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Abstract: Nitrogen (N) as a pivotal factor in influencing the growth, development, and yield of maize. Monitoring the N status
of maize rapidly and non-destructive and real-time is meaningful in fertilization management of agriculture, based on
unmanned aerial vehicle (UAV) remote sensing technology. In this study, the hyperspectral images were acquired by UAV and
the leaf nitrogen content (LNC) and leaf nitrogen accumulation (LNA) were measured to estimate the N nutrition status of
maize. 24 vegetation indices (VIs) were constructed using hyperspectral images, and four prediction models were used to
estimate the LNC and LNA of maize. The models include a single linear regression model, multivariable linear regression
(MLR) model, random forest regression (RFR) model, and support vector regression (SVR) model. Moreover, the model with
the highest prediction accuracy was applied to invert the LNC and LNA of maize in breeding fields. The results of the single
linear regression model with 24 VIs showed that normalized difference chlorophyll (NDchl) had the highest prediction
accuracy for LNC (R?>, RMSE, and RE were 0.72, 0.21, and 12.19%, respectively) and LNA (R’>, RMSE, and RE were 0.77,
0.26, and 14.34%, respectively). And then, 24 VIs were divided into 13 important VIs and 11 unimportant VIs. Three
prediction models for LNC and LNA were constructed using 13 important VIs, and the results showed that RFR and SVR
models significantly enhanced the prediction accuracy of LNC and LNA compared to the multivariable linear regression model,
in which RFR model had the highest prediction accuracy for the validation dataset of LNC (R*, RMSE, and RE were 0.78, 0.16,
and 8.83%, respectively) and LNA (R?, RMSE, and RE were 0.85, 0.19, and 9.88%, respectively). This study provides a
theoretical basis for N diagnosis and precise management of crop production based on hyperspectral remote sensing in
precision agriculture.

Keywords: maize, nitrogen, hyperspectral imagery, vegetation index, UAV, random forest regression, support vector

Vol. 17 No. 3

regression
DOI: 10.25165/j.ijabe.20241703.8663

Citation: Cheng Q W, Wu B S, Ye H C, Liang Y Y, Che Y P, Guo A T, et al. Inversion of maize leaf nitrogen using UAV
hyperspectral imagery in breeding fields. Int J Agric & Biol Eng, 2024; 17(3): 144-155.

1 Introduction

Maize (Zea mays L.) is a globally cultivated staple food crop’,
boasting extensive planting areas and high yields®. As reported by
China Information News, the maize planting area in China reached
43.07 million hm* in 2022, with a total yield of 277.2 million t,
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second only to the United States®™. With the development of the
deep processing industry, maize has the same economic attributes as
ore and crude oil", and is an important economic crop and industrial
resource™, intimately linked with economic development!”.
Nitrogen (N) plays a dual role as a crucial component influencing
the synthesis of proteins, nucleic acids, and chlorophyll in plants®.
Furthermore, it directly impacts the physiological and biochemical

processes of plants™'!

I. During the growth of maize, N deficiency
will lead to leaf yellowing or withering, weakening photosynthetic
capacity, hampering kernel filling rates, decreasing hundred-grain
weight, and ultimately lowering maize yields">"!. Therefore, precise
and efficient real-time monitoring of maize N’s nutritional status is
imperative for ensuring normal growth and development of maize
and achieving increased and stable yields"*. Leaf nitrogen content
(LNC) is defined as the proportion of total N content in leaves to
leaf dry weight, and stands as a crucial indicator reflecting the N
nutritional status of crop leaves'. However, LNC cannot represent
the N nutritional level of the entire plant. Leaf nitrogen
accumulation (LNA) as the product of LNC and leaf dry weight!"®.
Tan et al.'"” found that LNA not only reflects the N nutritional status
of leaves but also encapsulates vegetation coverage characteristics,
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significantly impacting crop yield and seed protein synthesis.
Therefore, LNA distinctly reflects the N nutrition status of the entire
plant, with monitoring LNA is also of great significance for
precision fertilization. In current N nutrition studies, crop N status
is predominantly characterized by LNC, utilizing its quantification
as a diagnostic tool for evaluating crop N nutrition status!***.
However, few studies concurrently select LNC and LNA as
monitoring indicators for N nutrition status, comprehensively
analyzing the state of plant N nutrition and overall characteristics of
plant growth and development, thereby providing a theoretical
foundation for the scientific application of N fertilizers and crop
management.

Traditional methods for determining crop N content primarily
rely on indoor chemical analyses, such as the Kjeldahl method>*.
However, field sampling through these methods causes extensive
crop damage, necessitates lengthy analysis time, and involves the
use of toxic chemical reagents, leading to a time-consuming, labor-
intensive, and environmental pollution process®!. The development
of modern remote sensing technology offers the possibility of rapid,
non-destructive, and real-time monitoring of crop N status at
different scales®**. Studies have shown that remote sensing
technology can extract spectral information related to nutrient
elements, pigments, and other structural parameters in leaves,
thereby estimating different physiological and biochemical
indicators of crops®-"l. Therefore, the use of remote sensing to
monitor crop N relies on the link between leaf spectral
characteristics and plant physiological and biochemical
properties'’. Currently, remote sensing technology mainly includes
two categories: satellite remote sensing and unmanned aerial
vehicle (UAV) remote sensing. Due to limited revisit cycles and
weather conditions, satellite remote sensing has disadvantages such
as low spatial resolution and poor data quality®**. In comparison,
UAYV remote sensing presents advantages such as lower cost, better
timeliness and operability, and higher image resolution®**". As a
result, UAV remote sensing finds widespread application in
agricultural fields, including seeding®, pest and disease
identification®**), crop yield prediction**, and monitoring crop
growth indicators™™*l. The sensors installed on UAV platforms
primarily include RGB cameras, multispectral cameras, and
hyperspectral images. Among these, hyperspectral images have
more bands and higher spectral resolution®”. This allows them to
obtain more precise spectral feature responses, detect subtle changes
in ground cover, and exhibit superior performance in monitoring
vegetation characteristics***”. Vegetation Indices (VIs) constructed
based on canopy spectral reflectance are widely used to study
vegetation growth status. Research has found that models
established by VIs were more stable*), making them suitable for
crop N inversion. Wen et al.*! accurately estimated the vertical
LNC of maize under different field experimental conditions using
the optimized red-edge absorption area index. Guo et al.*” indicated
that the ratio spectral index (NBDI743, NBDI703) had a high
accuracy in predicting LNA in spring wheat. Patel et al.”" evaluated
the canopy nitrogen concentration of ryegrass using several Vs,
with the results showing that the photochemical reflectance index
had a superior predictive effect. Chen et al.®” found that Medium
Resolution Medium Spectrometer (MERIS) Terrestrial Chlorophyll
Index (MTCI) and Red Edge Chlorophyll Index (Cl,¢q eqqe) achieved
a higher prediction accuracy of plant nitrogen concentration at the
flowering stage of winter wheat. Consequently, the prediction of
crop N nutritional status by leveraging the relationship between
hyperspectral VIs and crop growth parameters has become a
prominent research focus. However, using single VIs to predict N

status may ignore the differences in spectral characteristics of
hyperspectral data, failing to express most spectral information, and
potentially leading to oversaturation in constructing crop N status
monitoring models™. Machine learning regression, with its
capability to describe complex relationships between crop
parameters and hyperspectral data, has gradually proven
advantageous over linear regression™*!. Peng et al.* demonstrated
that the Random forest regression (RFR) algorithm outperformed
linear regression in predicting the nitrogen nutrition index (NNI) of
potatoes. Zhang et al.”” successfully employed RFR and XGBoost
regression models to predict the aboveground biomass of maize at
different growth stages. Ma et al.®® utilized multiple VIs to
construct a Support Vector Regression (SVR) model for estimating
LNC in cotton and achieved favorable prediction results. Yang et
al.”! combined Optimized Spectral Index with four machine
learning algorithms, with the RFR combination had high prediction
accuracy for N content in plants such as wheat, maize, rice, and
potatoes. In the above studies, most of the research subjects were
planted in non-tropical regions, there is a scarcity of research using
UAYV hyperspectral data for real-time monitoring and inversion of
maize N nutrient status in tropical regions.

Hainan is a prominent tropical region in China, known for its
unique ecological features characterized by early spring onset, rapid
warming, significant diurnal temperature variations, and a frost-free
climate throughout the year'®. It has special ecological attributes
that meet the year-round, multi-generational, or perennial growth of
maize, which is the most important ideal base for southern breeding
in China®l. Therefore, this study took maize in Hainan area as the
research object and used LNC and LNA as indicators to
characterize the N nutrition status of maize. Typical VIs were
constructed using UAV hyperspectral images, and the study
analyzed the model accuracy between single VIs and maize leaf N.
Multivariable linear regression (MLR), RFR algorithm, and SVR
algorithm were used to construct prediction models between
important VIs and N indicators. The model with the highest
prediction accuracy was applied to invert the LNC and LNA of
maize in the study area. The goal is to realize remote sensing
estimation of leaf N nutrition status for maize propagated in the
southern region. This aims to provide a rapid and effective technical
method for non-destructive monitoring of N, assessing the critical
stages of maize growth, and making informed decisions about field
fertilizer. The ultimate objective is to ensure an ample nitrogen
supply, promote maize growth, and achieve stable and increased
yields.

2 Materials and methods

2.1 Experimental design

The experiment was conducted at the South Propagation Maize
Breeding Base in Laopo Village, Ledong County, Hainan Province,
China (18°26 '33"N, 108°57 '26"E) in January 2022 (Figure la).
Situated in the southwest of Hainan Island, Ledong County
experiences a tropical monsoon climate with sufficient light and
distinct dry and wet seasons. The predominant soil type is latosol.
The average annual temperature, sunlight hours, and precipitation
are 23°C-25°C, 2100-2600 h, and 1400-1800 mm, respectively. The
seasonal distribution of precipitation is uneven, with 86% of the
annual precipitation concentrated in the wet season from May to
October.

Field measurements were conducted to obtain hyperspectral
reflectance and LNC data of maize. A total of 76, 2 mx2 m,
sampling units were selected and evenly distributed in 2 sampling
plots that represented the growth characteristics of maize at the
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filling stage. The sampling units were randomly divided into two
datasets in the ratio of 8:2, with 60 units used for model simulation
and 16 units for model validation (Figure 1b). The soil physical and
chemical properties in Plot 1 and Plot 2 are listed in Table 1.
Besides, the planting density in Plot 1 was 6 plants/m? and the
planting density in Plot 2 was 7 plants/m’. The screened 13
important VIs were used as inputs, while LNC and LNA of maize
were used as outputs to construct MLR, RFR, and SVR models,
respectively. Subsequently, precision tests were conducted to assess
the accuracy of the models.
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Figure 1 Location of the experimental site and distribution of

sampling units

Table 1 Soil physical and chemical properties at

sampling plots
Particle composition/% Total N content/g-kg™
Samplin, Soil i
P o texures (<O.(():(;gymm) (0'8832' (%?gg' (ol-)zeopg:n) (25§3t?m)
0.020 mm) 2 mm)
Plot1 Heavy clay 67.21 20.93 11.83 2.75 2.32
Plot2 Loamy clay 44.13 33.05 22.82 2.35 1.98

2.1.1 Data collection

1) Hyperspectral reflectance measurement

The leaf hyperspectral reflectance of maize at the filling stage
was measured using the Jingwei M300 RTK quadcopter UAV
equipped with the ULTRIS X20 Plus hyperspectral imager on
January 15, 2022, from 11:00 AM to 1:00 PM (Beijing local time)
under clear and cloudless weather conditions. The UAV was set to
fly at a height of 40 m, with a speed of 5 m/s. The shooting mode
was timed shooting, with a shortest interval of 2 s between image
acquisitions. Both forward and side overlaps were set to 75%. The
wavelength range of the hyperspectral imager was 350-1000 nm,
the spatial resolution was 1.5 cm/pixel, and the sampling interval
was 4 nm. A total of 164 bands of leaf spectral reflectance data
were collected. The instrument was accurately calibrated using a
whiteboard before measuring each sampling unit.

2) Determination of leaf N indicator

Maize leaf samples were collected on January 16 and 17, 2022.
After the leaf hyperspectral reflectance data were recorded, four
representative maize plants near the locations of the spectral
measurements were randomly selected in each of the 76 sampling
units. Subsequently, maize leaves were collected and quickly
transported to the laboratory to determine LNC (%). All green
leaves were cleaned and oven-dried at 105°C for 30 min, and then
dried at 80°C for 8 h until a constant weight was achieved After
crushing, the Kjeldahl method was used to measure the N content of

the leaves. Thereafter, the LNA was calculated as the product of
LNC and unit leaf dry weight. The statistics for the measured LNC
and LNA of maize are listed in Table 2.

LNA = LNC x drymatter (1)
where, LNA is the leaf nitrogen accumulation, g/m* LNC is the leaf

nitrogen content, %; dry matter is the unit leaf dry weight, g/m?”

Table 2 Descriptive statistics of measured maize LNC (%) and
LNA (g/m?) for the simulation and validation datasets at the

filling stage
Dataset Nitrogen indicators N Max Min Mean SD CV
. . LNC 250 0.77 1.78 036 0.20
Simulation dataset 60
LNA 339 0.81 1.92 0.58 0.30
o LNC 226 085 1.72 037 0.21
Validation dataset 16
LNA 272 0.86 1.84 0.50 0.27

Note: Max, maximum; Min, minimum; SD, standard deviation; CV, coefficient of
variation.

2.2 Hyperspectral VIs and data analysis
The hyperspectral VIs commonly used for estimating crop N
status are listed in Table 3. The correlation and regression analyses

Table 3 Published hyperspectral VIs evaluated in this study

Vegetation Index Equation Reference
Simple ratio (SR) 1 R810/R560 [62]
SR2 R750/R710 [63]
Ratio Vegetation Index (RVI) 1 R800/R670 [64]
RVI2 R810/R720 [65]
Normalized (%ffgg‘{fl)v egetation  pe00-R680)/(R800-R680) [66]
G\r,zeg‘;f:t‘l’;?‘i‘:l‘j:f 3;57;3};6 (R800-R550)/(R800+R550) [67]
Nor‘nahzi‘f d?;f(fle\fggg‘ed Edge  R790-R720)/(R790+R720) [68]
Enhanced Vegetation Index 2 2.5%(R800—R680)/(1+R800+ [69]
(EVI2) 2.4R680)
Green Chlorophyll Index (Clyeen) (R780/R550)—1 [70]
Red Edge((C:illz)r‘(l)p;lyll Index (R780/R710)-1 [70]
red edge
MERIS if(‘ireft(ﬁ;g‘)l"mphy” (R750-R710)/(R710-R680) (71]
Modified Red-Edge Normalized . =
Difference Vegetation Index (R750 R7g;)221z5;50+R705 [72]
(mND705)
Optimized Soil-adjusted 1.16x(R800—R670)/ (73]
Vegetation Index (OSAVI) (R800+R670+0.16)
Modified Chlorophyll Absorption 1.2x[120%(R780-R550)— [74]
Ratio Index (MCARTI) 200%(R800—-R550)]
Transformed Vegetation Index  0.5%[120%(R780—R550)—200%(R6 (75]
(TVD 70—-R550)]
. . . (R800/R670—1)/sqrt
Modified Simple Ratio (MSR) (RSOO/R670+1) [76]
Modified Chlorophyll Absorption 0.2x[2R800+1—sqrt(2R800+1)x2— [77]
Vegetation Index (MCAVT) 8x(R800—R670)]
Soil Adjusted Vegetation Index 1.5x(R800—R670)/ (78]
(SAVI) 1 (R80+R670+0.5)
0.92x(R825-R735)/
SAVI2 (R825+R735-0.08) (78]
Normalized Difference
Chloro;hyll (NDchl) (R925-R710)/(R925+R710) [79]
N"”“ahzlen‘ijgf(‘;zrsg‘"i; Spectral 788 R756)/(R788+R746) [80]
Modified Red Edge Ratio (mRER) (R759-1.8R419)/(R742-1.8R419)  [81]
. 700+40x[(R670+R780)/2—R700]/
Red Edge Position (REP) (R740-R700) [82]
New Double Difference (DDN) 2R710-R660-R760 [83]

Index

Note: R810 denotes the reflectance at the wavelength of 810 nm in the hyperspectral
data, and the same others.
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were conducted using SPSS 27.0 software, heat map was conducted
with Origin 2021 software. The orthogonal partial least squares-
discriminant analysis was processed with SIMCA 14.1 software,
and the variable importance in projection (VIP) was calculated.
Subsequently, important VIs were screened with VIP>1. The MLR,
RFR, and SVR were performed using MATLAB 7.0 software (The
MathWorks, Inc., Natick, MA, USA). Model accuracy was assessed
using the coefficient of determination (R?), root mean squared error
(RMSE), and relative error (RE, %), as defined by Equations (2)-
(4), respectively. A higher R* and smaller RMSE and RE indicated
better model precision in predicting LNC and LNA.

n

> ©o.-py

R=1-- )

n

> -y

i=1

1 :
RMSE= [~ Z} (P,-0) 3)
RE (%) = RN;SE x100% 4)

where, O, P, and y are the measured values, the predicted values,
and the average of the measured values, respectively; n is the
number of samples.

3 Results

3.1 Relationship between VIs and LNC, LNA

As listed in Table 4, the 24 hyperspectral VIs were analyzed by
linear regression with LNC and LNA, and the corresponding
prediction models were established, and then the samples from the

Table 4 Quantitative relationships of VIs to LNC and
LNA in maize

Spectral index LNC LNA
R RMSE RE R RMSE RE

SR 1 0.71 0.21 12.21% 0.69 0.30 16.45%
SR 2 0.68 0.21 12.46% 0.66 0.32 17.23%
RVI 1 0.65 0.22 12.94% 0.62 0.33 17.94%
RVI2 0.69 0.21 12.37% 0.68 0.31 16.70%
NDVI 0.63 0.23 13.27% 0.66 0.30 16.56%
GNDVI 0.67 0.22 12.64% 0.71 0.29 15.83%
NDRE 0.70 0.21 12.23% 0.71 0.29 15.78%
EVI2 0.61 0.23 13.07% 0.59 0.33 18.16%
Clgreen 0.68 0.21 12.40% 0.67 0.31 16.90%
Clreq edge 0.66 0.22 12.66% 0.65 0.32 17.53%
MTCI 0.66 0.22 12.89% 0.65 0.32 17.17%
mND;s 0.68 0.22 12.47% 0.70 0.29 15.89%
OSAVI 0.63 0.22 12.87% 0.63 0.31 17.09%
MCARI 0.61 0.22 12.97% 0.57 0.34 18.62%
TVI 0.55 0.24 13.91% 0.52 0.36 19.43%
MSR 0.65 0.22 12.82% 0.65 0.32 17.45%
MCAVI 0.57 0.23 13.62% 0.53 0.36 19.45%
SAVI 1 0.61 0.22 13.02% 0.60 0.33 17.90%
SAVI2 0.67 0.23 13.30% 0.69 0.31 16.66%
NDchl 0.72 0.21 12.19% 0.77 0.26 14.34%
NDSI 0.59 0.25 14.32% 0.55 0.37 19.86%
mRER 0.72 0.21 12.14% 0.72 0.29 15.64%
REP 0.65 0.22 13.02% 0.65 0.31 16.91%
DDN 0.65 0.22 12.50% 0.63 0.32 17.47%

validation dataset were applied for validation, The results showed
that except for NDVI, GNDVI, NDRE, mND705, SAVI 2, and
NDchl, which had higher prediction accuracy for LNC than LNA
(R*>0.66, RMSE<0.31, RE<16.66%), the remaining 18 VIs had
higher prediction accuracy for LNC (R*>0.55, RMSE<0.25, RE<
14.32%), with an average R* of 0.02 higher than LNA. For
estimating LNC, except for the poor prediction accuracy of TVI,
MCAVI, and NDSI for LNC (R*<0.59, RMSE>0.23, RE>13.62%),
the remaining 21 VIs had higher prediction accuracy for LNC (R*>
0.61, RMSE<0.23, RE<13.30%). For estimating LNC, the 5 highest
prediction accuracy VIs were NDchl, mRER, SR 1, NDRE, and
RVI 2 (R>0.69, RMSE<0.21, RE<12.37%). For estimating LNA,
the poor prediction accuracy VIs were EVI 2, MCARI, TVI,
MCAVI and NDSI (R’<0.59, RMSE>0.33, RE>18.16%), while
NDchl, mRER, NDRE, GNDVI and mND705 had higher prediction
accuracy for LNA (R*>0.70, RMSE<0.29, RE<15.89%).
3.2 Selection of VIs for evaluating LNC and LNA

In order to predict LNC and LNA of maize more accurately, the
orthogonal partial least squares-discriminant analysis was
performed on LNC, LNA, and different VIs were calculated VIP
values. By comparison, all VIs were classified into 2 categories,
important variables (VIP>1), and unimportant variables (VIP<I).
The results are shown in Figure 2. Among the 24 VIs, the maximum
VIP value of MTCI was 1.027, while the minimum VIP value of
TVI was 0.950. A total of 11 unimportant variables were screened
out, including NDVI, EVI 2, mND705, OSAVI, MCARI, TVI,
MCAVI, SAVI 1, SAVI 2, NDchl and NDSI, with VIP values of
0.950-1.000. The remaining 13 VIs, including SR 1, SR 2, RVI 1,
RVI 2, GNDVI, NDRE, Clyes Clieg cgger MTCIL, MSR, mRER,
REP, and DDN were selected as important variables, with VIP
values of 1.002-1.027.

DDN 1.012

REP 1.017
mRER 1.013
NDSI 0.998
NDchl 0.977
SAVI2 0.994
SAVI 1 0.980
MCAVI 0.970
2 MSR 1.002
g TVI 0.950
T MCARI 0.994
‘= OSAVI 0.981
.S mND705 1.000
2 42
o red edge B
< Cloeen 1.022
EVI2 0.980
NDRE 1.015
GNDVI 1.002
NDVI 0.964
RVI 2 1.026
RVI 1 1.004
SR 2 1.023
SR 1 1.019
0.000 0.200 0.400 0.600 0.800 1.000
VIP values
Figure 2 VIP values of 24 VIs

As shown in Figure 3, the correlation analysis was conducted
on the 13 important variables and LNC and LNA. The results
showed that all VIs had strong correlations with LNC and LNA,
with absolute values of their determination coefficients above 0.70,
and reached highly significant correlations at the 0.01 level.
Compared with LNC, the correlation between the 13 important VIs
and LNA was higher, and the absolute values of their determination
coefficients were higher than that of LNC by 0.04 on average.
Among the 13 important VIs, only DDN showed a significant
positive correlation with LNC and LNA (p<0.01), and had the
highest correlation with both LNC and LNA, with correlation
coefficients of 0.77 and 0.82, respectively. The remaining
vegetation indices were all significantly negatively correlated with



148 June, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 3

LNC and LNA (p<0.01). The 5 VIs with the best correlation with
LNC were DDN, SR 2, Cl,¢q cgee» RVI 1, and MSR, with absolute
determination coefficients of 0.77-0.79, while the 5 VIs with the
lowest correlation with LNC were REP, GNDVI, mRER, NDRE,
and MTCI, with absolute determination coefficients of 0.73-0.76.

Correlation
coefficient R

sxpegor SR 1.00

- 1SR 2 0.50

| E&; 0.00
ok |k ok 1 GNDVI ~0.50
Hok | dok | ok | NDRE -1.00

sk | ek | ok {ClLen

eelee se[se o Tee oo e

sk |k skok | kk skek | okok | kR skok 4 MTC]

sk | kck skok | ksk o skok | okk | kR ckok 41 mRER
RO (rep

sk skok o cksk skok ckek o skok skek o sksk skok sksk skok kek 41 DDN
sk ckk o cksk ckok o ksk skok ksk skok kk skok okk o kok LNC
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a. correlation correlations between important variables and LNC

The 5 VIs with the best correlation with LNA were DDN, SR 2,
RVI 1, MSR, and Cl,¢4 ¢4, With absolute determination coefficients
of 0.82-0.84, while the 5 VIs with the lowest correlation with LNA
were REP, mRER, MTCI, GNDVI, and NDRE, with absolute
determination coefficients of 0.74-0.79.
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Figure 3  Correlation coefficients between 13 important variables and LNC, LNA in maize

3.3 Comparison and testing of model estimation accuracy

Based on the above-selected important variables, MLR, RFR,
and SVR were used to establish the monitoring models for LNC and
LNA of maize, respectively. R>, RMSE, and RE values were used to
compare and analyze the consistency between the predicted and
observed values of LNC and LNA in the simulation and validation
datasets modeled by different algorithms, and then the accuracy of
the monitoring models was evaluated. As shown in Figure 4,
compared to the single linear regression model (LNC: R*>0.55,
RMSE<0.25, RE<14.32%; LNA: R*>0.52, RMSE<0.37, RE<
19.86%), the MLR model did not significantly improve the
prediction accuracy of LNC (simulation dataset: R*=0.70, RMSE=
0.19, RE=10.89%; validation dataset: R>=0.59, RMSE=0.24,
RE=13.83%) and LNA (simulation dataset: R*=0.77, RMSE=0.28,
RE=14.38%; validation dataset: R*=0.53, RMSE=0.38, RE=20.58%).
Among the 4 different models, the RFR model had the highest
prediction accuracy for LNC (simulation dataset: R*=0.82,
RMSE=0.16, RE=8.95%; validation dataset: R>=0.78, RMSE=0.16,
RE=8.83%) and LNA (simulation dataset: R’=0.84, RMSE=0.23,
RE=12.41%,; validation dataset: R>=0.85, RMSE=0.19, RE=9.88%).
In addition, the SVR model also had good prediction accuracy. For
LNC, its R* and RMSE values of the validation dataset were the
same as the RFR model, but the RE value was 0.42% higher than
the RFR model. The R* value of the simulation dataset was 0.12
lower than the RFR model, and the RMSE and RE values were 0.04
and 2.52% higher, respectively. For LNA, its prediction accuracy
was significantly lower than that of the RFR model (simulation
dataset: R*=0.78, RMSE=0.27, RE=14.02%; validation dataset:
R*=0.73, RMSE=0.26, RE=13.89%).
3.4 Mapping of LNC and LNA in the study area

The RFR model with the highest prediction accuracy was
selected and used 76 sampling units as the basic unit, and then LNC
and LNA for each sampling unit were predicted separately, the
inversion results are shown in Figure 5. Overall, the changes in
LNC and LNA at the sampling unit scale were basically consistent.
The predicted values of LNA in the study area were all higher than
the predicted values of LNC. The minimum predicted value of LNC

was 1.23%, the maximum was 2.17%, and the average value was
1.76%. The minimum predicted value of LNA was 1.24 g/m? the
maximum was 2.72 g/m? and the average value was 1.89 g/m”. In
addition, the soil of sampling Plot 1 was heavy clay, while sampling
Plot 2 was loamy clay, and the soil total N content in 0-20 cm and
20-40 cm layers was higher than that in sampling Plot 2 (Table 1).
Besides, the planting density of maize in sampling Plot 1 was lower
than that in sampling Plot 2. The results of the study showed that
the predicted values of LNC and LNA in sampling Plot 1 were
higher than that in sampling Plot 2.

4 Discussion

4.1 Relationship between VIs and LNC and LNA

The estimation of maize LNC and LNA based on linear
regression is primarily constructed through a simple empirical
regression model from VIs in narrow hyperspectral bands™. In this
study, 24 commonly used VIs were used to establish predictive
models for maize LNC and LNA. Table 4 presents the prediction
accuracy of single VIs for LNC and LNA, with most VIs having R’
values above 0.60. This indicates that VIs composed of narrow
bands of reflectance can mitigate interference caused by soil,
weather, and other factors, thereby enhancing the accuracy of crop
parameter estimation®”. Song et al.* found that NDRE, mRER, and
NDchl had high accuracy in predicting N accumulation during the
flowering stage of wheat (R>0.75, RMSE<0.32). In this study,
NDRE, mRER, and NDchl not only had the highest prediction
accuracy for maize LNA (R*>0.71, RMSE<0.29, RE<15.78%), but
also had high accuracy for LNC (R*>0.70, RMSE<0.21, RE<
12.23%). This suggests that NDRE, mRER, and NDchl can be
effective VIs for estimating crop N status. The REP is believed to
partially eliminate effects caused by canopy structure and soil
background®*¥. Ramos-Garcia et al.*” demonstrated that REP is
suitable for monitoring the N nutrition status of maize leaves during
the eighth leaf stage (R’=0.46) and silking stage (R*=0.54). In this
study, REP had higher predictive accuracy for LNC and LNA
(R*=0.65) during the filling stage of maize, indicating that REP can
be a suitable indicator for estimating the N nutrition status of maize
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at different growth stages. Additionally, due to the increase in leaf
density and decrease in leaf transparency during the filling stage,
REP is more sensitive to changes in leaf structure®, resulting in
higher prediction accuracy for the N nutrition status of maize.
Numerous studies have shown that TVI is often used to estimate the
leaf area index of crops® and has achieved good prediction
accuracy (R=0.53-0.96). However, in this study, TVI failed to
exhibit high prediction accuracy for LNC (R*=0.55, RMSE=0.24,
RE=13.91%) and LNA (R>=0.52, RMSE=0.36, RE=19.43%). The
reason may be that TVI has a weak ability to monitor changes in
factors affecting N content, such as canopy structure and functional
traits™), and its inability to directly reflect the N status in leaves,
resulting in poorer prediction accuracy. In this study, MCAVI had
poor prediction accuracy for LNC (R*=0.57, RMSE=0.23, RE=
13.62%) and LNA (R*=0.53, RMSE=0.36, RE=19.45%). Studies
have shown that the canopy spectral reflectance of crops is
determined by the optical properties of leaves and the surrounding
environment*’”, The cellular structure, moisture, and leaf thickness
inside maize leaves can cause light scattering and cross-reflection
within the leaves®™), affecting the accuracy of MCAVI in
predicting leaf N and resulting in poor predictions. NDVI as a
vegetation index highly correlated with crop N content!'”'*, has
been widely used in monitoring crop N status'®'*l.Ye et al.'""” used
12 VIs to estimate leaf N density of maize with different
geometrical traits at different growth stages, among which NDVI
had the highest accuracy in predicting the upper leaves of horizontal
maize (R*=0.83) and intermediate maize (R*=0.57) during the period
of an unclosed canopy. However, in this study, NDVI, and NDSI
did not exhibit high prediction accuracy for LNC (R*<0.63, RMSE>
0.23, RE>13.27%) and LNA (R<0.66, RMSE>0.30, RE>16.56%).
This discrepancy may be attributed to the sensitivity of these types
of VIs to changes in soil background, which are easily influenced
by factors such as wavelength, vegetation coverage, light intensity,
and soil characteristics like water content, organic matter content,
and surface roughness'™. They only consider the spectral
reflectance characteristics of vegetation and do not account for the
comprehensive impact of these factors, resulting in low prediction
accuracy for maize leaf N. To reduce the influence of non-
photosynthetic substances in the canopy on reflectance spectra,
Sims and Gamon!"” developed a three-band vegetation index,
mND?705. In this study, the predictive performance of mND705 for
both LNC and LNA showed improvement compared to NDSI, with
an increase in R* values by 0.09 and 0.15, RMSE and RE values
decreased by 0.03, 0.08 and 1.85%, 3.97%, respectively. This
proves that the three-band vegetation index contains more detailed
vegetation information, enhances the sensitivity of crop
physiological and biochemical indicators, reduces the influence of
external environmental conditions, and consequently improves the
prediction accuracy of crop parameters' '
4.2 The best model for monitoring LNC and LNA

In this study, the single vegetation index-based estimation
model for LNC and LNA demonstrated good accuracy. However,
models constructed by single VIs are susceptible to saturation!'
and have limited sensitivity to changes in crop internal and canopy
structure!”. In order to enhance sensitivity to parameters like LNC
and LNA, this study calculated VIP values and screened 13
important VIs with VIP>1 (Figure 2). Correlation analysis was then
conducted on these 13 VIs with LNC and LNA, respectively
(Figure 3). The results revealed that only DDN was significantly
positively correlated with LNC (7=0.79) and LNA (»=0.84),
aligning with previous research findings!'". Fan et al.''¥ reported

higher correlation coefticients between VIs and N indexes involving
the red band and the red-edge band, with absolute values of their
correlation coefficients all above 0.80. Additionally, REP was
significantly negatively correlated with LNC (=-0.73) and LNA
(r=—0.74), primarily due to the close correlation between N and
chlorophyll content in crops!"'"”. Machine learning regression has
gained widespread use in estimating crop physiological and
biochemical indicators, demonstrating promising potential!"*'*!. In
this study, 13 important VIs served as input variables for the
quantitative estimation of maize LNC and LNA from hyperspectral
images, using single linear regression, multivariable linear
regression, and machine learning regression. Figure 4 illustrates the
predictive performances of the MLR, RFR, and SVR models for
maize LNC and LNA. The results indicated that compared to single
linear regression models, multivariable linear regression did not
significantly improve the prediction accuracy of both LNC and
LNA, consistent with previous research results®”. This is because
MLR cannot deal with problems such as multicollinearity in
spectral data and is only suitable for solving some linear regression
problems, resulting in lower model accuracy!**'*\. In contrast, the
machine learning-based RFR model and SVR model have higher
prediction accuracy for maize LNC and LNA. Wang et al.l
demonstrated that RFR (R*=0.63-0.74) and SVMR (R=0.59-0.70)
models have higher prediction accuracy for rice leaf area index,
aligning with the conclusion that SVMR and RFR models can
provide better prediction results in this study. Fu et al.l'™
emphasized that complexity and nonlinearity characterize the
relationship between hyperspectral reflectance and crop N status.
Additionally, there are often significant nonlinear relationships
between VIs and crop parameters. Therefore, machine learning
models are better suited for capturing the nonlinear relationships
between various VIs and crop parameters!””. Consequently, both
machine learning algorithms in this study demonstrated superior
prediction performance. The RFR algorithm is based on numerous
decision trees and nonlinear regression trained on high dimensional
data to achieve calculations on extensive datasets!?®'*) It exhibits
low sensitivity to data bias"*”, can model complex variables through
interactions to prevent overfitting®'!, and is widely used in various
remote sensing based analyses due to its robustness, stability, high
predictability, fast training speed and ease of implementation!*>'*\.
Shah et al!*¥ showed that compared to MLR (R=0.86,
RMSE=6.04), the use of RFR to predict wheat chlorophyll content
resulted in an increased R* and decreased RMSE (R*=0.95,
RMSE=3.71). Qiu et al.'**' compared the predictive performance of
different machine learning methods on the NNI of rice, and reported
that the RFR algorithm had the highest accuracy in predicting the
NNI at each growth stage (R*=0.88-0.96, RMSE=0.03-0.07). Sun et
al." showed that in predicting the canopy chlorophyll content of
wheat and soybeans, RFR (R*=0.69-0.99) outperformed univariate
linear regression (R’=0.69-0.90) and bivariate linear regression
(R>=0.69-0.82) models. Consistent with previous studies'*’'*}, the
results of this study also indicated that the RFR model had the
highest prediction accuracy for LNC and LNA, highlighting the
RFR algorithm as the preferred method for predicting LNC and
LNA in maize.
4.3 Inversion of N status in maize leaves in the study area
Leaves are a key part of plant photosynthesis, and N in leaves
serves as a vital parameter for enhancing light use efficiency,
photosynthesis rate, and crop productivity!**'*!l. The estimation of N
status in the late stages of crop growth holds great significance for
predicting maize grain yield and quality, as well as prospects for the
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following year’s crops'*. The RFR model was employed to invert
the LNC and LNA of maize in the study area (Figure 5), and the
results showed that the LNC value at the filling stage was 1.23%-
2.17%, and the LNA value was 1.24 g/m?-2.72 g/m*. Wen et al.'*
also showed that the LNC in maize at the reproductive growth
stages (silking stage and milk stage were 0.73%-2.06%, 0.49%-
2.21%, respectively) were maintained at a lower level compared to
the LNC at the vegetative growth stages (V9 stage and VT stage
were 1.10%-4.07%, 1.10%-2.72%, respectively). This is in
agreement with the results of this study, indicating that different
growth stages have an impact on N changes in maize leaves. The
phenomenon might be attributed to the abundance of N content in
nutrient tissues during the vegetative growth stages. In contrast,
during the reproductive growth stages (filling stage in this paper),
owing to grain formation, N in the leaves is transferred to the
grains, maintaining a high level of N nutrition in the grains to
ensure normal maize fruiting!"*'*.. Moreover, N in leaves during the
filling stage may be lost from plant tissues in the form of NH3,
resulting in a reduction in leaf N nutrition, so that the LNC and
LNA in maize are maintained at a low level. Lu et al.'*" showed
that the LNC of maize during the filling stage was 1.45%-2.38%,
which was higher than the LNC of this study. As the most direct
source of crop growth and nutrients, changes in soil nutrient status
directly impact the nutrient content of crops'*l. Given that this
study was conducted in a tropical region, the high temperature and
humidity conditions led to strong soil leaching, resulting in
substantial nutrient loss from the soil"*\. This contributed to the low
N content observed in maize leaves. Additionally, the soil in the
Hainan Island region has an obvious acidification phenomenon'",
which to some extent inhibits microbial activities, hampers the
decomposition of organic matter, and slows down the release rate of
soil nutrients. This may affect the absorption and utilization of N in
the soil by plants. The inversion results of this study showed that the
maize LNC and LNA were higher in sampling Plot 1 than in
sampling Plot 2, potentially influenced by the different physical and
chemical properties of the soil in the two plots. As shown in Table 1,
Plot 1 was heavy clay soil, while Plot 2 was loamy clay soil.
Numerous studies emphasized that soil texture, as a fundamental
physical soil property, not only dictates soil fertility but also
significantly influences crop growth and N status!*"'**. Heavy clay,
with a higher proportion of clay particles compared to loamy clay,
possesses robust adsorption and water and fertilizer retention
characteristics, fostering favorable conditions for crop growth and
nutrient absorption. The content of N in the soil also plays a pivotal
role in plant growth, with higher total N content in the soil
providing a more favorable environment for sufficient N supply to
plants, thereby promoting N accumulation in leaves. In this study,
the total N content in both 0-20 cm and 20-40 cm soil layers
indicated that Plot 1 was higher than Plot 2. Consequently, the
inversion results demonstrated that the LNC and LNA of maize in
Plot 1 were higher than those in Plot 2. In addition, planting density
emerges as another critical factor influencing maize growth and
development. Numerous studies have shown that high planting
density can diminish canopy light transmittance, and intensify
resource competition among individual maize plants, thereby
affecting photosynthesis, nutrient accumulation and distribution,
and restricting overall crop growth and development!**'**. In this
study, the higher planting density in Plot 2 (7 plants/m?) compared
to Plot 1 (6 plants/m’) may have led to inadequate nutrient supply
and soil nutrient depletion, resulting in a lack of N in maize leaves.
Consequently, the LNC and LNA of maize in Plot 2 were lower

than those in Plot 1.

In this study, the experimental focus was solely on maize at the
filling stage, and it is acknowledged that different growth stages can
significantly influence the relationship between hyperspectral Vs,
LNC, and LNA. Nevertheless, employing a combination of 13
important VIs, this study successfully utilized the RFR algorithm
and the SVR algorithm to accurately estimate LNC and LNA,
achieving high prediction accuracy. The results of this study lay a
foundation for non-destructive and real-time monitoring of N
content and fertilization management in the propagation of southern
maize in Hainan. Future endeavors will contemplate conducting
remote sensing quantitative inversion of LNC and LNA in maize
using UAV hyperspectral under different growth stages and N
application conditions. The VIs and monitoring models applied in
this study will be further tested and improved across a wider range
of conditions to enhance the accuracy and reliability of the
monitoring models.

5 Conclusions

In this study, UAV hyperspectral remote sensing technology
was employed to establish prediction models for LNC and LNA
during the filling stage of maize in tropical regions. Single linear
regression, multivariable linear regression (MLR), and machine
learning regression (RFR and SVR) were employed. The results of
single linear regression showed that the prediction performances of
24 VIs for LNC and LNA were relatively stable, with NDchl having
the highest predictive accuracy for LNC (R’>, RMSE, and RE were
0.72, 0.21, and 12.19%, respectively) and LNA (R?>, RMSE, and RE
were 0.77, 0.26 and 14.34%, respectively). To enhance the
sensitivity in predicting LNC and LNA, 24 VIs were divided into 13
important VIs and 11 unimportant VIs, and 13 screened important
VIs were used as input values. The results showed that RFR and
SVR significantly improved prediction accuracy of LNC and LNA
compared to single and multivariable linear regression, in which
RFR had the highest prediction accuracy for LNC (simulation
dataset: R’=0.82, RMSE=0.16, RE=8.95%; validation dataset:
R=0.78, RMSE=0.16, RE=8.83%) and LNA (simulation dataset:
R>=0.84, RMSE=0.23, RE=12.41%; validation dataset: R*=0.85,
RMSE=0.19, RE=9.88%). Therefore, based on the hyperspectral
reflectance data from UAYV, the RFR model enabled effective
estimation of maize LNC and LNA. This approach is applicable in
precision agriculture, providing a theoretical basis and technical
methodology for real-time monitoring of maize N status in the field
and achieving scientific fertilization.
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