July, 2023

Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 16 No. 4

1

Review of deep learning-based weed identification in crop fields

Wenze Hu', Samuel Oliver Wane?, Junke Zhu', Dongsheng Li', Qing Zhang®,

Xiaoting Bie!, Yubin Lan***
(1. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China;
2. Department of Agricultural Engineering, Harper Adams University, Newport TF10 8NB, Shropshire, UK;
3. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China;
4. Academy of Ecological Unmanned Farm, Zibo 255000, Shandong, China)

Abstract: Automatic weed identification and detection are crucial for precision weeding operations. In recent years, deep
learning (DL) has gained widespread attention for its potential in crop weed identification. This paper provides a review of the
current research status and development trends of weed identification in crop fields based on DL. Through an analysis of
relevant literature from both within and outside of China, the author summarizes the development history, research progress,
and identification and detection methods of DL-based weed identification technology. Emphasis is placed on data sources and
DL models applied to different technical tasks. Additionally, the paper discusses the challenges of time-consuming and
laborious dataset preparation, poor generality, unbalanced data categories, and low accuracy of field identification in DL for
weed identification. Corresponding solutions are proposed to provide a reference for future research directions in weed
identification.
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1 Introduction

The world’s population is expected to reach 10 billion by 2050,
leading to increased demand for agricultural production™. Weed
infestation is a major challenge for agricultural production”, as
weeds compete with crops for resources and act as intermediate
hosts for pests and diseases, resulting in significant yield losses®*.
To reduce weed infestation, various methods have been used,
including manual,
However, each method has its limitations, and there is an urgent
need for automated precision weed control systems that can

chemical®™, and mechanical weeding™.

accurately target weeds in the field while minimizing herbicide use
and promoting environmentally friendly agriculture.

One critical step in automated precision weeding is the accurate
identification and detection of weeds. Machine learning (ML),
including support vector machines, multilayer perceptrons, and
random forests, has been widely used for weed detection'” based on
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shape!'"), color'>', and texture!*'® features. However, the similarity
in appearance between crops and weeds presents a significant
challenge in weed identification. Deep learning (DL)!"", a branch of
ML that enables high-level abstraction and representation learning
of raw data through multi-layer non-linear transformations, has
shown potential in addressing this challenge. Compared to
traditional ML, DL eliminates the need for manual feature selection
and transformation in data processing, allowing for the automatic
extraction of higher dimensional feature discriminations from raw
data"*.

In order to analyze the potential of DL technology in weed
recognition applications, this paper aims to provide a
comprehensive summary, overview, analysis, and outlook on the
application of DL in the field of weed recognition. The current state
of research at home and abroad is summarized, and the key
technologies involved in weed recognition are described. Technical
tasks of classification, detection, and segmentation in weed
recognition by DL are discussed, including the analysis of data
acquisition, dataset preparation, and weed recognition models. This
comprehensive literature survey can serve as a reference for
subsequent research on precision weed control.

2 Literature review

Recently, DL techniques have been widely used for the
identification and detection of crops and weeds, and numerous
research results have emerged. A significant number of research
papers have been published on the application of DL methods for
weed identification. In this section, we provide statistics on relevant
papers from both Chinese and international sources and briefly
overview review-type articles on this topic.

2.1 Thesis stats

To offer an overview of the current state of research in DL for

weed identification, a comprehensive search and statistical analysis
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of Chinese and English literature was conducted. The research
question was centered on the application of DL techniques in weed
identification, detection, localization, and classification. Keyword-
based searches were performed in domestic and international
databases such as Google Scholar and China National Knowledge
Infrastructure (CNKI) for English and Chinese journal articles and
conference papers using the keywords (“deep learning” or
“convolutional neural network™) + (“weed classification” or “weed
identification” or “weed detection” or “weed localization”). Figure 1
presents the statistical results, which show the number of papers up
to 2021.
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2014 2015 2016 2017 2018 2019 2020 2021 2022
B CNKI 1 4 12 19 8 17
® Coogle scholar 1 2 5 11 42 55 88 128 162

Figure 1  Statistics on the number of papers using deep learning

methods for weed detection

Figure 1 depicts the number of research papers using DL for
weed identification from 2014 to 2021. The graph reveals that
international research in this area began in 2014, while Chinese
research began later, in 2017. Before 2017, there were few
publications in this field, both at home and abroad. However, from
2018 onwards, the number of papers in English increased
significantly, indicating a positive trend. Furthermore, research
applications in this area in China began to rise after 2019,
highlighting the growing attention given to the use of DL in weed
recognition.

2.2 International relevance review

Su et al." conducted a review paper on the challenges and
applications of spectral imaging techniques in crop weed
identification. However, the majority of the articles reviewed
utilized traditional ML methods and not DL techniques.

Kamilaris and Prenafeta-Boldu®
that applied DL techniques in agriculture, including weed detection.
Their results showed that DL outperformed commonly used image
processing techniques in terms of classification or regression
performance. Wang et al.”"! provided an overview of research
progress in ground-based machine vision and image processing

! surveyed 40 research efforts

techniques for weed detection. The authors outlined the four steps
of weed detection, including preprocessing, segmentation, feature
extraction, and classification. The authors noted that differentiating
between crops and weeds that share similar characteristics remains a
challenge in weed detection. The study compared traditional ML
and DL techniques for weed detection and discussed challenges and
solutions encountered by researchers in field weed detection, such
as leaf shading and overlapping, varying light conditions, and
different growth stages.
2.3 Chinese relevance review

In 2019, two studies were conducted in China investigating the
application of DL in agriculture. Lyu et al.”? from South China

Agricultural University conducted an overview of 65 DL research
papers published in China’s agriculture sector from 2014 to 2019,
which revealed that 80% of the research objects were plants, with
plant classification and weed identification being the most popular
research topics.

Another 2019 study by Weng et al.”” from Tsinghua University
compared traditional plant phenotyping methods with DL
techniques in plant identification and weed detection. They
analyzed the research findings and summarized the advantages and
disadvantages of DL and traditional ML methods, concluding that
DL-based agricultural plant phenotyping methods perform better in
terms of plant identification accuracy and real-time performance.

In a 2020 study by Li’s team™, they combined agricultural
information imaging-aware data sources with DL techniques to
provide an overview of the latest research on the application of DL
in plant recognition and detection. They found that the accuracy of
recognition models built using CNN for higher-order feature
extraction as input is significantly higher than that of similar models
built using traditional image color and texture features. However,
the authors highlighted the importance of data acquisition and the
choice of data expansion as these factors are closely related to the
diversity of datasets covered, which can directly affect the results of
network training. The authors also conducted a comparative study
of network architectures and recommended the need for continued
development of dataset construction and DL model design,
comparison, and optimization for specific research subjects.

3 Introduction to deep learning

Deep learning refers to a neural network-based ML technique
that is effective at processing complex and large-scale data™'. It has
made significant breakthroughs in various fields, including
computer vision, speech recognition, and natural language
processing®. DL differs from traditional ML in several ways.
Firstly, DL network contains many more hidden layers, up to
hundreds or thousands, which emphasizes the depth of the model.
Secondly, DL uses feature learning to extract useful data features
automatically from the original data and form higher-level features
by combining lower-level features. This process allows DL to learn
features directly from big data, enabling a better description of the
rich inherent information in the data. Finally, DL takes an “end-to-
end” approach to data processing, which simplifies the data
processing by designing and building the right number of neuronal
computation nodes and multi-level computing structures.

DL has led to remarkable progress in the field of artificial
intelligence, with various network models developed, including
multilayer perceptron®, convolutional neural network (CNN)P,
deep confidence network™), recurrent neural network™, generative
adversarial network (GAN)P', transformer network, and graph
convolutional network (GCN)™. Among these networks, CNN is
commonly applied in image processing and computer vision, GAN
is significant in data generation and augmentation, and GCN holds
potential in analyzing graph-structured data.

3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a prevalent DL model
used in various applications, including image recognition, video
analysis, and natural language processing. As shown in Figure 2, the
CNN architecture consists of an input layer, convolutional layers,
pooling layers, fully connected layers, and an output layer. The
CNN applies convolutional operations to extract local features from
the input data, and multiple convolutional and pooling layers
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abstract and represent the input data layer by layer. This process is
achieved through the use of convolutional kernels, which extract

feature information from the input data at different levels and
degrees of abstraction.

I: Feature extractor
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Figure 2 Basic structure of Convolutional Neural Network for weed identification

The convolutional layer of the CNN uses multiple convolution
kernels to extract features by connecting each neuron of a feature
mapping to a region of neighboring neurons in the previous layer.
This layer employs a parameter-sharing mechanism to extract the
same features at different locations throughout the image, reducing
the number of training parameters and improving the generalization
ability of the model. The pooling layer, located after the
convolutional layer, down samples the input data, reducing the
dimensionality of the image matrix and preserving the features. The
fully connected layer, which follows alternating
combinations of convolutional and pooling layers, produces global
semantic information by connecting each neuron to all neurons in
the previous layer. This transformation reduces multidimensional
features into one-dimensional features, which are passed to the final

several

classifier to produce the final classification result.

CNN is highly effective at extracting features from images, and
the use of multiple convolutional and pooling layers enables the
model to learn to generalize features across different regions of the
tasks.
Furthermore, the ability to extract features at different levels and

input, improving its performance in classification
with different degrees of abstraction allows for layer-by-layer
abstraction and representation of the input data for better
classification, recognition, and other tasks.

3.2 Generative Adversarial Network

In recent years, Generative Adversarial Network (GAN) has
emerged as a powerful tool for generating data. GAN consists of
two separate neural networks: generator and discriminator™. The
generator network produces synthetic samples that resemble real
data, while the discriminator network distinguishes between real
data and generated data. The generator network takes random noise
as input and produces synthetic samples that are intended to be
similar to real data. The discriminator network takes both real and
generated samples as input and attempts to accurately identify
whether each sample is real or fake. The two networks are trained in
an adversarial manner, wherein the generator attempts to deceive
the discriminator into believing that its generated samples are real,
while the discriminator attempts to identify the generated samples
as forgeries. In other words, the generator strives to produce better
samples over time, and the discriminator aims to enhance its ability
to differentiate between real and synthetic samples.

GAN has garnered significant attention in the domain of image
composition tasks due to its ability to produce synthetic data that
emulate real data distributions. Conventional DL models necessitate
a substantial amount of authentic data for training, which can be
expensive and may suffer from data imbalance issues. The

utilization of GAN can alleviate this problem by generating copious
amounts of synthetic data to supplement and balance the dataset.
This not only augments the quantity of data but also enhances the
diversity of the dataset, thereby improving the generalization
performance of the model.

3.3 Graph Convolutional Network

A graph convolutional network is a DL model designed for
graph-structured data. The fundamental idea of GCN is to extend
the convolution operation of grid-structured data to graph-structured
data, which can effectively capture the structural information of
graphs®. There are two primary approaches to implementing graph
convolution operations in GCN: the spectral-based approach and the
spatial-based approach. The spectral-based approach converts graph
convolution operations into matrix multiplication operations using
the graph Laplacian matrix, which can be efficiently computed
using the Fast Fourier Transform (FFT). In contrast, spatial-based
methods utilize fixed or learnable weight matrices to directly
aggregate the features of neighboring nodes.

Compared to traditional ML models for modeling graph-
structured data, GCN offers several advantages. Firstly, GCN can
capture graph structure information by aggregating features of
neighboring nodes, which is particularly useful in tasks such as
node classification, link prediction, and graph -classification.
Secondly, GCN can handle graphs with different sizes and
topologies, making them suitable for modeling complex and
irregular data structures. Additionally, GCN can learn hierarchical
representations of graphs by stacking multi-layer graph convolution
operations and non-linear activation functions.

In agriculture, GCN has been applied to solve weed detection
and classification problems. GCN can model the relationships
between adjacent pixels in weed images and capture the unique
features of different types of weeds. Several studies have been
conducted using GCN to solve weed classification tasks. GCN
shows great potential for weed detection and classification tasks in
agriculture, and further research in this area is expected to lead to
more efficient and accurate methods for agricultural weed
management.

4 Weed detection methods overview

The general workflow of weed identification based on DL is
depicted in Figure 3. A typical DL process for weed identification
involves four major steps: data acquisition, dataset preparation, DL
model construction, training, and tuning. This section presents an
analysis of relevant publications based on the technical approach
illustrated in Figure 3, with a focus on data sources that encompass
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self-acquisition and the use of public datasets, and dataset
preparation processes, including image pre-processing, training data
generation, data labeling, and dataset partitioning. Moreover, this
section outlines DL models for different technical tasks, such as
image classification models, target detection models, and target
segmentation models.

Image acquisition and preprocessing

Maize seedling

Scaling

—_—
Image
augmentation

Background

Figure 3 Roadmap for DL-based weed identification

4.1 Data acquisition
DL techniques have gained significant attention for their high

accuracy rates in image recognition. While they require more time
and effort in model training compared to traditional image
processing methods, the investment is worthwhile given the
reliability and processing speed they offer. Adequate labeled data
forms the basis for training DL models, and the more data used for
training, the better the prediction accuracy of the model”!. The
dataset used for model training typically consists of thousands of
original or pre-processed images, making data acquisition the first
step in identifying weeds using DL. Two main ways of acquiring
agricultural data are self-collection and the use of publicly available
databases. The size of the dataset is positively correlated with the
complexity of the problem under study; that is, the more classes of
objects and the smaller the differences between classes, the larger
the amount of data required for training. Given the many different
types of weeds in the field and the small differences between them
and crop seedlings, weed identification demands a large amount
of data.
4.1.1 Self-collection

Self-collection of data allows for targeted collection of image
or video data based on the specific problem being studied, such as
the subject of the study, the data model, and the size of the dataset.
The collection of images of crops and weeds in the field should take
into account the growth state of the plants at different times and
consider as many environmental factors as possible during
photography. Images of weeds in the field should be taken from
various angles under different lighting conditions to ensure the
diversity of the data, forming the basis for producing the dataset.

Different sensors, including RGB
multispectral cameras, hyperspectral imagers,
spectrometers, and infrared thermal imagers, can produce images
with varying data patternst. As listed in Table 1, these sensors
have been used in various studies to collect data for weed
identification purposes. Automated image acquisition platforms
such as drones and unmanned vehicles are also commonly used in
agricultural image data acquisition, providing advantages such as
large range and high quality”’**. Several studies have used such
platforms to capture images of weeds and crops, including multi-
rotor UAVs P helicopters “J, and drones equipped with
cameras'. These platforms have greatly increased the efficiency of
the image acquisition process.

imaging cameras,

near-infrared

Table 1 Examples of image data collection for weed identification in agriculture

Data acquisition platform

Image characteristics

Reference Imaging sensor
Adhikari et al.*?  RGB camera
Gao et al.*! Nikon D7200 SLR camera (RGB)
Ma et al.*! Canon IXUS 1000 HS camera (RGB)
. . Mobile phone cameras, consumer-grade cameras.
[35.47] £ 5
Teimouri et al. spot grey industrial cameras (RGB)
Yu et al. 4 Sony Cyber-Shot, Canon EOS Rebel T6 digital
camera (RGB)
Farooq et al.#" Hyperspectral imaging system, Sequoia multispectral N/A

sensor

Handheld

Handheld
Handheld
Handheld

Handheld

350 RGB images of line-transplanted paddy fields, 760 RGB
images of row-transplanted paddy fields

652 RGB images of sugar beet fields under different lighting
conditions

Rice field scenes to detect the location of crops and weeds

9649 RGB image samples of 18 weed species

Images of perennial ryegrass

Hyperspectral and multispectral data for four weed species:
Hyme, Alli, Azol, and Hyac

DJI Phantom 4 multi-rotor

Huang et al.®*" RGB camera

UAV
Petrich et al.*”! Sony alpha 7 RII (RGB)

Osorio et al.™! Parrot Sequoia multispectral camera

HiSystems MK ARF-
OktoXL 4S12 helicopter

Mavic Pro drone

RGB images of weeds and early crop tillering

Images of the plant Colchicum autumnale

Images of lettuce fields

Note: References [49-51] do not explicitly mention the dataset acquisition platform, so the data at the corresponding position in Table 1 is N/A.

4.1.2 Public datasets
The use of publicly available datasets can significantly reduce

the workload by saving manpower and resources involved in data
acquisition. A wide range of open databases are available for


https://www.ijabe.org

July, 2023

HuW Z, etal. Review of deep learning-based weed identification in crop fields

Vol. 16 No.4 5

agriculture, including datasets for crops, weeds, and other plant
images. As listed in Table 2, some commonly used datasets are
Plant Village, Syngenta Crop Challenge, Flavia Leaf, Leafsnap,
LifeCLEF, MalayaKew, and Plant Photo Bank of China (PPBC).

Table 2 Open databases for agriculture

Name Contents

54 306 plant leaf data, including healthy and diseased
leaves of 14 crops

Plant Village

Syngenta Crop Crop images and annotations for plant breeding and
Challenge disease identification

Flavia Leaf 1907 RGB color images of 32 plant species

Leafsnap 7719 images of 185 tree species in northeastern US
LifeCLEF Large-scale image classification for biodiversity research
MalayaKew Images of Malaysian flora and fauna

glﬁlinntaPhoto Bank of Over 1.6 million images of more than 44 000 plant species

Moreover, an increasing number of researchers have made their
image datasets publicly available. For example, Chebrolu et al.t”
developed a dataset of sugar beet fields containing weed images
captured by a farm robot equipped with a four-channel multispectral
camera and an RGB-D sensor. The dataset can be downloaded from
http://www.ipb.uni-bonn.de/data/sugarbeets2016/. Sudars et al.”™
provided an open weed detection dataset that includes 1118
manually annotated images of six food crops and eight weed
species, with 7853 annotations in total. Additionally, Leminen
Madsen et al.’ released a public dataset for plant detection and
classification (OPPD), consisting of 7590 RGB images of 47 plant
species collected in Denmark, which is available for further use.

4.2 Dataset preparation

The raw data obtained from various sources may not always be
suitable for DL models, and a series of processing steps such as
image pre-processing, data enhancement, and data labeling are
required to prepare the data according to the training requirements
of the network model, as shown in Figure 4.
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Figure 4 Basic flow of dataset preparation for DL models

4.2.1 Image pre-processing

Image pre-processing is a crucial step in DL that can enhance
the model’s performance and contribute to the accuracy and
reliability of the dataset. Commonly employed pre-processing
techniques for weed images include background removal, resizing,
green component segmentation, motion blur removal, noise
removal, extraction of color vegetation indices, and changes in the
color model®". These pre-processing steps enable better preparation
of the dataset and lead to improved model performance.

4.2.2 Data enhancement

The success of DL models relies on a large amount of high-
quality training data. However, obtaining enough data or data of
high quality can be challenging at times, making data augmentation
techniques a common tool. Data augmentation is a technique that
enhances the training dataset by performing transformations on
existing data to generate new data samples, thereby improving the
generalization capability of the model. Commonly used data
augmentation methods include random flipping, rotation, cropping,
deformation scaling, adding noise, and color scrambling. These
techniques enable better utilization of existing data and can
contribute to improved model performance.

Generative networks have a wide range of applications in
image data enhancement as they can generate new data by learning
the probability distribution of the input data®!. This is particularly
useful in cases where obtaining high-quality training data is
challenging. By generating new images with diversity from random
noise inputs, generative networks can increase the size of the
training data set and improve the generalization of the model.
Furthermore, they can also generate more challenging images by
synthesizing the input images with random noise, thereby
improving the robustness of the model.

In tasks such as image segmentation and target detection,
generative networks can perturb or distort the input image to
generate images with different labels and locations. This increases
the diversity and richness of the data and helps improve the
performance and generalization of DL models. Overall, the
application of generative networks to image data enhancement is a
promising area of research with significant potential to advance the
field of DL.

4.2.3 Data annotation

Data annotation is a crucial component of most Al algorithms,
and the more accurate the data annotation and the larger the amount
of data annotated, the better the algorithm’s performance. The
purpose of data annotation is to pre-label the images that need to be
recognized and distinguished by the computer so that the computer
can continuously learn the features of these images and eventually
achieve autonomous recognition. Common image recognition tasks
include image classification, target detection, and target
segmentation”®, and different annotation techniques need to be used
for each of these tasks.

1) Image classification is an essential task in Al, which aims to
identify and distinguish between specific target classes. The
classification annotation technique involves selecting appropriate
labels from a given set of labels to assign to the annotated object.
Typically, there is only one label assigned to an image. For
instance, to classify images of crops and weeds, the annotator must
assign the class label “maize” to an image of a maize seedling and
“weed” to an image of a weed;

2) Target detection. The main annotation method for target
detection is boundary annotation, which can be subdivided into two
forms: rectangular and polygonal frames. Rectangular box
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annotation is currently the most widely used image annotation
method, which can quickly frame the target object in a relatively
simple and convenient way in the image or video data. Polygonal
annotation refers to the use of polygonal boxes to mark out irregular
objects in an image, which can provide more accurate framing for
irregular objects compared to rectangular box annotation. For
example, Figure Sb shows a rectangular box annotation for a crop
seedling, while Figure Sc shows a polygonal annotation for a crop
seedling;

b. Bounding box annotation
in rectangular

d. Pixel-level annotation

c. Bounding box annotation
in polygon shape

Figure 5 Four types of annotation examples for DL-based
weed identification

3) Target segmentation. Target segmentation usually refers to
semantic segmentation, where the task is to classify all the pixel
points in an image, so the annotation requires each pixel to be
classified with its corresponding class label, as shown in Figure 5d.
4.2.4 Dataset partitioning

The partitioning of datasets is a crucial aspect of building and
optimizing DL models and holds significant practical importance.
Typically shown in Figure 6, the original dataset is divided into a
training set, a validation set, and a test set in a certain proportion®’.
The training set is utilized for building the model, the validation set
is utilized for determining the network structure or parameters that
control the complexity of the model, and the test set is used to
evaluate the performance of the final optimal model.

Known data

Validation

Performance
evaluation

Compute Trained
validation error model

Figure 6 Basic flow of dataset partitioning for DL models

When partitioning the dataset, certain principles should be
followed. Firstly, the training set should be as large as possible to
ensure the model’s generalization ability. Secondly, the validation
and test sets should be as independent as possible to avoid overly
optimistic performance of the model on these sets. Finally, the
dataset partitioning should be as random as possible to avoid the

influence of specific patterns in the dataset on the model’s training
and testing.

Alternatively, if the dataset’s size is small, cross-validation may
be considered. Cross-validation involves dividing the dataset into
non-overlapping subsets and utilizing one of the subsets at a time as
the test set and the remaining subsets as the training and validation
sets. By averaging the results of multiple cross-validations, the
model’s performance can be more accurately assessed.

4.3 Weed identification models

The main technical tasks of DL applied to the field of weed
image processing are image classification, target detection, and
target segmentation. To accomplish these tasks, researchers have
developed various DL algorithms that are specifically designed for
each task.

4.3.1 Image classification

Image classification is a crucial area of research in DL for
image processing, with annual competitions held in computer vision
to assess progress in this field. CNN is particularly popular for this
task due to its ability to generate an effective representation of the
original image. Popular CNN architectures such as AlexNet,
VGGL16, InceptionNet, and ResNet are widely used for weed image
classification and recognition, with over 50% of research in this
area utilizing them.

As listed in Table 3, researchers have proposed various
methods to improve the accuracy of weed identification using DL.
For instance, some studies have combined CNN with transfer
learning or traditional ML classifiers to achieve high accuracy rates.
Others have used techniques such as DCGAN networks, migration
learning, and weighted cross-entropy loss functions to enhance
recognition algorithms. Additionally, researchers have developed
their own self-built CNN or lightweight convolutional networks to
identify crops and weeds.

Overall, the studies have yielded promising results, with some
achieving high accuracy rates of up to 99.29% for identifying crops
and weeds. These findings suggest that DL has great potential for
improving weed identification and could lead to more efficient and
effective weed control in agriculture.

4.3.2 Target detection

Target detection is based on image classification to achieve
target localization in an image, giving the specific spatial location
and boundaries of the target, so the development of image
classification also drives the progress of target detection. Common
target detection algorithms can be divided into two categories: one
is a two-step target detection algorithm based on a region generation
network, the first step extracts the possible sub-regions of the target
in the image, the second step takes all the sub-regions as input, uses
CNN for feature extraction, and finally performs detection
classification and border regression correction, typical
representatives are R-CNN, Fast R-CNN, Faster R-CNN series. The
other category is a one-step algorithm based on border regression,
which directly treats border prediction as regression prediction,
without extracting candidate regions in advance, and the original
image is used as input to directly output the prediction result. As
listed in Table 3, various studies have been conducted to detect
weeds in different crops and environments using different
techniques.

Various studies have been conducted to improve target
detection accuracy in different agricultural settings. Kavir Osorio et
al.® designed three weed detection algorithms based on SVM-
HOG, YOLO-V3, and Mask R-CNN models to estimate the weed
cover of lettuce. Zhang et al.®¥ used VGG-16, ResNet-50, and
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ResNet-101 as feature extraction networks for Faster R-CNN
models to detect weeds in oilseed rape fields. Xu et al.”” addressed
the low weed recognition rate in Xinjiang cotton fields by
comparing the detection effects of Faster R-CNN models of four

and weeds.

Table 3 Research studies on deep learning for weed identification

feature extraction networks. Peng et al.*’ designed a collection cart
and used vertical downward shooting to obtain videos of cotton and
weeds to achieve fast and accurate recognition of cotton seedlings

Task ~ Researcher(s) Method Dataset DL Model Key Findings
and Year
Dengetal. Combining CNN with transfer 6 types of weeds in rice seedling VGG16 got an accuracy of
(2018)°)  learning ficlds AlexNet, VGG16, GoogLeNet 97.48%
Peng et al. Comp? re models first, then the PFMW dataset including 6 types VGGNet, ResNet50, MobileNet, V.GGI 6-5GD achle_ved the
2019y optimizers (SGD, Adam and of weeds in rice fields etc highest accuracy with an average
RMS) ’ F value of 0.977
Huang et al. . Images of rice fields taken with a  AlexNet, VGGNet, GoogLeNet, VGGNet was significantly more
(2019)141 Comparison of OBIA and CNN drone ResNet accurate and efficient
Image Espejo-Garci? Expanding dqta with DCGAN + Tomatoes, lobelia GAN-quptlon with ImageNet F1 value of 99.07% on test set
Classificati etal. (2019)® transfer learning pre-training
assification
Espejo-Garcia CNN with traditional machine ~ Tomatoes, cotton, lobelia, velvet DenseNet and support vector o
o . . . F1 value of 99.29%
etal. (2021)* learning classifiers grass machines
Chenetal. Transfer learning and weighted 27 DL models including ResNet- ResNet-101 got highest F1-Score
(2021)1 cross-entropy loss function 15 types of cotton field weeds 101 0f 99.1%
I;Egé;?;ﬁ N/A 22 seedling crops and field weeds Self-built CNN Classification accuracy of 86.2%
Xu et al. Lightweight convolutional . . . Average test recognition accuracy
20217 networks 8 field weeds and seedling maize  Self-built CNN of 98.63%
. Blend detected target crops with
Osorio et al. SVM-HOG, YOLOv3, Improved accuracy compared to
(2020) NDVI background subtractor to  Home-made dataset Mask R-CNN manual calculation
detect weeds
Comparing the offects of The Faster R-CNN based on
Zhang et al. di ffefen t fgature extraction Oilseed rape and weed Faster R-CNN (VGG16, ResNet- VGG16 got 83.90% accuracy,
(2020)1% P 50, ResNet-101) 78.86% recall rate and 81.30% F1-
networks
Score
Comparing the effects of o
Xu et a.IQ. different feature extraction Cotton seedlings and weeds Faster R-CNN (VGG16) MaP yaluf: of91.49%, average
(2021)"1 detection time of 262 ms
networks
Peng et il‘ Custom-designed collection cart  Cotton and weed Faster R-CNN, YOLOv3 Optimized F"‘Stef) R-CNN got an
T 2019y accuracy of 95.5%
arget
Detection ~ Kumar et al. Comparing traditional ML Rice and weed ]S{VCMI\I,T\? NN, Up to 94% accuracy for Faster
[68] H o - = )
(2021) classifiers with the RCNN family Faster R-CNN RCNN
Partel et al. N/A Sunflower and weed, 3 detection networks based on Accuracy of 95%, recall rate of
(2019)*! pepper and weed YOLOv3 89%
Ahmad et al. Szgs? ézg;?oglzfgﬁzttzc?ifon 4 common weeds in maize and VGG16, ResNet50, InceptionV3, VGGNet: F1-Score of 99%;
(2021)™ soybean fields YOLOV3 YOLOV3: overall mAP of 54.3%
models separately
Zhang et al.  Acquiring images with drones Winter wheat YOLOV3, YOLOV3-tiny: mAP up to 72.5%,
(2020)™  flying at low altitude YOLOV3-tiny 10U of 80.12%
Using data augmentation to YOLOV3, R
Gao et ell simplify image acquisition and Sugar beet and beaten bowl YOLO-tiny, Improved YOLO- Improyed YOLO-tiny improved
(2020)! . flowers . detection speed and accuracy
labeling tiny
Yu et al. Comparing DL model and OTSU- Mask R-CNN got a better effect
(2020)"  based threshold segmentation Cabbage and weeds Mask R-CNN with a pass rate of 81%
. . . . Precise weed control by locating
Champl ef MOtOltlSCd \.N.eedlng robot with Ma.l ze, Soybean, Ryegrass, Mask R-CNN (ResNet-50) plants through their center of
al.(2020)"!  Machine Vision Quinoa, etc. gravity
. ) o) (1 ..
Quan et al. Cpmp aring the Mask R‘CNN of Maize and weeds (Barnyardgrass, Mask R-CNN (ResNet-50, 99'3 70 (highest recognition rate)
o different feature extraction . with ResNet-101 as feature
(2021)7 Bowlflower, etc.) ResNet-101, MobileNet V2) .
networks extraction network
Abdalla ot Fine-tuned encoder of SegNet Combination of SegNet with
Image al(2019)" with Machine Learning Oilseed rape and weed SegNet SVM classifier works best with
Segmentation classifiers 96% accuracy
Asad and SegNet model based on ResNet-
Victor Comparison of four target Oilseed rape U-Net(VGG16, ResNet-50), 50 got the best results with
2020y segmentation models P SegNet(VGG16, ResNet-50) 82.88% MIOU and 98.69%
FWIOU
. SegNet, SegNet got an average accuracy
();‘8 f;;‘}(;‘ affﬂigfjsei‘ilgﬁnffil convolution p: . scedling and weed (cichlid) ~FON, of 92.7%, MIU of 80.2%, and OA
& U-Net 0f 90.3%
Shang, et al. Improved Res-UNet , UNet, Improved Res-UNet got a
(2020)71 N/A Sugar beet and weed SegNet recognition accuracy of 98.67%

4.3.3 Image segmentation

Image segmentation is a process of partitioning an image into
distinct regions based on certain criteria. Three types of image

segmentation are semantic segmentation, instance segmentation,

and panoramic segmentation. Semantic segmentation involves

assigning a category label to each pixel in the image to label
different objects with semantic information. The goal is to segment

the image into different regions based on semantic categories,
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including background and discrete objects. Instance segmentation is
an extension of semantic segmentation that further distinguishes
objects within the same class of things. It requires accurately
identifying different objects and labeling the semantic information
in a complex background. Classical DL-based segmentation
methods include FCN, Mask R-CNN, SegNet, and UNet.

As listed in Table 3, researchers have applied the Mask R-CNN
network to various agricultural tasks, including cabbage and weed
recognition, weed localization in motorized weeding robots, and
detection of weeds in maize and oilseed rape fields. They have used
ResNet-50, ResNet-101, VGG16, and SegNet as feature extraction
networks to achieve precise segmentation of crops and weeds. The
ML classifiers used to improve the accuracy of image segmentation
in oilseed rape fields include SVM. The pixel labeling process can
be accelerated by using SegNet based on ResNet-50. The improved
Res-UNet model has also been used for high-accuracy image
segmentation of sugar beet and weed data collected by farm
information collection robots.

5 Discussion

DL excels in crop weed recognition detection. Compared to
traditional image processing methods, DL eliminates the need for
complex and inefficient manual feature extraction and only requires
cropping the input image to a suitable size for target recognition,
greatly reducing recognition time while ensuring accuracy.
However, by summarizing the literature on DL for weed recognition
and detection in recent years, some issues persist in this area of
research, which are detailed in this section along with suggested
solutions, in hopes of aiding future research and development of
accurate weed recognition.

1) In the field of weed identification, an important future
research direction is dataset processing. Creating datasets is a
laborious and time-consuming process, and reducing the workload
of data acquisition and annotation is a significant challenge in DL
research. For data acquisition, one approach is to capture images of
only one type of weed under consistent lighting conditions and use
additional lighting or shading to reduce manual input. Alternatively,
GANSs or data augmentation techniques such as Mixup and Mosaic
can be employed to expand the dataset. Semi-supervised or weakly
supervised learning can be used for data annotation, which can
reduce the time and effort required for manual annotation. For
model training, Few-shot Learning can be utilized, which can learn
to classify new categories using existing category information. The
primary idea is to select a small number of samples from existing
data, known as support and query sets, and teach the model to learn
from these samples to classify new categories. Small sample
learning can be accomplished through Meta-Learning methods,
which train a model to adapt quickly to new tasks by continuously
adjusting its parameters during the training process. This allows it to
adapt more efficiently to new classes and tasks;

2) Another challenge in the field of weed recognition is the
poor generality of the dataset. Currently, weed datasets only cover
the growth period of a particular crop, and the lack of a common
large dataset, as well as variations in light and shadow during image
acquisition and differences in growth stages of crops and weeds, can
all affect the final training effect. Therefore, it is essential to
construct a large benchmark dataset by collecting images of various
crops and weeds from different geographical locations, weather
conditions, and growth stages;

3) Furthermore, the collected data may exhibit class
imbalances, with substantial differences in the accuracy of

identification between classes, leading to overfitting. To address
this problem, appropriate data redistribution methods, cost-sensitive
learning methods, or class-balanced classifiers can be utilized to
improve classification accuracy.

4) The field operation environment is complex, and the actual
recognition rate is low. Real fields are subject to bumps, high
winds, and occlusions, resulting in blurred images, and clustered or
obscured targets, which are unavoidable in practical applications.
To realize the speed and effectiveness of the algorithm in real field
conditions, multiple vision devices and sensors can be used to
coordinate operations. A central system can regulate the data
transmitted by each device to obtain more accurate positioning and
solve the problem of in-row weeds between rows where occlusion
exists not being fully identified and located. The fusion of multiple
sensors and machine vision can be used to analyze crop and weed
growth and target weed control. Moreover, more suitable
recognition algorithms should be explored. For instance, adding
attention mechanisms to enhance feature extraction, or introducing
and improving algorithms such as Vision Transformer. The problem
of reduced recognition accuracy due to blurred data, changes in
light and shadow, and overlapping shadows caused by external
factors in the field, and how to reduce the need for hardware
performance can also be addressed through the optimization of DL
algorithm models;

5) Currently, DL convolutional neural network algorithms are
widely used for recognition and detection. To a certain extent, the
deeper the number of layers in the network, the higher the
recognition accuracy. However, it also means that the algorithm is
more difficult to deploy to mobile devices. Hence, exploring the
balance between lightness and depth is also a direction for future
research.

6 Conclusions

This review provides a comprehensive review of the current
status and progress of research on weed identification in crop fields
based on DL. Through an analysis and comparison of relevant
literature, the paper summarizes the current state of DL applications
in weed identification, the technical routes and methods, and
suggests directions and challenges for future research.

This paper begins by reviewing the current status of DL-based
weed identification in crop fields and its development history and
basic principles. It then introduces the basic concepts and
characteristics of DL models, including CNN, GAN, and GCN.

Furthermore, the paper analyses the technical routes and
methods of DL-based research on weed identification in crop fields,
which includes data acquisition, dataset preparation, and DL
models. It highlights the characteristics and applicable scenarios of
different DL models such as image segmentation, target detection,
and classification, and compares and evaluates them.

This paper concludes by discussing future directions and
challenges in DL-based research on weed identification in crop
fields, such as the lack of datasets, model robustness, generalization
capability, and deployment. It proposes solutions such as data
augmentation, small sample learning, and lightweight models, and
discusses priorities for future research.

In conclusion, the development and application of deep
learning-based weed identification technology have significantly
advanced in recent years, with promising results in terms of
accuracy and efficiency. However, in order to further enhance the
performance of such technology, it is crucial to ensure a
comprehensive and diverse dataset for training and testing. This
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includes the importance of data gathering at various times of the
year, in various lighting and growth stages, as this will provide a
more holistic understanding of weed growth patterns and
characteristics. To achieve this, the implementation of robotics
technology, specifically a robot with the ability to geo-reference and
analyze weeds throughout their growth stages, could provide a
highly efficient and effective solution. Additionally, the
incorporation of multiple camera viewpoints and angles to
compensate for occlusion could further improve the accuracy and
reliability of the weed identification process. Furthermore,
Furthermore, DL algorithms require further optimization to enhance
model performance and robustness. Overall,
exploration and innovation in this field hold great potential for
advancing precision agriculture practices and contributing to

sustainable food production.

the continuous

Acknowledgements

This work was financially supported by the Top Talents
Program for One Case, One Discussion of Shandong Province
([2018]27 of the Shandong Provincial Government Office); Natural
Science Foundation of Shandong Province (Grant No. ZR2021
QC154); the international cooperation project of the China
Scholarship Council for cultivating innovative talents (Grant No.
202201040005).

[References]

[1] Rehman T U, Mahmud M S, Chang Y K, Jin J, Shin J. Current and future
applications of statistical machine learning algorithms for agricultural
machine vision systems. Computers and Electronics in Agriculture,
2019; 156: 585-605.

[2] Patel D, Kumbhar B. Weed and its management: A major threats to crop
economy. Journal Pharmaceutical Science and Bioscientific Research
(JPSBR), 2016; 6(6): 753—758.

[3] Zimdahl R L. Fundamentals of weed science. Academic Press, 2018; 758p.

[4] Igbal N, Manalil S, Chauhan B S, Adkins S W. Investigation of alternate
herbicides for effective weed management in glyphosate-tolerant cotton.
Archives of Agronomy and Soil Science, 2019; 65(13): 1885-1899.

[5] Oerke E-C. Crop losses to pests. The Journal of Agricultural Science,
2006; 144(1): 31-43.

[6] Rodrigo M, Oturan N, Oturan M A. Electrochemically assisted remediation
of pesticides in soils and water: A review. Chemical Reviews, 2014;
114(17): 8720-8745.

[71 Neorremark M, Griepentrog H W, Nielsen J, Segaard H T. The development
and assessment of the accuracy of an autonomous GPS-based system for
intra-row mechanical weed control in row crops. Biosystems Engineering,
2008; 101(4): 396-410.

[8] Tillett N, Hague T, Grundy A, Dedousis A P. Mechanical within-row weed
control for transplanted crops using computer vision.
Engineering, 2008; 99(2): 171-178.

[9] Talukdar S, Singha P, Mahato S, Shahfahad, Pal S, Liou Y-A, et al. Land-
use land-cover classification by machine learning classifiers for satellite
observations - A review. Remote Sensing, 2020; 12(7): 1135.

[10] Hamuda E, Glavin M, Jones E. A survey of image processing techniques

Biosystems

for plant extraction and segmentation in the field. Computers and
Electronics in Agriculture, 2016; 125: 184—199.

[11] Chaisattapagon N Z C. Effective criteria for weed identification in wheat
fields using machine vision. Transactions of the ASAE, 1995; 38(3):
965-974.

[12] Jafari A, Mohtasebi S S, Jahromi H E, Omid M. Weed detection in sugar
beet fields using machine vision. International Journal of Agriculture and
Biology, 2006; 8(5): 602—605.

[13] Zheng Y, Zhu Q, Huang M, Guo Y, Qin J W. Maize and weed
classification using color indices with support vector data description in
outdoor fields. Computers and Electronics in Agriculture, 2017; 141:
215-222.

[14] Kazmi W, Garcia-Ruiz F J, Nielsen J, Rasmussen J, Andersen H J.
Detecting creeping thistle in sugar beet fields using vegetation indices.

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

311

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

Computers and Electronics in Agriculture, 2015; 112: 10-19.

Bakhshipour A, Jafari A, Nassiri S M, Zare D. Weed segmentation using
texture features extracted from wavelet
Engineering, 2017; 157: 1-12.

Meyer G, Mehta T, Kocher M F, Mortensen D A, Samal A. Textural
imaging and discriminant analysis for distinguishing weeds for spot
spraying. Transactions of the ASAE, 1998; 41(4): 1189-1197.

Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521
(7553): 436-444.

Patterson J, Gibson A. Deep learning: A practitioner’s approach. “ O’Reilly
Media, Inc.”, 2017; 576p.

Su W-H. Advanced machine learning in point spectroscopy, RGB-and
hyperspectral-imaging for automatic discriminations of crops and weeds: A
review. Smart Cities, 2020; 3(3): 767-792.

Kamilaris A, Prenafeta-Bolda F X. Deep learning in agriculture: A survey.

sub-images. Biosystems

Computers and Electronics in Agriculture, 2018; 147: 70-90.

Wang A, Zhang W, Wei X. A review on weed detection using ground-
based machine vision and image processing techniques. Computers and
Electronics in Agriculture, 2019; 158: 226-240.

Lv S, Li D, Xian R. Research status of deep learning of in agriculture
China. Computer Engineering and Applications, 2019; 55(20): 24-33,51.
(in Chinese)

Weng Y, Zeng R, Wu C M, Wang M, Wang X J, Liu Y J. A survey on
deep-learning-based plant phenotype research in agriculture. Scientia
Sinica (Vitae), 2019; 49(6): 698-716. (in Chinese)

Sun H, Li S, Li M Z, Liu H J, Qiao L, Zhang Y. Research progress of
image sensing and deep learning in agriculture. Transactions of the
CSAM, 2020; 51(5): 1-17. (in Chinese)

Najafabadi M M, Villanustre F, Khoshgoftaar T M, Seliya N, Wald R,
Muharemagic E. Deep learning applications and challenges in big data
analytics. Journal of Big Data, 2015; 2(1): 1-21.

Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press, 2016;
767p.

Gardner M W, Dorling S. Artificial neural networks (the multilayer
perceptron) - A review of applications in the atmospheric sciences.
Atmospheric Environment, 1998; 32(14-15): 2627-2636.

Gu J X, Wang Z H, Kuen J, Ma L Y, Shahroudy A, Shuai B, et al. Recent
advances in convolutional neural networks. Pattern Recognition, 2018;

77:354-377.

Hinton G E, Osindero S, Teh Y-W. A fast learning algorithm for deep
belief nets. Neural Computation, 2006; 18(7): 1527-1554.

Medsker L R, Jain L. Recurrent neural
Applications, 2001; 5: 64-67.

Aggarwal A, Mittal M, Battineni G. Generative adversarial network: An
overview of theory and applications. International Journal of Information
Management Data Insights, 2021; 1(1): 100004.

Zhang S, Tong H, Xu J, Maciejewski R. Graph convolutional networks: a
comprehensive review. Computational Social Networks, 2019; 6(1): 1-23.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S,
et al. Advances in neural information processing systems. Curran
Associates, Inc, 2014; 27: 2672-2680.

Wu Z H, Pan S R, Chen F W, Long G D, Zhang C Q, et al. A
comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2020; 32(1): 4-24.

Yu J, Sharpe S M, Schumann A W, Yu P S. Deep learning for image-based
weed detection in turfgrass. European Journal of Agronomy, 2019; 104:
78-84.

Lee W S, Alchanatis V, Yang C, Hirafuji M, Moshou D, Li C. Sensing
technologies for precision specialty crop production. Computers and
Electronics in Agriculture, 2010; 74(1): 2-33.

Ballesteros R, Ortega J F, Hernandez D, Moreno M A, et al. Applications

network. Design and

of georeferenced high-resolution images obtained with unmanned aerial
vehicles. Part I: Description of image acquisition and processing. Precision
Agriculture, 2014; 15(6): 579-592.

Zarco-Tejada P J, Diaz-Varela R, Angileri V, Loudjani P. Tree height
quantification using very high resolution imagery acquired from an
unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction
methods. European Journal of Agronomy, 2014; 55: 89-99.

Huang H S, Lan Y B, Deng J Z, Yang A Q, Deng X L, Zhang L, et al. A
semantic labeling approach for accurate weed mapping of high resolution
UAV imagery. Sensors, 2018; 18(7): 2113.

Huang H S, Deng J Z, Lan Y B, Yang A Q, Deng X L, Zhang L. A fully


https://doi.org/10.1016/j.compag.2018.12.006
https://doi.org/10.1080/03650340.2019.1579904
https://doi.org/10.1017/S0021859605005708
https://doi.org/10.1021/cr500077e
https://doi.org/10.1016/j.biosystemseng.2008.09.007
https://doi.org/10.1016/j.biosystemseng.2007.09.026
https://doi.org/10.1016/j.biosystemseng.2007.09.026
https://doi.org/10.3390/rs12071135
https://doi.org/10.1016/j.compag.2016.04.024
https://doi.org/10.1016/j.compag.2016.04.024
https://doi.org/10.13031/2013.27914
https://doi.org/10.1016/j.compag.2017.07.028
https://doi.org/10.1016/j.compag.2015.01.008
https://doi.org/10.1016/j.biosystemseng.2017.02.002
https://doi.org/10.1016/j.biosystemseng.2017.02.002
https://doi.org/10.13031/2013.17244
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/smartcities3030039
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2019.02.005
https://doi.org/10.1016/j.compag.2019.02.005
https://doi.org/10.1360/SSV-2019-0020
https://doi.org/10.1360/SSV-2019-0020
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1016/j.jjimei.2020.100004
https://doi.org/10.1016/j.jjimei.2020.100004
https://doi.org/10.1186/s40649-019-0061-6
https://doi.org/10.1016/j.eja.2019.01.004
https://doi.org/10.1016/j.compag.2010.08.005
https://doi.org/10.1016/j.compag.2010.08.005
https://doi.org/10.1007/s11119-014-9355-8
https://doi.org/10.1007/s11119-014-9355-8
https://doi.org/10.1016/j.eja.2014.01.004
https://doi.org/10.3390/s18072113

—_

0

July, 2023 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 16 No. 4

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

convolutional network for weed mapping of unmanned aerial vehicle
(UAV) imagery. PloS One, 2018; 13(4): €¢0196302.

Huang H S, Lan Y B, Yang A Q, Zhang Y L, Wen S, Deng J Z. Deep
learning versus Object-based Image Analysis (OBIA) in weed mapping of
UAV imagery. International Journal of Remote Sensing, 2020; 41(9):
3446-3479.

Petrich L, Lohrmann G, Neumann M, Martin F, Frey A, Stoll A, et al.
Detection of Colchicum autumnale in drone images, using a machine-
learning approach. Precision Agriculture, 2020; 21(6): 1291-1303.

Osorio K, Puerto A, Pedraza C, Jamaica D, Rodriguez L. A deep learning
approach for weed detection in lettuce crops using multispectral images.
AgriEngineering, 2020; 2(3): 471-488.

Adhikari S P, Yang H, Kim H. Learning semantic graphics using
convolutional encoder—decoder network for autonomous weeding in paddy.
Frontiers in Plant Science, 2019; 10: 1404,

Gao J, French A P, Pound M P, He Y, Pridmore T P, Pieters J G. Deep
convolutional neural networks for image-based Convolvulus sepium
detection in sugar beet fields. Plant Methods, 2020; 16(1): 1-12.

Ma X, Deng X W, Qi L, Jiang Y, Li H W, Wang Y W, et al. Fully
convolutional network for rice seedling and weed image segmentation at
the seedling stage in paddy fields. PloS One, 2019; 14(4): ¢0215676.
Teimouri N, Dyrmann M, Nielsen P R, Mathiassen S K, Somerville G J,
Jorgensen R N, et al. Weed growth stage estimator using deep
convolutional neural networks. Sensors, 2018; 18(5): 1580.

Yu J, Schumann A W, Cao Z, Sharpe S M, Boyd N S. Weed detection in
perennial ryegrass with deep learning convolutional neural network.
Frontiers in Plant Science, 2019; 10: 1422,

Farooq A, Hu J, Jia X. Analysis of spectral bands and spatial resolutions
for weed classification via deep convolutional neural network. IEEE
Geoscience and Remote Sensing Letters, 2018; 16(2): 183—187.

Farooq A, Jia X, Hu J, Zhou J. Multi-resolution weed classification via
convolutional neural network and superpixel based local binary pattern
using remote sensing images. Remote Sensing, 2019; 11(14): 1692.

Farooq A, Hu J, Jia X. Weed classification in hyperspectral remote sensing
images via deep convolutional neural network. In: IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Symposium, 2018;
pp-3816-3819.

Chebrolu N, Lottes P, Schaefer A, Winterhalter W, Burgard W, Stachniss
C. Agricultural robot dataset for plant classification, localization and
mapping on sugar beet fields. International Journal of Robotics
Research, 2017; 36(10): 1045-1052.

Sudars K, Jasko J, Namatevs I, Ozola L, Badukis N. Dataset of annotated
food crops and weed images for robotic computer vision control. Data in
Brief, 2020; 31: 105833.

Leminen Madsen S, Mathiassen S K, Dyrmann M, Lauren M S, Paz L-C,
Jorgensen R N. Open plant phenotype database of common weeds in
Denmark. Remote Sensing, 2020; 12(8): 1246.

Zhang X-Y, Shi H C, Zhu X B, Li P. Active semi-supervised learning
based on self-expressive correlation with generative adversarial networks.
Neurocomputing, 2019; 345: 103-113.

Berge T, Aastveit A, Fykse H. Evaluation of an algorithm for automatic
detection of broad-leaved weeds in spring cereals. Precision Agriculture,
2008; 9(6): 391-405.

Liu B, Bruch R. Weed detection for selective spraying: a review. Current
Robotics Reports, 2020; 1(1): 19-26.

Zhang L, Jin X, Fu L Y, Li S W. Recognition method for weeds in
rapeseed field based on Faster R-CNN deep network. Laser &
Optoelectronics Progress, 2020; 57(2): 304-312. (in Chinese)

XuY, Wen D S, Zhou J P, Fan X P, Liu Y. Identification method of cotton
seedlings and weeds in Xinjiang based on Faster R-CNN. Journal of
Drainage and Irrigation Machinery Engineering, 2021; 39(6): 602—-607. (in
Chinese)

[60]

[e1]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71

[72]

[73]

[74]

(73]

[76]

[77]

Peng M X, Xia J F, Peng H. Efficient recognition of cotton and weed in
field based on Faster R-CNN by integrating FPN. Transactions of the
CSAE, 2019; 35(20): 202-209. (in Chinese)

Deng X W, Qi L, Ma X, Jiang Y, Chen X S, Liu HY, et al. Recognition of
weeds at seedling stage in paddy fields using multi-feature fusion and deep
belief networks. Transactions of the CSAE, 2018; 34(14): 165-172. (in
Chinese)

Peng W, Lan Y B, Yue X J, Cheng Z Y, Wang L H, Cen Z L, et al.
Research on paddy weed recognition based on deep convolutional neural
network. Journal of South China Agricultural University, 2020; 41(6):
75-81. (in Chinese)

Espejo-Garcia B, Mylonas N, Athanasakos L, Fountas S, Vasilakoglou 1.
Towards weeds identification assistance through transfer learning.
Computers and Electronics in Agriculture, 2020; 171: 105306.
Espejo-Garcia B, Mylonas N, Athanasakos L, Vali E, Fountas S.
Combining generative adversarial networks and agricultural transfer
learning for weeds identification. Biosystems Engineering; 2021; 204:
79-89.

Chen D, LuY Z, Li Z J, Young S. Performance evaluation of eeep transfer
learning on multiclass identification of common weed species in cotton
production systems. arXiv preprint; 2021. arXiv: 2110.04960.

Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using
deep convolutional neural network. Biosystems engineering, 2016; 151:
72-80.

Xu Y, He R, Zhai Y, Zhao B, Li C. Weed identification method based on
deep transfer learning in field natural environments. Journal of Jilin
University (Engineering and Technology Edition), 2021; 51(6): 2304—
2312.

Kumar J D, Babu C G, Priyadharsini K. An experimental investigation to
spotting the weeds in rice field using deepnet. Materials Today:
Proceedings, 2021; 45: 8041-8053.

Partel V, Kakarla S C, Ampatzidis Y. Development and evaluation of a low-
cost and smart technology for precision weed management utilizing
artificial intelligence. Computers and electronics in agriculture, 2019; 157:
339-350.

Ahmad A, Saraswat D, Aggarwal V, Etienne A, Hancock B. Performance
of deep learning models for classifying and detecting common weeds in
corn and soybean production systems. Computers and Electronics in
Agriculture, 2021; 184: 106081.

Zhang R F, Wang C, Hu X P, Liu Y X, Chen S, Su B F. Weed location and
recognition based on UAV imaging and deep learning. International
Journal of Precision Agricultural Aviation, 2020; 3(1): 23-29.

Yu G, Jiang H, Sun T, Wang C, Shang J. Weed Identification in Cabbage
Field Based on Deep Learning. Software, 2020;41(4): 211-215. (in
Chinese)

Champ J, Mora - Fallas A, Goéau H, Mata-Montero E, Bonnet P, Joly A.
Instance segmentation for the fine detection of crop and weed plants by
precision agricultural robots. Applications in Plant Sciences, 2020; 8(7):
el11373.

Quan L, Wu B, Mao S. A Mask R-CNN-based method for weed instance
segmentation and leaf age recognition in agricultural fields. Journal of
Northeast Agricultural University, 2021; 52(4): 65-76. (in Chinese)
Abdalla A, Cen H Y, Wan L, Rashid R, Weng H Y, Zhou W J, et al. Fine-
tuning convolutional neural network with transfer learning for semantic
segmentation of ground-level oilseed rape images in a field with high weed
pressure. Computers and Electronics in Agriculture, 2019; 167: 105091.
Asad M H, Bais A. Weed detection in canola fields using maximum
likelihood classification and deep convolutional neural network.
Information Processing in Agriculture, 2020; 7(4): 535-545.

Shang J, Jiang H, Yu G, Chen Z, Wang B, Li Z, et al. Weed identification
system based on deep learning. Software Guide, 2020; 19(7): 127-130. (in
Chinese)


https://doi.org/10.1471/journal.pone.0196302
https://doi.org/10.1080/01431161.2019.1706112
https://doi.org/10.1007/s11119-020-09721-7
https://doi.org/10.3390/agriengineering2030032
https://doi.org/10.3389/fpls.2019/01403
https://doi.org/10.1186/s13007-019-0534-5
https://doi.org/10.1371/journal.pone.0215676
https://doi.org/10.3390/s18051580
https://doi.org/10.3389/fpls.2019.01422
https://doi.org/10.3390/rs11141692
https://doi.org/10.1177/0278364917720510
https://doi.org/10.1177/0278364917720510
https://doi.org/10.1016/j.dib.2020.105833
https://doi.org/10.1016/j.dib.2020.105833
https://doi.org/10.3390/rs12081246
https://doi.org/10.1016/j.neucom.2019.01.083
https://doi.org/10.1007/s11119-008-9083-z
https://doi.org/10.1007/s43154-020-00001-w
https://doi.org/10.1007/s43154-020-00001-w
https://doi.org/10.1016/j.compag.2020.105306
https://doi.org/10.1016/j.biosystemseng.2016.08.024
https://doi.org/10.1016/j.matpr.2021.01.086
https://doi.org/10.1016/j.matpr.2021.01.086
https://doi.org/10.1016/j.compag.2018.12.048
https://doi.org/10.1016/j.compag.2021.106081
https://doi.org/10.1016/j.compag.2021.106081
https://doi.org/10.1002/aps3.11373
https://doi.org/10.1016/j.compag.2019/105091
https://doi.org/10.1016/j.inpa.2019.12.002
https://www.ijabe.org

	1 Introduction
	2 Literature review
	2.1 Thesis stats
	2.2 International relevance review
	2.3 Chinese relevance review

	3 Introduction to deep learning
	3.1 Convolutional Neural Network
	3.2 Generative Adversarial Network
	3.3 Graph Convolutional Network

	4 Weed detection methods overview
	4.1 Data acquisition
	4.1.1 Self-collection
	4.1.2 Public datasets

	4.2 Dataset preparation
	4.2.1 Image pre-processing
	4.2.2 Data enhancement
	4.2.3 Data annotation
	4.2.4 Dataset partitioning

	4.3 Weed identification models
	4.3.1 Image classification
	4.3.2 Target detection
	4.3.3 Image segmentation


	5 Discussion
	6 Conclusions
	Acknowledgements
	References

