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Abstract: Pig body measurement is an important evaluation criterion for breeding and production management. Automatic
measurement algorithms for pig body sizes exhibit sensitivity to the point cloud posture, but non-standard pig postures may
result in inaccurate joint point localization in body measurement, further affecting measurement accuracy and the commercial
application of these algorithms. To address this challenge, this paper proposed a pig point cloud posture transformation method
based on pig’s skeleton model to adjust non-standard postures before conducting body size measurements. The method utilized
an improved L1-median skeleton model to extract the three-dimensional skeleton of the pig point cloud, capturing the skeleton
joint points on the target pig’s head, body, and limbs. By binding the skeleton joint points with the local point cloud and using
rotation matrices, non-standard postures were adjusted to standard ones, enabling accurate body size measurements. The
experimental results demonstrated that the average relative errors between the transferred posture and the original standard
posture were reduced to 0.89% in body length, 0.76% in body width (front), 1% in body width (back), 0.89% in body height
(front), 1.7% in body height (back), 2.03% in thoracic circumference, 3.37% in abdominal circumference, and 1.89% in rump
circumference. To conclude, the posture standardization transfer method can significantly reduce errors in important body size
parameters such as body length, body height, and body width. The method displays a greater stability and robustness compared
to existing posture normalization and regression adjustment methods, providing both guidance and insight for future research in

intelligent agriculture.
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1 Introduction

Accurate body measurement can reflect the growth and
development of livestock, estimate body weight, and assess body
condition, facilitating genetic breeding and intelligent feeding
management!*. Traditional measurement methods rely on manual
operation and require restraining animals in specific areas, which
are not only time-consuming and inefficient but also prone to
unnecessary stress responses of livestock™. Furthermore, manual
measurement methods fail to meet the demands of large-scale
livestock farms for batched, efficient, and continuous monitoring.

With the increasing demand for smart farming and precise
animal monitoring, depth cameras such as Kinect and RealSense
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research interest:

have been successfully applied in the livestock industry”. In the
process of automated body measurement, multiple-view depth
cameras are first used to more efficiently capture three-dimensional
data of livestock in standing or walking states. The data from diff-
erent views are then reconstructed into a complete livestock model
through target detection, extraction, registration, and fusion!"'".
Key points for body size measurement are located using effective
methods such as point cloud density distribution, geometric feature
calculation, and part segmentation to obtain pig body length, body
width, body height, and circumference parameters!*'". By utilizing
ellipse fitting, point cloud segmentation, and curvature analysis, the
body weight, area, and volume of animals are
determined”'*"”, which are helpful in body condition scoring™**.
During manual measurement of livestock body sizes, animals
are required to maintain an ideal standard posture. Specifically, the
head and tail of the pig should align in a straight line, with the limbs
forming a rectangular stance. This posture facilitates monitoring
from top, side, and leg point clouds, directly displaying the pig’s
primary body contours and structures. It minimizes measurement
errors due to posture variations, ensuring consistency and accuracy
of the data®!. However, in actual measurements, even when
restricted to a narrow measurement area, livestock tend to lower or
raise their head, turn their head, and bend their body, resulting in
various non-standard postures. Additionally, measurements in
different different body

surface

postures may bring about sizes.
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Experimental results indicate that the proportion of standard
postures is only 25% in the actual data acquisition (those accurately
reflecting the pig’s actual body sizes), while 75% represent non-
standard postures, introducing a considerable level of uncertainty
into body size measurements®. Therefore, to ensure accuracy in
manual measurements, the average values of body parameters from
multiple measurements on the same animal are often taken. The
results of manual measurements are subjective and influenced by
non-standard postures, making them unreliable as the gold standard
for true body measurements.

Different postures can affect the accuracy of body
measurements. For instance, compared to the standard posture of a
pig, when the head tilts more towards the ground, the body length
tends to increase, the front height diminishes, and measurements
like abdominal girth and chest girth tend to be larger. Moreover,
increased body twisting amplitude corresponds to longer body
length, which can also affect body width. Ling et al. show that point
cloud postures of livestock collected in free-walking states are
diverse, with only a quarter of the data representing the standard
posture®. Compared with manual measurement, the automatic
measurement method of standard posture, and the error of body
length, body width, body height, and abdominal circumference in
non-standard posture, the maximum error can reach 10%. The
previous research aimed to improve the accuracy of livestock body
size measurement by quantifying the relationship between the
vector set of skeleton joint points and body sizes and applying a
regression model to calibrate the body size data. Another approach
involves fitting point cloud data with statistical three-dimensional
models of animals and normalizing the point cloud postures through

Data processing

[ Point cloud denoising |

\
|
|
|
|
|
|
|
|

\[ Point cloud registration |
-

Al —— —

methods such as estimating the animal’s forward direction,
segmenting point cloud of body parts, bilateral symmetry, and
posture normalization™?. However, this method requires high-
precision three-dimensional models for each type of livestock and
significant computational costs®”. Automated measurement of
livestock body sizes should be conducted in the standard posture, as
direct measurements in non-standard postures can lead to
considerable errors. Therefore, posture correction of livestock point
clouds is crucial. In this study, we present a method for posture
standardization transfer and body size measurement based on a pig
skeleton model, which is marked by transforming non-standard
postures to a standard posture before conducting body size
measurements.

The main contributions of this paper are as follows:

(1) Improving the Ll-median skeleton model to accurately
extract the three-dimensional point cloud skeleton of pigs.

(2) Introducing a point cloud posture standardization transfer
method based on skeleton joint points, which enables the livestock
point clouds in non-standard postures to transfer to a standard
posture.

2 Materials and methods

Extraction of the 3D skeleton model and skeleton joint points
from complete pig body point cloud data makes posture
standardization transfer feasible. Meanwhile,
measurements can also be realized, such as body length, body
height, thoracic circumference, abdominal circumference, and rump

circumference. The specific process is shown in Figure 1.
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Figure 1

2.1 Data preprocessing

All procedures in this experiment were approved by the
laboratory Animal Ethics Committee of South China Agricultural
University (reference number 2020G008). The data for this
experiment were collected from July 1 to August 1, 2022, at Wens
Foodstuff Group Co., Ltd. in Heyuan City, Guangdong Province.
Depth cameras in three directions were used to capture local point
cloud data, and after registration, denoising, and downsampling,
complete pig body point clouds in different postures were obtained.
For detailed information on the data acquisition process and the
specific definitions of different pig postures, please refer to our
previous studies™ I,

Specific process of pig posture transfer and body measurement

2.2 Pig skeleton model

A three-dimensional skeleton can describe the geometric
topology of a pig, providing an intuitive and comprehensible
representation. Similarly, a pig skeleton model can assist in posture
classification and posture transfer. Due to limitations in camera
perspectives and factors such as strong sunlight, incomplete point
cloud data or uneven distribution of local point clouds may be found
in the front or hind legs of a target pig. Directly applying the L1-
median skeleton extraction algorithm cannot accurately describe the
shape of the pig body™. Therefore, in this paper, an improved local
L1-median skeleton extraction algorithm is employed to describe
the shape features of the pig body with more accuracy.
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2.2.1 Pig skeleton extraction

In our experiment, the pig skeleton point cloud is acquired by
randomly sampling the input point set Q ={g,},,, €2’ to obtain a
sparse point set X =
points within the neighborhood, and gradually expanding the
neighborhood range. The point cloud data of a pig skeleton can be

ultimately obtained:

argmin y > " llx = q,l10 (I~ qll) + R(X) (1)

i€l jet

{x;},i € I € °, determining the local centers of

where, the first part determines the local L1-median, which obtains
the central points of the local point cloud. I and J index the set of
points X and points Q, respectively. The parameter 6(r) = ¢ In*/¢/2?
is the Gaussian weight function of the initial radius /. The weight is
lower in high-density regions to generate effective skeleton
branches; r is the Euclidean distance between point x; and point g;,
allowing the skeleton extraction algorithm to adaptively process
point cloud regions with different density levels. The term R(X) is
introduced as a regularization function that adjusts the repulsive
force of the skeleton points to maintain sparsity, while the weight is
greater in low-density regions to make the skeleton closer to the
true shape.

0 (Ilx; — xII)

RO=D 0D o @

i€l i'el\{i}

where, y, is the parameter that balances gravity and repulsive
forces; and o; is used to differentiate between skeleton points and
4
A+ A+
of the point cloud in a local region, and A}, A}, A, is the extent of

non-skeleton points. o; = , represents the concentration

stretch in different directions at that point. The closer the parameter
is to 1, the greater the concentration of the point cloud along the
direction A,, resulting in a line-like distribution. When handling
irregular and incomplete point cloud data, enhancing the accuracy
and stability of skeleton extraction makes it more likely that the
skeleton point is located on a skeleton branch. x; represents the
points adjacent to x;.
2.2.2  Skeleton optimization

Extracting the L1-median skeleton heavily relies on surface
points. When the distribution of surface points on the pig body is
uneven, the extracted local skeleton tends to be concentrated in
regions where surface points are relatively dense. To achieve a
uniform distribution of skeleton points and form a complete and
consistent pig body skeleton model, density weighting is applied to
initial pig skeleton optimization. This involves quantifying the point
cloud density in local regions to obtain density weights for the
skeleton points, which are formulated as follows:

=1+ Ze(r) (3)
Dadd > (=B,

= jel y e} (4)
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where, d; denotes the weighted local density of r, which is used to
regulate the local density between point x; and point g;.
_ 9(||Xjf_qj||)

T =gl
point ¢g;, which contributes to calculating the repulsive force

is the angular discrepancy between point x; and

. A (B | .
between the two points. Meanwhile, 3;, = W signifies the
attractive force between these points, k indicates the iteration count,
and 0¥ =0 (xf) .

Furthermore, pig point clouds often have small missing
portions, and the generated L1-median skeleton may deviate from
these missing parts, thus affecting the overall structure of the
skeleton. This paper introduces an ellipse fitting approach, which
finds an ellipse that minimizes the distance between known point
clouds and the ellipse to approximate the missing surface point
cloud™!. The formula for ellipse fitting is as follows:

F(a,x)=ax=ax’+bxy+cy* +dx+ey+f=0 (5)

where, the parameter vector a = [a,b,c,d,e, f]" and the coordinate
vector x = [)cz,xy,yz,x,y,l]T are used. For a point (x;,y:), F(a,x;)
represents the algebraic distance from the point to the curve
F(a,x)=0.

By applying density weighting optimization and ellipse fitting
to the pig skeleton model, the generated skeleton points not only
exhibit a uniform distribution but also provide a complete
description of the pig contour.

2.3 Posture standardization transfer

There are significant differences in body length, body width,
body height, abdominal circumference, and other measurements
between pigs in non-standard postures and pigs in standard
postures. In real scenarios, various point cloud postures are
collected in a pig’s free-walking state, which can affect the accuracy
and stability of body size measurements. To reduce measurement
errors caused by posture variations, this study proposes a method to
adjust non-standard postures to standard postures.

2.3.1 Skeleton joint extraction

The skeleton of a pig is divided into four parts: head, torso,
front legs, and hind legs. As a definition of pig skeleton in a strict
biological sense is not yet available, this study utilizes 32 skeleton
joint points from the pig skeleton that represent the main
physiological structures of the pig’s hoof. As shown in Figure 2,
three joint points are uniformly obtained from the pig’s head, 17
joint points from its torso, and 12 joint points from its front and
hind legs, totaling 32 joint points on a pig skeleton. The purpose of
selecting these nodes is to ensure a uniform distribution of data
across each part of the skeleton, which aids in accurately identifying
standard postures and enhancing the precision of body size
measurements.

Figure 2 32 joint points of pig skeleton

The joint points from the head and torso of a pig are arranged
in ascending order along the x-axis to establish the coordinate
system for the i” joint point, denoted as coordinate system
& =1{x;,y:,z:}. The collection of joint points from the head and body
G =1{g,8---.8},K =20, comprising 20 joints from the pig’s head
to its hindquarters, constructs a vector denoted as v,;,;, which can
be calculated by Equation (6):
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Viin = {8 —gli=1,2,....,K-1} (6)
2.3.2  Skeleton joint weight binding

To achieve posture standardization transfer, the skeleton joint
points of the pig are selected as the central points of the local point
cloud. The skeleton joint points can represent the important
geometric features of the local point cloud, such as the pig body
contour and the pig posture, which are crucial for posture
standardization transfer.

Based on the distance between the skeleton joints and the
surface point cloud of the pig body, the points within a certain
distance from the skeleton joints in the local point cloud are bound
to their corresponding joints. As shown in Figure 3, each skeleton
joint serves as the center of a sphere, where the surface of the
sphere represents the distribution of the pig body surface point
cloud around that joint. ¢, is the coordinates of the skeleton joint
points, p represents the pig body surface point cloud, and r,
represents the distance between the skeleton joint points and the
surface point cloud. Figure 3a illustrates the ideal relationship
between the skeleton joint points and its associated local point
cloud. Assuming there are M(M > 2) point clouds on the sphere, M
points are evenly distributed along the edge of the circle and are
closest to point ¢,. The distance from these points to the center ¢, is
equal to the radius of the sphere r,, which can be expressed as:

d(pi,co)=ro for i=1.2,....M (7)

e
P
N
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e — - —

Figure 3 Illustration of radius calculation using the

nearest distance

In Figure 3b, the situation is more realistic, where there is noise
on the surface and the pig body surface point cloud p is haphazard
and not entirely located on the edge of the sphere. In this case, given
a set of M points, a combination of weights {w;,w,,...,wy} is used
for any arbitrary convex combination to obtain the nearest distance.
The weights for point clouds closer to the skeleton joint point ¢
have larger values, while those farther from ¢ have smaller values,

even zero. The skeleton point ¢ is approximated as a convex
combination of the input local point cloud that is closer to c.
Therefore, through the same combination weights, the weighted
average of the nearest distances is used as an approximation of the
radius to obtain a reasonable estimation of the true radius. The
sphere radius can be calculated as:

M M
> wid(poeo)=ry with Y wi=1 (8)
i=1 i=1

Combining the two scenarios mentioned above, the farthest
distance from point p to all skeleton joints ¢; is defined as:

d(p.{c:}) = min|lp - |, (€))

cefei}

When the distance between point p and the skeleton joint point
¢; is less than the radius r,, the point is considered part of the local
point cloud and is bound to the skeleton joint point. If the distance
is greater than r,, the point is not considered part of the local point
cloud and will not be bound to the skeleton joint point. In the case
where a point cloud is close to two adjacent skeleton joint points,
according to the nearest neighbor principle, the point cloud is bound
to the skeleton joint point that is closest in distance, indicating a
stronger association with the nearest skeleton joint point. With the
above method, the complete pig point cloud data can be divided into
20 local point cloud datasets P; by the 20 skeleton joint points on a
pig torso. Each local point cloud corresponds to one skeleton joint
point and reflects the shape features around that joint point.

2.3.3 Posture standardization transfer and local point cloud
rotation

To extract posture information from skeleton joint points, we
first establish a collection of vector angles for standard and non-
standard postures of each target pig. This collection primarily
focuses on the skeleton joint points of the head and trunk, excluding
the legs. We define the vector angle set V.., for standard postures
and the vector angle set V.. for non-standard postures, forming
local vector angles 6;, 6;, and 6, with planes XOZ, XOY, and YOZ,
respectively. The vector angle sets are formulated as follows:

Vi = { Voorms ilVaoms i = (0,,6,,6,) for i=1,2,..,K—1}  (10)

V,

e = { Vposer Vpoeri = (6,,6,6)) for i=1,2,....K-1} (1)
where, K represents the skeleton joint points of the trunk and head,
totaling 20 joint points. Figure 4 shows the vector angles of the

skeleton joint points for standard and non-standard postures.

-“W*M,.‘.w‘mﬁ. i

e o el R e

b. Non-standard posture

Figure 4 Comparison of vector angles for pig postures
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The objective of this study is to transfer the non-standard
posture of pigs to the standard posture, which cannot construct a
fixed or uniform collection of skeleton joint vectors. In previous
research, Ling et al. discovered that pig skeleton joint vectors can be
used for posture classification*". For instance, when a pig lowers its
head, arches its back, or twists its body, the vector angles of these
postures are significantly larger than those of standard postures.
Based on the skeleton joint vectors, pig postures can fall into two
categories: standard postures and non-standard postures. However,
given biological dynamic variations, the standard posture of any
individual pig is unique, and the vector angles of non-standard
postures may not precisely reach the ideal target values of standard
postures. Therefore, in the preprocessing phase, all point cloud data
of each pig are first classified as standard postures and non-standard
postures. After normalizing the vector angles of the skeleton joint
points to the range [0, 1], a standard posture threshold range for
each skeleton joint point is set, with thresholds of 0.1 for the head
and 0.03 for the trunk. These threshold ranges serve as references
for the standard posture, while the vector angles of the head and
trunk for non-standard postures are greater than the threshold
ranges. Provided that all the vector angles of the transferred
skeleton joint points fall within the threshold ranges of the reference
standard posture, the pig point cloud data is considered to have
approached and transferred to the standard posture.

First, the corresponding rotation matrices are calculated based
on each pair of vector angles of the skeleton joint points. These
rotation matrices are then applied to the respective local point
clouds of non-standard postures, resulting in rotated local point
clouds denoted as R, (), R, (d), and R.(y), respectively:

(1 0 0
R.(®=| 0 cosd —sinf (12)
0 sind cosa

cos6 0 sind |
R,(0) = 0 1 0 (13)
L —sind 0 coséd

cosy —siny O
} (14)

R.(y) = { siny cosy O
0 0 1

where, 0=16,-6]<e, 6=10,-0l<e, y=10,—6l<e, 6, and 0,

ith

represent the vector angles of the i” skeleton joint points for
standard postures or non-standard postures, and & represents the
threshold value of the vector angles for standard postures. The three
rotation matrices are multiplied to obtain the total rotation matrix

denoted as R:
R=R.(O)XR,(5)XR. (y) =

cosocost  sinysindcosd —cosysind  cosysindcosé + sinysind
cososing  sinysindsind + cosycosf  cosysindsing — sinycosd
—sind sinycosd COSycosd

(15)

The rotation matrix R is applied to the corresponding local
point cloud P; of the non-standard posture, generating a new rotated
local point cloud denoted as P;:

P,=RxP, (16)

To ensure the continuity between adjacent local point clouds
during the transfer process, the lengths of the skeleton joint points
between the original local point clouds are calculated. These lengths
are maintained unchanged during the rotation process to prevent any
pig body discontinuities. Finally, the rotated local point clouds are
connected in the sequential order of the skeleton joints, forming a
complete transferred standard posture of pigs, as shown in Figure 5.
2.3.4 Evaluation metrics

This study utilizes evaluation metrics to assess the feasibility of
posture transfer. Due to the unordered nature of point clouds,
Chamfer Distance (CD) and Mean Absolute Error (MAE) are
commonly used as evaluation methods to measure the error between
the transferred non-standard posture and the original standard
posture. CD calculates the average distance between the points of
the transferred point cloud S, and the point cloud of the original
standard posture S,, while MAE reflects the overall error level
during the transfer process.

c. Before posture standadrdization transfer (side view)

d. After posture standardization transfer (side view)

Figure 5 Comparison before and after posture standardization transfer

(1) Chamfer distance (CD):

1 . 1 .
oo (S1,8) = = D minlimifx—yif+ <= > - minlimllx =yl (17)

xeSy xeSy

where, x and y represent the 3D coordinates of respective point
clouds. A smaller CD value indicates a smaller difference between
the transferred point cloud S, and the reference point cloud of the
standard posture S,. However, CD is a global metric that only
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considers the distance between points and does not take into
account the correspondence between point clouds. Therefore, it is
combined with mean absolute error (MAE) to comprehensively
evaluate the accuracy in the posture standardization transfer.

(2) Mean absolute error (MAE):

1
MAE = v Z [s) — $,]
i=1

where, N represents the number of points in the point cloud. For
each point s, in the point cloud S, the nearest neighboring point s,
in the point cloud S, is found, and the distance is calculated to
obtain MAE. A smaller MAE value indicates higher accuracy in

(18)

posture standardization transfer, suggesting better correspondence
between the point clouds S, (the transferred posture) and the
reference point cloud S, (the standard posture).

3 Results and analysis

The experimental subject in this study was Landrace pigs
whose body weight ranged from 80 to 140 kg. A total of 739 sets of
point cloud data from 96 pigs were collected, with each target pig
providing at least three sets of complete 3D point cloud data,
including at least one set in standard postures and several sets in
non-standardpostures.Inaddition thepointclouddataofeachpigwereclass-
ified into standard posture and non-standard posture. By extracting
the skeletal model from the pig body point cloud and manipulating
the skeleton joint points, posture standardization transfer was
performed and eventually the body sizes of the pigs were calculated.
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a. Repair of missing abdominal point cloud

d. Optimization of dense point
cloud regions
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e. Skeleton confusion

b. Improved skeleton generation for legs

e. Accurate skeleton topology and morphology

3.1 Skeleton extraction results

A complete skeleton structure of a pig consists of a trunk
branch and four leg branches. Direct application of the L1-median
skeleton extraction method can generate skeleton extraction, as
shown in Figure 6. In the pig point cloud data in our experiment,
there were missing regions along the abdominal contour line, and
these missing regions could not generate a particular part of the
skeleton, causing discontinuity in the connection regions between
the limbs and the trunk (Figures 6a-6f). Moreover, when the front
legs or the hind legs of a pig were too close to each other, or when
the legs were raised or bent, the point clouds interfered with each
other, resulting in only one skeleton branch that did not match the
actual topology of the pig (Figures 6b-6d). In addition, the high
density of point cloud in the head and ear regions led to a chaotic
extraction of the skeleton, failing to accurately describe the shape of
the pig (Figure 6e).

An improved skeleton extraction algorithm has been applied in
this research, as shown in Figure 7. First, the missing points along
the abdominal contour line were repaired using ellipse fitting, thus
eliminating the missing regions and ensuring the correct connection
between the trunk branch and the leg branches (Figures 7a-7c).
What is more, in regions with dense point cloud such as the legs and
the head, local point cloud density quantization was performed,
ensuring the accurate generation of skeleton branches for the legs
and the head. Accordingly, the accuracy and integrity of the
skeleton was improved, and the topology and morphology of the pig
was precisely described (Figures 7d-71).

e

wo—

f. Overall inaccurate skeleton structure

Incorrect skeleton extraction

¥ X

e B

c. Optimization of local point cloud density

f. Complete skeleton after improvement

Figure 7 Visualization of improved skeleton extraction
3.2 Posture standardization transfer results is necessary to integrate the accurate pig skeleton into the process of
The posture transfer of pigs involves the transfer of various non- pig posture transfer to ensure the reliability and feasibility of

standard postures. Based on the results of pig skeleton extraction, it posture transfer.
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Figures 8-11 show the results of transferring non-standard
postures to standard postures, including the initial non-standard
postures, the transferred postures, and the standard postures. The
skeleton joint points are marked with red dots. As shown in Figures 8
and 9, the non-standard L-shaped posture (Figure 8a) and C-shaped
posture (Figure 9a) were so successfully transferred that they
basically resembled the standard posture shown in Figure 9c. The

a. Source posture

b. Transferred posture

skeleton joint point vector angles from the pig’s rump, trunk, and
head remained within a specific threshold range of the standard
posture, and the skeleton joint points translated to accurate position
in the point cloud. This concordance in the contour of the torso with
that of the standard posture indicated that the source posture was
effectively transferred to a standard pose, with the pig’s head, body,
and tail aligned in a straight line.

AT 4 e ——.
{ i et -
h:. v o i 5 ol s
e S WN

c. Standard posture

Figure 8 Comparison of standardization transfer results (L-shaped posture)
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a. Source posture

b. Transferred posture

c. Standard posture

Figure 9 Comparison of standardization transfer results (C-shaped posture)

a. Source posture

b. Transferred posture

c. Standard posture

Figure 10 Comparison of posture standardization transfer results (lowering head)

a. Source posture

Figure 11

In Figures 10 and 11, non-standard postures with different
degrees of lowering the head were transferred to a standard posture
with level eyes. Different degrees of head lowering in non-standard
postures lead to varying degrees of stretching in the point clouds of
the back and abdomen. As the pig’s head lowers further, more point
clouds are observed in the back and abdomen. During the transfer
process, not only the head posture was regulated, but the entire
trunk was also adjusted to the posture marked by looking straight
ahead. It is worth noting that the legs had a minimal influence on
the overall posture during the posture classification and transfer, so
no specific adjustments were made to the legs during the transfer.
Although the skeleton joint point positions of the legs are fixed
during the posture transfer, the variations in the trunk point cloud of
the pig result in corresponding changes in the key points used to
measure body width, body height, girth, and other parameters.
Therefore, even though no specific adjustments are made to the
legs, they still affect the measurement results of body sizes.

In this study, CD and MAE were used to make comparisons
between the transfer results of five types of non-standard postures
(L-shaped, C-shaped, slightly lowering head, lowering head, and

b. Transferred posture

c. Standard posture

Comparison of head posture standardization transfer results (excessively lowering head)

excessively lowering head) and the reference standard posture. The
results are listed in Table 1.

Table 1 Evaluation results of CD and MAE for the transfer of
five types of non-standard postures

MAE before MAE after
Non-standard posture CD/cm standardization standardization

transfer/cm transfer/cm
L-shaped 0.651 1.867 0.538
C-shaped 0.728 2.738 1.165
Slightly lowering head 0.549 1.435 0.703
Lowering head 0.685 3.355 1.173
Excessively lowering head 0.831 5.446 1.409
Average 0.689 2.968 0.998

The first column of the table presents the evaluation results of
CD. In all five types of non-standard postures, the CD values were
within a small range, with an average CD of 0.689. This shows that
the transferred point clouds generally had insignificant difference
compared to the reference posture point clouds, indicating a high
degree of overall alignment between the point clouds. The second
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and third columns represent the MAE between the point clouds
before and after posture standardization transfer and the reference
posture point clouds. In most postures, the MAE after
standardization transfer was reduced compared to that before
standardization transfer, indicating an improvement in most point
clouds during the transfer process. The transferred point clouds
matched the reference posture point clouds more accurately,
suggesting more resemblance. However, for postures with obvious
changes such as the C-shaped posture, lowering head, and
excessively lowering head, the MAE after standardization transfer
remained relatively large, reaching 1.165, 1.173, and 1.409,
respectively. The main reason for the large MAE is not the failure to
transfer to the ideal standard posture but rather issues such as
matching errors between the point clouds because of different
coordinate systems, different numbers of point clouds, and other
factors (Figure 12).

In Figure 12a represents the raw data before processing, where
cach dataset is in a separate coordinate system. Challenges such as
missing point cloud and noise can occur, making it difficult to
accurately measure errors by aligning all the data of each pig in the
same coordinate system. Therefore, in the evaluation process, errors
should be minimized. The evaluation metrics, namely CD and
MAE, remained within an acceptable range, demonstrating the
robustness and effectiveness of the proposed posture standardization
transfer method despite incomplete and noisy data.

In this process, accurate pig skeleton extraction and integration
into the posture transfer process ensure the effective and accurate
transfer of non-standard postures to standard postures. Both the pig’
s skeleton joint points and point cloud are effectively located and
transferred. This step ensures the effectiveness and accuracy of
posture transfer.

3.3 Body size measurement results

The posture standardization transfer results in this study have
been validated by different body size measurement algorithms.
Figure 13 is the body length measurement algorithm proposed by

“m—— oy mw‘;' o]

a. Non-standard posture before standardization transfer

Hao et al.l, which is based on PointNet++ for pig body part
segmentation. Figure 13a shows the body length fitting results for
non-standard postures, while Figure 13b shows the body length
fitting results after transferring to a standard posture.

b. Point cloud after posture standardization transfer

Figure 12 Comparisons of posture standardization transfer (Area
in red: standard posture; area in blue)

When the pig is in a non-standard posture, such as lowering its
head (Figure 14b), the skin of the pig undergoes stretching.
Consequently, this impacts the calculation of body length and girth,
leading to an increased density of point clouds in the dorsal and
ventral regions. Concurrently, this also results in suboptimal
localization of key points and curve fitting, causing recorded values
to surpass those obtained in standard postures for parameters like
body length and girth. Nevertheless, upon transferring the pig to a
standard posture (Figure 14a), there is a notable enhancement in the
positioning of key points and curve fitting, yielding more precise
measurement outcomes. Hence, it is imperative to transition pigs
from non-standard postures to standard postures to uphold
measurement accuracy.

b. Standard posture after standardization transfer

Figure 13 Body length measurement results

Skeleton
joint

a. Non-standard posture body length fitting

End point Start point

Skeleton
joint

Key point

b. Standard posture body length fitting

Figure 14 Body length measurement results before and after posture standardization transfer
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Figure 14 demonstrates the application results of the body size
measurement algorithm proposed by Yin et al.', revealing the body
length fitting results for non-standard and standard postures
(Figures 14a, 14b). It can be observed that the localization of key
points and curve fitting were significantly improved in standard
postures compared to non-standard postures.

Due to the different shapes of the non-standard posture point
clouds, deviations can be found in the measurement positions of
body width (BW) compared to the standard posture (Figure 15a).

BW (front) BW (back)
i ac

i

a. Non-standard posture body width measurement

However, after transferring a non-standard posture to a standard
posture (Figure 15b), the localization of key points and
measurement positions for body width (BW) can be restored to the
correct positions. Although the skeletal joint point positions of the
legs are irrelevant, the overall changes in the point cloud of the
trunk result in differences in the localization of surface key points.
When calculating parameters that involve the straight-line distance
between two points on the torso, the shape and posture of the entire
pig body point cloud are taken into consideration.

BW (front)
i BW (back)

b.Standard posture body width measurement

Figure 15 Body width (BW) measurement results before and after posture standardization transfer

Figure 16 illustrates the differences in body size measurements
between the nose-down posture (Figure 16a) and the head-up
posture (Figure 16b). In the nose-down posture, the pig’s body
(front) arches and tilts downward, leading to underestimated
measurement results in body height (front) and thoracic
circumference, as well as overestimated measurement results in

BH (front)

BH (back)
4

HG

-

CG

b

a. Standard posture body height and
circumference measurements

abdominal circumference. However, the changes in the hind legs in
the nose-down posture were insignificant, resulting in relatively
small errors in hindquarter height and rump circumference
measurements. To sum up, the degree of lowering head affects the
measurements of body height (front), thoracic circumference, and
abdominal circumference.

BH (back)

HG BH (front)

b. Non-Standard posture body height and
circumference measurements

Figure 16 Measurement results of body height (BH), thoracic circumference (TC), abdominal circumference (AC), and rump circumference
(RC) before and after posture standardization transfer

The pig body size was measured using the body size
measurement algorithm proposed by Hao et al.' Figure 17 shows
the contrast between the transferred postures and the original
standard posture before and after posture standardization transfer in
terms of relative errors, including body length (BL), body width
(front), body width (back), body height (front), body height (back),
thoracic circumference (TC), abdominal circumference (AC), and
rump circumference (RC). The data included 96 pigs, with 739 sets
of point cloud data before posture standardization transfer
(including the original standard postures and non-standard postures)
and 585 sets of point cloud data after transferring to standard
postures. The green boxplots represent the relative errors of body
sizes for the original postures, while the yellow boxplots represent
the relative errors between the transferred standard posture and the
original standard posture.

By observing the results of body length, body width, body

height, and girth calculations, it can be seen that after posture
standardization transfer, upper and lower limits and median have
smaller errors compared to those before posture standardization
transfer, indicating a better fitness to the standard posture,
especially for body length, body width, and body height (front).
This is because in posture standardization transfer, the parameters
of body length, body width, and body height are the main focus.
Therefore, the more skeleton joint points are available for the head
and body, the better the transfer effect and the smaller the
measurement errors. According to our research, the measurements
of both thoracic circumference and abdominal circumference
showed good results. In the measurement of thoracic circumference,
different standing postures of the same pig, such as walking or
standing, lead to different lengths of the fitted ellipse. The key point
for abdominal circumference is the midpoint between the key points
for body width (front) and body width (back). In the standard and
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non-standard postures of a pig, the back of a pig arches when the
pig looks ahead or lowers its head, resulting in an overestimated
measurement of abdominal circumference. In our experiments, the
measurement results of body width (back) and rump circumference
did not show significant difference compared to the other
parameters. This is mainly attributed to the fact that a pig tends to
arch its back, with its rump located at the bottom of the arch. Since
there are fewer skeleton joint points in the rump region, posture
standardization transfer results in larger errors in body width (back)
and rump circumference measurements, indicating less emphasis on
the posture standardization transfer of the rump.

Table 2 shows the comparison of body size errors before and
after posture standardization transfer, with the original standard

0.07 |
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0.05 b B
0.04 |
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0.02 b -
L my Bs
0.01 = !—T—b 1
s e
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Mean relative error (MRE)
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. B

posture as a reference. It can be observed that after posture
standardization transfer, the mean relative errors of body parameters
decreased. The relative errors of body length, body width, and front
height decreased significantly, with the average and maximum
relative errors reduced by half. However, the mean relative errors of
body height (back), circumference, abdominal
circumference, and rump circumference, although reduced, are still
relatively large. This is

thoracic
associated with the insufficient
consideration of the correlation between the abdomen and rump in
the posture standardization transfer, and this can also be attributable
to the robustness of the point cloud completion algorithm for girth
measurement and the automatic key point localization algorithm for
body size measurement.

Posture

Before transfer

After transfer

Body Body width
length (front) (back)

Body width  Body height Body height
(front)

Thoracic Abdominal Rump
(back) circumference circumference ciscumference

Body measurement

Figure 17 Mean relative errors for body size measurements of pigs

Table 2 Comparison of body measurement errors between the
transferred posture and the original standard posture before
and after posture standardization transfer (%)

Before posture standardization After posture standardization

. transfer transfer
Body size ; - - -
Mean relative ~ Maximum  Mean relative  Maximum
error relative error error relative error

Body length 4.71 6.49 0.89 222

Body width (front) 1.19 2.37 0.76 1.33

Body width (back) 1.31 2.11 1.0 1.43

Body height (front) 1.43 3.21 0.89 222

Body height (back) 1.74 2.64 1.7 2.73

_ Thoracic 28 5.42 2.03 3.61
circumference

/Abdominal 3.61 8.6 3.37 2.29
circumference

Rump 224 3.17 1.89 2.85

circumference

In summary, the posture standardization transfer method
proposed in this study has achieved encouraging results. In posture
standardization transfer based on skeleton joint points, not only can
the transformation from non-standard postures to standard postures
be achieved, but also the localization of key points and curve fitting
are improved, effectively reducing the errors in body size
measurements.

4 Discussion

The proposed method of pig point cloud skeleton extraction-
based posture standardization transfer addresses the issue of
measurement errors caused by different pig postures. By
establishing the pig point cloud skeleton model and using the 3D
point cloud skeleton as a proxy, the posture standardization transfer
is achieved through weight binding of the point cloud skeleton and

local point cloud rotation. Compared to existing posture

standardization transfer methods, the method proposed in this article
neither relies on the topological structure of the mesh model nor
requires vertex correspondence between source postures and target
postures. Instead, our method directly processes the original pig
point cloud data, remaining faithful to the collected pig point cloud
data. According to the research results, the CD and MAE were
0.689 and 0.998, respectively, manifesting both the effectiveness
and the robustness of our transfer method. Unlike methods that
involve regression analysis and prediction based on a large amount
of data, our method does not require extensive data for prediction,
thus reducing prediction inaccuracies.

As for the comparison of body size measurement results,
subjective factors can be avoided, as can potential inaccuracies
introduced by human measurement, by using one body size
calculation method for both the standard and non-standard postures
of the same pig. The experimental results demonstrate that posture
standardization transfer can effectively improve the accuracy of
body size measurements. Compared to non-standard postures
without posture standardization transfer, the average relative errors
of the transferred standard posture are reduced to varying degrees,
with body length, body width, body height (front), thoracic
circumference, and abdominal circumference producing satisfactory
transfer results.

Our method has some limitations. One restriction is that we did
not establish a universal standard posture, so the goal of posture
standardization transfer is not to make the pig posture exactly the
same as the standard posture but to make it close to the standard
posture as much as possible. Additionally, the pig legs were not
included in the transfer process because their influence on the
measurements is relatively limited in our model. Although the
skeletal joint points of the legs remain unchanged during the posture
standardization transfer, the overall changes in the pig body point
cloud affect the measurements of body width, body height, and girth
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to some extent.

The research focus of this study is on pig point cloud posture
transfer, and a more detailed comparison of posture standardization
transfer can be seen in Figures 18 and 19. Future work will be
required for further improvements; for instance, the transfer of the
pig legs will be taken into account to enhance measurement
accuracy. Currently, the emphasis is on point cloud posture transfer,

but no end-to-end network model is available for point cloud
posture transfer. Following the proposed approach in this study, we
will make more efforts to achieve point cloud posture transfer by
resorting to neural networks. In the research field of animal body
size measurements, the application can be extended to more datasets
and improved for different animal body parts by optimizing the
skeleton extraction and posture standardization transfer methods.

a. Source posture

b.Transferred posture

c. Standard posture

Figure 18 Comparisons of pig posture transfer (top view)

R < L §

a. Source posture

b.Transferred posture

7

*%& '

L ¥

c. Standard posture

Figure 19 Comparisons of pig posture transfer (side view)

5 Conclusions

To handle the problem of inaccurate key point localization and
algorithm robustness caused by different pig postures in automatic
body size measurement based on point cloud data, we propose a
posture standardization transfer method based on pig skeleton
extraction models to transfer non-standard pig postures to standard

pig postures for further body size measurement. The main
conclusions are summarized as follows:

(1) The pig skeleton extraction model based on point clouds
can accurately describe pig postures. Although there are differences
in the skeleton joint point vector sets between standard postures and
non-standard postures, posture standardization transfer can be
implemented through local point cloud rotation in non-standard
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postures such as L-shaped, C-shaped, and nose-down postures,
hence accurate point cloud data of pigs in standard postures can be
generated.

(2) By comparing the experimental findings between non-
standard postures and those of the original standard posture of the
same target pig, the body size measurement results reveal that the
average relative errors were 4.71% for body length, 1.19% for body
width (front), 1.31% for body width (back), 1.43% for body height
(front), 1.74% for body height (back), 2.8% for thoracic
circumference, 3.61% for abdominal circumference, and 2.24% for
rump circumference. These results indicate that the body size
parameters in non-standard postures exhibit higher fluctuations,
reflecting the influence of pig postures on the accuracy and stability
of body size measurements. When comparing the results of the
transferred posture with those of the original standard posture
following posture standardization transfer and body size
measurement, the average relative errors for body length, body
width (front), body width (back), body height (front), body height
(back), thoracic circumference, abdominal circumference, and rump
circumference were 0.89%, 0.76%, 1%, 0.89%, 1.7%, 2.03%,
3.37%, and 1.89%, respectively. The parameters with the most
significant impact on body size errors follow the descending order
of: body length, body height (front), body width (front), body width
(back), abdominal circumference, thoracic circumference, rump
circumference, and body height (back).
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