the combined structure of UNet++ feature
pyramid networks (UNet++-FPN), which not only added cross-weighted links between nodes with the same size but also
enhanced the feature fusion ability between nodes with different sizes, making the regression of the network to the target
boundary more accurate. Ablation experiments and comparison experiments showed that the Dense-TRU-YOLO can
effectively improve the detection accuracy of citrus under severe occlusion and overlap. The overall accuracy, recall,
mAP@0.5, and F1 were 90.8%, 87.6%, 90.5%, and 87.9%, respectively. The precision of Dense-TRU-YOLO was the highest,
which was 3.9%, 6.45%, 1.9%, 7.4%, 3.3%, 4.9%, and 9.9% higher than that of the YOLOvS5-s, YOLOv3, YOLOvVS5-n,
YOLOvV4-tiny, YOLOvV4, YOLOX, and YOLOF, respectively. In addition, the reasoning speed was 9.2 ms, 1.7 ms, 10.5 ms,
and 2.3 ms faster than that of YOLOv3, YOLOvV5-n, YOLOv4, and YOLOX. Dense TRU-YOLO is designed to enhance the
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accuracy of fruit recognition in natural settings and boost the detection capabilities for small targets at extended ranges.
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1 Introduction

Citrus is the fruit with the largest cultivated area, the highest
yield, and the largest consumption in China'”. However, traditional
labor-intensive manual harvesting is not only inefficient but also
costly. Investigation shows that manually picking accounts for 33%-
50% of the entire production cost®®. Therefore, it is urgent to
develop citrus-harvesting robots to cope with the increasing labor
cost. Relevant studies have shown that accurate detection of citrus
in complex natural environments is a key factor affecting harvesting
efficiency. However, it becomes difficult in such an environment
with severe occlusion and complex illumination.

Fruit detection based on traditional methods has obtained
fruitful achievements in the past decades. Gan et al.’! proposed a
new Color-Thermal Combined Probability (CTCP) algorithm,
which can effectively detect citrus by fusing color and thermal
information. Lu et al.”? put forward a hierarchical contour analysis
(HCA) algorithm based on the light distribution on the fruit surface.
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Zhao et al.® proposed a sum of absolute transformed difference
(SATD) algorithm based on the color features of images and
absolute transformation. However, the traditional method was
criticized for its cumbersome and manual feature extraction.
Moreover, its robustness was insufficient due to environmental
factors such as occlusion and illumination. With the development of
artificial intelligence technology, the deep learning method
represented by Deep Convolution Neural Network (DCNN)
performed higher detection accuracy and faster detection speed than
traditional methods in the field of target recognition. DCNN can be
divided into two categories. One is the single-stage model
represented by YOLOY and Single Shot MultiBox Detector
(SSD)!"I. The other is the two-stage model represented by Fast R-
CNN (Region-CNN)") Faster R-CNN!", and Mask R-CNNM"L
DCNN has achieved great success in the field of fruit detection.
Liu" proposed YOLO-tomato, which replaced R-Bbox with C-
Bbox, thus improving the calculation method of NMS and IOU.
Yang™ put forward a combined fruit and branch recognition
algorithm based on Mask R-CNN with recognition accuracy of fruit
and branch of 88% and 96%, respectively. Research shows that
compared to two-stage networks, the advantages of single-stage
networks in computational efficiency make them more suitable for
fruit detection. As the state of the art of You Only Look Once
(YOLO), YOLOVS attracted widespread attention because of its
higher detection accuracy, faster speed, and smaller model!*'.
Although the detection accuracy of YOLOvVS5 has been widely
proven, it still struggles in the natural environment with severe
occlusion, overlap, and so on. This is mainly because traditional
convolution operations mainly focus on local regions, making it
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difficult to capture long-distance dependencies. The purpose of this
study was to further optimize YOLOVS5 to improve its detection
accuracy in complex environments. To this end, a Dense-TRU-
YOLO (Network with Dense Transformer Structure and UNet++
Feature Pyramid) model based on YOLOvVS5 was proposed. In the
framework, Denseblock, Transformer, and UNet++ (Nested U-Net)
model, which
comprehensively improved the performance of the model. The
expected contributions of this study are as follows:

Firstly, different from the backbone of the detection network in
the existing literature, the Denseblock module was incorporated into
the backbone of YOLOvVS to build Dense-CSPDarknet53, which
promotes feature reuse and reduces semantic information loss.

were organically incorporated into the

Secondly, the self-attention mechanism was combined with the
Cross Stage Partial Network (C3) module to construct the Cross
Stage Partial Network based on the Transformer (C3TR) module,
and then replaced the deepest C3 with C3TR to establish semantic
relationships between different image blocks, thereby effectively
capturing the dependency relationships between images.

Finally, different from existing literature, the neck of YOLOVS
was replaced by the combined structure of UNet++ and FPN
(Feature Pyramid Network) to improve the fusion ability of the
features with different sizes.

The research objective of this article is to address the problem
of fruit target detection in natural environments. Most models have
low detection accuracy for overlapping fruits, fruits obstructed by
tree branches, and fruits with small targets at long distances. Dense
TRU-YOLO aims to improve the recognition accuracy of fruits in
natural environments, enhance the detection ability of small targets
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at long distances, and meet the real-time detection requirements of
fruit-picking robots in natural environments.

2 Materials and methods

2.1 Sample dataset collection and preprocessing

In this study, a Canon 80D camera (Japan) was used to take
citrus images from 9 a.m. to 6 p.m. in Chonggqing, China. A total of
1851 citrus images were captured at different distances with
different illumination. Among them, 8367 citruses were with
occlusion and overlap; the other 1408 citruses were unobstructed.
Furthermore, in order to improve the generalization and robustness
of the proposed model, random data augmentation was used to
obtain 11 106 images. For subsequent comparative experiments, the
cases of fruit occlusion were divided into three categories:
unobstructed, slightly occluded (occlusion rate less than 50%), and
severely occluded (occlusion rate more than 50%). The dataset was
further divided into a training set and a verification set, respectively,
according to the ratio of 9:1.
2.2 Dense-TRU-YOLO model

The Dense-TRU-YOLO network structure was composed of a
backbone, neck, and detection part. The backbone consisted of
Dense-CSPDarknet53, C3TR, and SPP modules. The neck
generated a feature pyramid by UNet++-FPN, a combined structure
of UNet++!" and FPN, which can fuse different levels of feature
maps to obtain more context information and generate feature maps
with different sizes. In the detection part, an anchor box was applied
to generate a detection box, indicating the category, coordinates,
and confidence. The structure of Dense-TRU-YOLO is shown in
Figure 1.
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Figure 1

2.2.1 Dense-CSPDarknet53 module

With the deepening of CNN, some features and gradients may
vanish after multiple downsampling, resulting in the difficulty of
convergence of the network®. In Denseblock, the output of each
convolutional layer was used as input for subsequent layers, which
can effectively alleviate the above problems™. Therefore, the
Denseblcok module was incorporated into the backbone to form the
Dense-CSPDarknet53, which contained Focus and CSP, as shown
in Figure 2.

e e
Structure of Dense-TRU-YOLO

3*C3}

{_Detect }-

YOLOhead

Figure 2 Dense-CSPDarknet53 structure

In Dense-CSPDarknet53 concatenation was used to fuse the
residual structure of the first, third, and fifth layers after
downsampling. Furthermore, a 1x1 convolution was used to extract
the fused image features. Finally, the input of the eighth layer was
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obtained.

Pgnpul = Conv(D(x,) + D(x;) + D(xs5) + x7) (l)

input

where, P;™ is the input of the eighth layers, Conv is 1x1 convolu-
tion, D is the downsampling, and x; is the output of the i layer.
2.2.2  Application of Transformer in the backbone

The YOLOVS backbone network can effectively capture local
information by using multi-layer 3x3 convolution®. However, due
to the influence of environmental interference, occlusion, and fruit
overlap, it is very important to establish global semantic
information for citrus detection. Attention mechanisms allow the
modeling of dependencies without regard to their distance in the
input or output sequences, providing a perfect solution to the above
problems. There is a consensus that using an attention mechanism
can effectively improve the performance of neural networks. For
example, Han et al.” integrated the ECA-Net attention mechanism
into the backbone of YOLOv5 to address the problem of low
accuracy of detection of overhead line insulators due to complex
backgrounds, small targets, and overlapping targets. In 2017, the
Google brain team proposed Transformer™?®, which takes self-
attention as a layer in the network structure. Transformers can pay

Transformer
block*N

P

Transformer
layer

a. C3TR structure

b. Transformer block structure

attention to the global dependency between image feature patches,
and reserve enough spatial information to detect image features
through a multi-head self-attention mechanism®”. To the best of our
knowledge, the Transformer is the first transduction model relying
entirely on self-attention to compute representations of its input and
output without using sequence-aligned RNNs or convolution.

In visual applications, a simple way to use self-attention was to
replace spatial convolution with the multi-head self-attention
mechanism. Motivated by Transformer™, the C3TR module was
constructed by replacing the Bottleneck Block in the C3 module
with the Transformer Block, as shown in Figure 3a. In order to
make the model pay more attention to semantically related image
areas, the deepest C3 module of the backbone network was replaced
by C3TR, so that the backbone network was combined with the
multi-head attention mechanism. In the C3TR module, image
features were input to two branches respectively. In the first branch,
after 1x1 convolution, the image feature was transmitted to the
Transformer Block module, as shown in Figure 3b. In the second
branch, only 1x1 convolution was adopted. Subsequently, the two
branches were fused by concat and 1x1 convolution was used to
restore channels.

Multi-head attention

[ Linear ] [ Linear ] [ Linear J
T T f

c. Transformer layer structure

Figure 3 Detailed composition of C3TR

2.2.3 UNet++FPN

YOLOv5 used PANet®™ to create a bottom-up path
enhancement and strengthen the semantic information fusion of
each layer, as shown in Figure 4a. Inspired by the success of
UNet++ and FPN™), a combined structure named UNet++-FPN was
proposed to replace PANet, as shown in Figure 4b, thus further
strengthening the attention to the shallow semantics and fully
integrating the image information of each layer. In particular, cross-
layer weighted links were added between the original input and
output nodes. Furthermore, upsampling and downsampling
weighted feature fusion were used between nodes with different
sizes.

While combining shallow information and deep information,
UNet++-FPN introduced learnable weights to learn the importance
of different input characteristics. The calculation of each node was:

i
.Xj—

H(Concat(input, D(x"))), j=0
{ @)

H(Concatlinput, x",u(x*"""), D(x")]), j#0
where, H is the convolution, D is the downsampling,uis the

upsampling, x” is the node output, i indicates the number of
sampling layers along the bottom, and j represents the convolution

layer of dense blocks along the hop index".

To meet the accuracy and complexity requirements of the target
detection, the structure can add branches or prune the model when
deepening or reducing the pyramid depth. Table 1 lists the
experimental accuracy comparison of two-layer, three-layer, and
four-layer UNet++-FPN in this study. It can be seen that the three-
layer UNet++-FPN maintained the same mAP@0.5 as the four-
layer structure while reducing the number of parameters by more
than 316 000. Therefore, the three-layer UNet++-FPN was selected
as the neck of the model.

._

T

T

a. PANet

b. UNet++-FPN
Figure 4 PANet and UNet++-FPN
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Table1 Comparison of UNet++-FPN effects of
different layers

Detection method Number of parameters mAP@0.5
2L- UNet++-FPN 12 893 808 0.882
3L-UNet++-FPN 13 871 359 0.905
4L-UNet++-FPN 14 187 668 0.905

3 Experiment results and discussion

3.1 Experimental platform and model training settings
In this study, model training and testing were conducted on a
graphic workstation configured as listed in Table 2.

Table 2 Graphics workstation configuration

Configuration Parameter
Operating system Windows10
CPU Intel(R) Core(TM) i7-10700
Memory 32 GB
GPU NVIDIA GeForce RTX 3060Ti 12 GB

CUDA11.2+Cudnn8.04
Torch1.8.0+Python3.8

GPU acceleration library

Framework version

In addition, the SGD algorithm with a momentum factor of
0.937 and weight attenuation coefficient of 0.0005 was used to
optimize the weight, offset, and BN in the model. Furthermore, the
warm-up method was used to preheat the learning rate. The specific
parameters were as follows: preheat epoch was 3 and momentum
factor was 0.8. Then the cosine annealing strategy was used to
dynamically adjust the learning rate. The image size for training and
testing was 640x640 pixels, the batch size was 16, and the
maximum training epoch was 300.

3.2 Model test and evaluation

P, R, F1, mAP@0.5, model reasoning speed, and model size

were selected as the evaluation indices.

1
mAP= ZAP (3)
AP = jP(R)dR 4)
TP
P= rp )
TP
R=TpEN ©)

where, P represents the accuracy rate, R represents the recall rate,
TP represents the number of positive samples correctly predicted,
AP represents the average precision, FP represents the number of
negative samples detected as positive samples, and FN represents
the number of positive samples detected as negative samples.
3.3 Analysis of experimental results

According to the specified super parameters, the proposed
model was trained. The loss value of the training process is shown
in n Figure 5a, and accuracy, recall rate, and mAP@0.5 are shown
in n Figure 5b. It can be seen that the loss value tended to be stable
after 250 epochs. Therefore, the model obtained after 300 epochs of
training was determined as the citrus detection model. Figure 5b
suggests that the proposed model achieved satisfactory results in
accuracy, recall, and mAP@0.5.

Citrus detection in the case of occlusion and overlap is a major
difficulty for the fruit-picking robot. Therefore, the detection
accuracy of citrus in an occluded environment was an important

evaluation index. To this end, single-fruit and multiple-fruit citrus
detection experiments were carried out under the conditions of no
obstruction, slight occlusion, and severe occlusion, and the statistics
of the experimental results are listed in Table 3.
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Figure 5 Network training results of training and validation box
loss and precision and recall and mAP@0.5 value

Table3 Model occlusion target detection effect

No occlusion Slight occlusion Severe occlusion

Item Single Multiple  Single Multiple  Single Multiple
fruit fruits fruit fruits fruit fruits
Number of s 25 50 50 50 50
samples
Recognition 100 100 98 100 94
rate/%

As can be seen from Table 3, the detection rate of a single fruit
without occlusion can reach 100%. Excellent detection results were
also shown in the case of multiple fruits, with a detection accuracy
of 100% for a single fruit and 98% for multiple fruits. Even in the
case of severe occlusion, the detection rate of multiple fruits was
94% and the detection rate of single fruit even reached 100%.

Furthermore, a comparative experiment with YOLOVS,
YOLOv3, YOLOv4-tiny, YOLOv4, YOLOv5-s, YOLOX, and
YOLOF on the same test datasets was conducted. As shown in
Table 4, the accuracy of Dense-TRU-YOLO was the highest, which
was 4.2%, 5.8%, 1.9%, 7.4%, 3.2%, 4.9%, and 9.9% higher than
that of YOLOv5, YOLOv3, YOLOv5-n, YOLOv4-tiny, YOLOV4,
YOLOX, and YOLOF, respectively. In other words, the innovation
effectively improved the detection accuracy. In addition, the
reasoning speed was 9.2 ms, 1.7 ms, 10.5 ms, and 2.3 ms faster than
that of YOLOV3, YOLOV5-n, YOLOvV4, and YOLOX, respectively.
Compared with allied models, Dense-TRU-YOLO showed
competitive accuracy while maintaining faster reasoning speed and
lower parameters, which shows that the model can meet the
requirements of overlapping and occluded citrus fruit detection.
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Table 4 Comparison experiment with mainstream models

mAP/ Time/  Size of
% ms model/MB

Network model Type P/% R/% Fl1

Occluded  77.5 84.8 0.81
YOLOV3 84.7 17.6 236.0
Unobstructed 76.1 78.2 0.77

Occluded  86.7 82.4 0.84
YOLOvV5-n 88.6 10.1 42.1
Unobstructed 87.7 85.1 0.86

. Occluded  79.9 752 0.77
YOLOV4-tiny 83.1 6.4 23.0
Unobstructed 83.6 78.4 0.81

Occluded  83.9 80.5 0.82
YOLOv4 873 189 245.0
Unobstructed 85.9 86.6 0.86

Occluded  88.8 74.2 0.81
YOLOvS5-s 863 82 14.0
Unobstructed 90.3 85.1 0.87

Occluded  88.6 89.7 0.89
YOLOX 85.6 10.7 68.5
Unobstructed 85.6 82.4 0.84

Occluded  83.2 79.8 0.81

YOLOF 80.6 / 483.0
Unobstructed 88.4 85.5 0.87
Occluded  89.8 84.2 0.87

Model proposed cclude: 905 8.4 26.0

in this study  ynobstructed 91.2 90.5 0.91

To demonstrate the effectiveness of the innovations in this
study, three groups of ablation experiments were conducted on the
basis of YOLOvV5 with the same super parameters, training set, and
test set. Ablation experiments are listed in Table 5.

In Table 5, “+” represents the introduced module. mAP@0.5
was used to measure the model performance. It can be seen that
after replacing the C3 module with C3TR, mAP@0.5 increased by
0.8% and the parameter quantity only increased by 256, which
proved that the Transformer module can enhance the feature
extraction ability of the model with a small increase in network
parameters and computational burden. Although the model

a. Original image

d. YOLOX

e. YOLOv4

parameters increased, mAP@0.5 increased by 2% after
incorporating the Denseblock module, which proved that the
introduction of the Denseblock module can improve the feature
extraction and the regression ability to the target boundary at the
expense of certain real-time. After replacing PANet with UNet++-
FPN, mAP@0.5 further increased by 1.3%, which effectively
improved the feature extraction capability of the model. The
average inference time increased by 9.5 ms compared to the
YOLOv5 model, which is completely acceptable in practical
detection environments. In summary, all the innovations made in
this study can effectively strengthen the performance of the model.

Table 5 Model structure ablation experiment

Model
Methods YOLOVS Mi(;]dte}iils)r;gg;ed
C3TR - + + +
Denseblock - - + +
UNet++-FPN - - - +
mAP@0.5 0.864 0.872 0.892 0.905
Time/ms 28.0 25.0 35.0 37.5
Parameter 7025023 7025279 12 280 575 13 871 359

Note: “+” represented the introduced module.

3.4 Comparative test under different conditions

As is well-known, besides occlusion and overlap, illumination
also affects citrus detection performance. Therefore, comparative
experiments with YOLOvS-s, YOLOX, YOLOv4, and YOLOF
were conducted under different illumination. The experiment results
are shown in Figures 6-8.

f. YOLOF

Figure 6 Citrus recognition effect under backlighting

It can be seen from Figure 6 and Table 6 that although all five
models can detect the citrus fruits in the case of backlighting, the
detection confidence of other models was lower than that of Dense-
TRU-YOLO. Moreover, the detection box of the comparative
model also shifted due to the influence of leaf occlusion. In
addition, YOLOvS5-s experienced missed recognition when fruits

overlapped, while the YOLOF model may also miss recognition
when the image edges were incomplete. In other words, with the
help of a self-attention mechanism, Dense-TRU-YOLO can
effectively eliminate the influence of leaf occlusion.

As can be seen from Figure 7a, in the case of long distance,
citrus looked relatively small and some citrus was seriously
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a. Original image

d. YOLOX
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d. YOLOX

e. YOLOv4

¢. YOLOV4

f. YOLOF

Citrus recognition at long distance

f. YOLOF

Figure 8 Citrus recognition at close-range occlusion

Table 6 Confidence level detection under backlight conditions

Nn‘itgzi‘gk Dense-TRU-YOLO YOLOvS-s YOLOX YOLOv4 YOLOF
Average 0.926 0.870 0.842 0.868 0.786
confidence

obstructed. Figure 7b shows the detection results of Dense-TRU-
YOLO. Figure 7c, Figure 7d, Figure 7e, and Figure 7f show that
YOLOvV5-s, YOLOX, YOLOv4, and YOLOF all had missed
detection, where the missed citrus fruits are marked with blue
circles in the figure. As shown in the figures, even some citrus with
less serious occlusion were not detected. In contrast, due to the

introduction of Denseblock and attention mechanism, Dense-TRU-
YOLO detected all citrus accurately with high confidence, even
those with serious occlusion.

As can be seen from Figure 8a, there is a huge obstruction in
front of the camera, causing the background to blur and most of the
fruits to be obstructed. Figure 8c, Figure 8d, Figure 8e, and
Figure 8f show that YOLOvS-s, YOLOX, YOLOv4, and YOLOF
all had missed detection, where the missed citrus fruits are marked
with blue circles in the figure, and misidentified fruits marked with
yellow circles. Dense-TRU-YOLO detected most of the fruits
without any misidentification.



266  February, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 1

4 Conclusions

The above results suggest that Dense-TRU-YOLO was superior
to other algorithms in recognizing occluded and overlapping fruits
under different environmental conditions. By introducing
Denseblock and Transformer to YOLOvVS, the Dense-TRU-YOLO
model was proposed to detect citrus in orchards. The experiment
results suggested that the overall accuracy, recall, mAP, and F1 of
model recognition were 90.8%, 87.6%, 90.5%, and 87.9%,
respectively. The average detection speed of each image was 8.4 ms.
Compared with the current popular similar algorithms, Dense-TRU-
YOLO had the fastest detection speed and the highest detection
accuracy, which was 4.2%, 5.8%, 1.9%, 7.4%, 3.2%, 4.9%, and
9.9% higher than that of YOLOv5, YOLOvV3, YOLOvVS5-n, YOLOv4-
tiny, YOLOv4, YOLOX, and YOLOF, respectively. The
experimental results show that Dense-TRU-YOLO can effectively
identify citrus fruits with severe occlusion or overlap in various
complex environments.nts.
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