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Dempster Shafer distance-based multi-classifier fusion method for
pig cough recognition

(1. School of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China;
2. Heilongjiang Agricultural Technology Extension Station, Harbin 150036, China)

Abstract: High precision pig cough recognition and low computational cost is of great importance for the realization of early
warning of pig respiratory diseases. Numerous researchers have improved the recognition rate of pig cough sounds to a certain
extent from feature selection and feature fusion perspectives. However, there is still a margin for the improvement in the
accuracy and complexity of existing methods. Meanwhile, it is challenging to further enhance the precision of a single
classifier. Therefore, this study proposed a multi-classifier fusion strategy based on Dempster Shafer distance (DS-distance)
algorithm to increase the classification accuracy. Considering the engineering implementation, the machine learning with low
computational complexity for fusion was chosen. First, three metrics of accuracy and diversity between classifiers were
defined, including overall accuracy (OA), double fault (DF), and overall accuracy and double fault (OADF), for selecting the
base classifiers. Subsequently, a two-step base classifier selection approach based on these metrics was proposed to make an
optimized selection of features and classifiers. Finally, the proposed DS-distance algorithm was used to fuse the selected base
classifiers to create a classification. The sound data collected in the pig barn verified the proposed algorithm. The experimental
results revealed that the overall recognition accuracy of the proposed method could reach 98.76%, which was better than the
existing methods. This study has achieved a high recognition accuracy through ensembled machine learning with low
computational complexity. The proposed method provided an efficient way for the quick establishment of high precision pig
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cough recognition model in practice.
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1 Introduction

Pig respiratory diseases have become one of the leading factors
restricting the advancement of the pig breeding industry due to their
high mortality rate and strong infectivity!'”. Therefore, a fast and an
accurate early warning of respiratory diseases are urgently required.
Recent studies have demonstrated that this can be achieved by
monitoring the cough sounds of pigs, and a key step is to realize the
high-precision pig cough sounds recognition®*. Therefore, several
researchers have paid a lot of effort into enhancing the recognition
accuracy of pig cough sounds.

In early studies, some commonly used acoustic features and
template matching or machine learning method were used for cough
recognition®”. Van Hirtum et al. extracted a feature vector,
containing energy, time-derivate energy and mean power spectral
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density, and it was compared to the reference set using dynamic
time warping (DTW), resulting in a correct classification of 90%".
Guarino et al. extracted feature vectors by using a filter bank
approach combined with an amplitude demodulation and classified
coughs by DTW. The cough classification rate was 85.5%".
Exadaktylos et al. used power spectral density (PSD) feature and
fuzzy c-means (FCM) clustering method to make a classification,
and the cough identification accuracy was 82%". Chung et al.
extracted mel-frequency cepstral coefficient (MFCC) and used the
support vector data description (SVDD) and the sparse
representation classifier (SRC) as the classifier. An accuracy of
91% was achieved”. Although the complexity of the machine
learning model is low, the recognition accuracy of these studies
needs to be further improved.

With the advancement of deep learning, numerous researchers
have explored the performance of deep learning in pig cough sound
recognition. Li et al."” designed a deep belief networks with an
input feature vector of short time energy and MFCC. The cough
accuracy achieved 95.08%. Yin et al. transferred learning the
pretrained AlexNet""! model and finetuned the model for pig cough
recognition. The cough accuracy reached 96.8%!"%. Shen et al.
explored the features of MFCC and logarithmic filter bank and the
models of convolutional neural networks (CNNs) and deep feed
forward sequential memory networks to make a classification. The
best accuracy was 97% for cough recognition!”. Shen et al. fused
multi-frame MFCC with multiple single-layer CNNs, and a final
classification accuracy of 97.7% was achieved". Ji et al."* explored
acoustic features and visual features for pig cough classification. In
their research, the acoustic features including MFCC, root-mean-
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square energy (RMS), zero-crossing rate (ZCR), spectral centroid,
spectral rolloff, spectral flatness, spectral bandwidth and chroma,
and the visual features including local binary pattern (LBP) and
histogram of gradient (HOG) were fused for classification. The
support vector machine (SVM) classifier was adopted and the best
accuracy reached 96.45%. Shen et al.' fused the acoustic and deep
features for pig cough sound recognition. The acoustic features
included MFCC, RMS, ZCR, spectral centroid, spectral bandwidth,
spectral rolloff, spectral contrast, and spectral flux. The deep
features were extracted from the image features of short-time
Fourier transform (STFT) and constant-Q transform (CQT). The
best accuracy achieved 97.35% classified by the SVM classifier.
The above researches enhanced the accuracy from the perspective
of feature selection, feature fusion and classifier chosen. It can be
seen that compared with traditional machine learning, the accuracy
of pig cough recognition is significantly improved by deep learning.
However, the complexity of the model is also significantly
increased.

Motivated by the application of the algorithm in practical work,
the study hopes to explore a high precision model with low
complexity. At the same time, due to the difficulty in collecting and
labeling pig cough samples, the obtained dataset is relatively small
(compared with large public image and audio datasets). This study
tried to realize pig cough recognition through a simple machine
learning method. Classifier fusion is an effective means to improve
the accuracy of the model"”"™. Therefore, in this work, the classifier
fusion model based on machine learning was studied to reduce the
complexity of the model while enhancing the accuracy.

Classifier fusion collects prominent classification performance
and generalization ability by combining the output outcomes of
various base classifiers"”. Classifier fusion primarily includes the
following three types: single feature multi-classifier fusion, multi-
feature single classifier fusion, and multi-feature multi-classifier
fusion. The first two fusion methods are widely used in many
studies™ ). Multi-feature multi-classifier fusion has significant
potential in the classification. For multi-feature multi-classifier
fusion, the common approach was to first select and fuse multiple
features, and then input the fused feature vectors into different
classifiers for fusion™*!. The same feature vector inputting into
different classifiers may lead to a smaller output difference, thereby
losing the fusion advantage. Some researchers integrated all the
combinations of different features and classifiers™, or selected a
certain number of combinations by experience, such as taking the
first few combinations with the highest accuracy™?). Fusing all
combinations is only applicable when the number of features and
classifiers is small, and there may be redundancy of base classifiers.
The empirical selection of partial combinations may result in the
selection of a sub-optimal base classifier. Therefore, designing an
efficient and reliable algorithm to select the optimal integration is

essential for multi-classifier fusion.

This study proposed a two-step basis classifier selection
algorithm based on the metrics of overall accuracy (OA), double
fault (DF)?", and overall accuracy and double fault (OADF).
Meanwhile, a Dempster Shafer distance (DS-distance) multi-
classifier fusion algorithm was proposed to enhance the DS fusion.
In this study, four acoustic features and three classifiers are used for
classifier fusion, where the acoustic features include MFCC, linear
prediction cepstral coefficient (LPCC), gammatone cepstral
coefficient (GTCC) and PSD, and the classifiers includes SVM, k-
nearest neighbor (KNN) and random forest (RF). The primary
contributions of this study can be summarized as follows:

1) A two-step base classifier selection method based on the
indicators of OA, DF and OADF was proposed to select the
optimized base classifiers.

2) A DS—distance classifier fusion algorithm was proposed to
reduce the classification error near the decision boundary in the DS
fusion method.

2 Materials and methods

2.1 Materials
2.1.1 Animals and housing

The data were obtained in a big fattening pig barn in Harbin,
Heilongjiang Province, China, in April 2018. The pig barn was
27.5 mx12.8 mx3.2 m (lengthxwidthxheight), which comprised 21
pens, as depicted in Figure 1. Among them, the size of pens 1-12
was 4.15 mx3.6 m (lengthxwidth), and the size of pens 13-21 was
3.6 mx2.75 m (length x width). There were two electric fans with a
diameter of 1.35 m in the pig barn, and they were opened every two
hours. Each opening lasted for 15 min, and there was a considerable
noise when they were opened. The employees used shovels and
water to scrub the half-slatted concrete floor of the pig house twice
a day. Furthermore, there were 128 pigs scattered in 1-13 pens in
the pig barn. Two pigs with heavy coughs were split into pen 13
near the door. The coughs had appeared several days prior, and
several coughing pigs were in each pen when the data was obtained.

Figure 2 shows the layout of the piggery environment and data
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Figure I The layout of the pig house in this study

a. Location of the microphone and the piggery environment

b. Display and preservation of the sound signal by Cool Edit software

Figure 2 Experimental device layout and piggery environment
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collection equipment. Figure 2a shows the location of the
microphone and the piggery environment. The photo was taken in
front of pen 7. Figure 2b shows the display and preservation of the
sound signal by Cool Edit software (Syntrillium, CA, USA).
2.1.2  Data collection

The audio acquisition device was a cardioid electret
microphone (Enping Yilianda Electronic Factory, Guangdong,
China) (LIQI LM320E, frequency range 50 Hz—-16 kHz) and a
laptop with the Conexant Smart Audio HD sound card (Conexant
Systems Inc, CA, USA). Limited by the experimental conditions,
the microphone was placed over pen 7, approximately 1.4 m above
the ground. The audio sampling rate was 44.1 kHz and the sampling
accuracy was 16 bits. The sounds were continuously recorded, and
the collected audio data was saved in wave format. The continuous
sounds were segmented and labelled manually with the assistance of
veterinarians. The labelled individual sounds included pig coughs,
groan, screams, cleaning sounds, and people’s talks, among others.
The screams were usually caused by the biting and fighting
behaviors of pigs. The cleaning sounds were produced by workers
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using shovels to remove manure, including knocking sound, friction
sound, etc. There were also other noises, such as fan noise, feeding
noise and flushing noise. This study randomly selected 1250 cough
and 1250 noncough sounds as this work’s training and testing
dataset.
2.1.3 Data description

The waveforms and the power spectrums of a cough and some
typical noncoughs (groan, knocking, screaming) are shown in
Figure 3. To better characterize the sounds, a descriptive statistic
was done over the coughs and noncoughs. In this analysis the
duration of single sounds and the peak frequency have been
considered®*.. The durations and peak frequencies of cough and
noncough sounds are shown in Table 1 and Figure 4. The maximum
value (Max), minimum value (Min), mean value (Mean), and
standard deviation (S.D.) were analyzed. The “noncough” in Table 1
and Figure 4 includes groan, scream, knocking and other noncough
sounds. The sounds were filtered by a bandpass filter in a range of
100-16 000 Hz.
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Figure 3 The waveforms (above) and power spectrum (below) of a cough and some typical noncoughs

Table 1 Descriptive statistic of cough and noncough sounds

Type of Duration Peak frequency
sounds  Min/s Max/s Mean/s S.D. Min/Hz Max/Hz Mean/Hz S.D.
Cough 022 1.09 060 0.16 13997 447891 610.61 460.26
Noncough 0.19 1.79  0.88 040 139.97 6933.69 823.21 654.09
Groan 020 1.63 090 038 139.97 145349 541.17 319.58
Scream 026 1.76 1.02 0.44 21533 3090.01 1368.35 494.11
Knocking 0.19 1.62 059 031 150.73 2971.58 569.09 473.17
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According to the statistical results, the duration of cough was
significantly different from that of groan and scream (p < 0.0001),
but it was highly similar to that of knocking (p > 0.05). The peak
frequency of cough was significantly different from that of scream
(p<0.0001), but it was highly similar to that of groan and
knocking (p > 0.05). The “noncough” in Table 1 contains different
types of sounds. Therefore, the statistical values show a big range
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Figure 4 Barplot of the duration and peak frequency in cough and noncough sounds
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and S.D. Overall, there are some differences between coughs and
some type of noncoughs, meanwhile, there is also partial overlap in
duration and peak frequency for some sounds.
2.2 Proposed methods

This section first described the entire structure of the proposed
method. The features used in the study were subsequently concisely
introduced. Next, the two-step base classifier selection algorithm
was described. Lastly, the proposed DS—distance fusion strategy
was demonstrated.
2.2.1 Overall structure

The flowchart of the proposed algorithm is depicted in
Figure 5. First, the sound signals were preprocessed. The acoustic
features were extracted from the preprocessed sound signals. The
acoustic features included MFCC, LPCC, GTCC, and PSD.
Subsequently, the acoustic features were input into SVM, KNN, and
RF classifiers. 12 base classifiers were constructed. Next, filtered
the number of base classifiers to a small number. A two-step base
classifier selection method was suggested to filter the classifiers. In
the first step, OA and DF indicators were used to select the base
classifier. The OADF indicator was used in the second step to
choose classifier combinations. Finally, the DS—distance fusion
algorithm fused the filtered base classifiers to obtain the
classification results.
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Figure 5 Algorithm flowchart proposed in this study

2.2.2  Preprocessing

Data preprocessing includes filtering, pre-emphasis, framing,
and windowing. Among them, the role of filtering is to reduce the
interference of out-of-band noises. The role of pre-emphasis is to
increase the high frequency component in the sound signal and
compensate the loss of the high frequency component in the
transmission process. Framing is to convert non-stationary sounds
into short-time stationary signals for analysis. The role of
windowing is to reduce spectrum leakage.
2.2.3 Feature extraction

The features used in this study include MFCC, LPCC, GTCC
and PSD. The sound was preprocessed first, then the features of
each frame was extracted, and finally the mean value of all frames
was calculated to obtain a feature vector for subsequent

classification.

1) MFCC

MFCC is a frequently used acoustic feature in the field of
sound signal processing. It also performs well in pig cough sound
recognition!*"*"), MFCC is designed based on the human auditory
mechanism, which is transformed to the perception frequency
domain. The MFCC extraction process is shown in Figure 6. The
preprocessing of the audio signal began with pre-emphasis, framing,
and windowing. Subsequently, the preprocessed signal was
converted to a frequency domain representation by applying the fast
Fourier transform. Next, calculated the power of each frame and
pass them via a set of mel-filter banks. Finally, the logarithm and
discrete cosine transformation was performed to obtain the MFCC.

Figure 6 MFCC extraction process

2) LPCC

The fundamental idea of linear predictive analysis is that any
sampling point of a sound signal can be represented by a linear
combination of past sampling points. LPCC is the representation of
Linear Prediction Coefficient (LPC) in spectrum domain. Let the
current sample is x,, the past p samples were used to predict x,,
then:

P
x/x = Zaixn—] (l)
i=1

where, g; is the LPC coefficient. LPCC can be obtained as follows:

a,, n=1
n—-1

a,,+Z(1—£)a,fz(n—1), l<n<p o

n=1

h(n) =

n—-1

Z(l—%)aiiz(n—l), n>p

n=1

3) GTCC

The extraction process of GTCC is similar to that of MFCC,
which is shown in Figure 7. The difference is that the gammatone-
filter bank replaces the mel-filter bank. Gammatone-filter banks are
designed based on the frequency decomposition of the cochlea.
Several researchers have used gammatone-filter banks rather than
traditional mel-filter banks to identify sound signals and achieved
good outcomest**.

Figure 7 GTCC extraction process

4) PSD
PSD reflects the relationship between the power of the sound
signal and the frequency. PSD extraction methods include an
autocorrelation function, periodogram, and an average periodogram.
The average periodogram method is the most commonly used,
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which divides the sound signal into multiple segments, calculates
the PSD in each segment using the periodogram method, and finally
averages the PSD over all segments. Let L is the length of each
segmented signal, then the PSD of the i" signal x,(n) can be
obtained by the following formula:

th

1 >
Plw) = TIfft(window (x,(m)))| 3)

where, window and ff# represent windowing and fast Fourier
transform on the signal, respectively.

224 Two-step base classifier selection method based on
heterogeneous classifiers metrics

There are twelve various combinations of four features and
three classifiers. Therefore, choosing an excellent and different base
classifier is crucial for classifier fusion. That is, the base classifier
should have high accuracy, and there should be some disparity
between them!””*.. To this end, the accuracy and diversity
indicators of the base classifier was defined to examine and filter
the base classifier. The indicators include OA, DF, and the
combination of these two metrics: OADF. These indicators were
used to filter the base classifiers.

NA is suppose to be the total number of cough and noncough
samples included in the classification; NR; is the number of
samples correctly classified by the i base classifier; NF,; is the
number of samples incorrectly classified by both i and j* base

classifiers.
The OA of the i base classifier is defined as the following:
NR;
OA = — 4
= A (4)

OA is the ratio of the number of correctly classified samples to
the total number of samples, and its value range is [0,1]. The larger
the OA, the better the performance of the base classifier.
Meanwhile, DF; between the i" base classifier and the j* base
classifier is defined as follows:

NF,
DF; = NA %)
DF is the proportion of samples that are misclassified at the
same time between the two base classifiers, and its value range is
[0,1]. The smaller the DF, the more significant the difference
between the two base classifiers.
The OADF; between the i" base classifier and the j” base

classifier is defined as follows:

OA, + OA,
2RO DF, ©)

For a system consisting of N base classifiers, the OADF is

OADF,, =

defined as follows:

N N-1 N
OADF = Z OA, - ﬁ S S DE, ()

i=1 j=itl

OADF systematically considers the accuracy and disparity
between the base classifiers. Theoretically, the larger the OADF, the
better the performance of the base classifier after fusion.

The base classifier was defined as inputting a feature into a
classifier. Four features and three classifiers resulted in twelve
different base classifiers. For convenience, C; is use to represent the
i" base classifier, where i is from 1 to 12, and the specific
numbering rules are listed in Table 2. For instance, C, denotes the
base classifier collected by inputting the LPCC into the SVM
classifier. Let (C;, C;) signify the fusion of C; and C;,.

As the number of base classifiers involved in the fusion
increases, the required storage space will increase and may not
necessarily bring better results. Therefore, using fewer base
classifiers to obtain better fusion results is expected, and how to
select the base classifier is the key to obtain good fusion results. In
this study, a two-step base classifier selection method for good base
classifiers selection is proposed.

Table 2 Numbering rules of 12 base classifiers

Classifier LPCC MFCC GTCC PSD
SVM C, C, C; C,
KNN Cs c G e

RF Cy Cio Cn Ci

Note: C; represent the i” base classifier.

The first-step base classifier selection approach is depicted in
Figure 8. This step achieved the purpose of selection by
continuously removing the base classifiers with high DF and low
OA. Assuming that the number of original base classifiers is L, and
the DF threshold is DF,,, the OA of each base classifier and DF;
between each base classifier were calculated, where
A={C,,C,,...,C.}. If the DF; between the two base classifiers is
greater than the threshold DF,,, it indicates that the error similarity
between the two base classifiers is high. Therefore, at least one of
the classifiers should be removed. Hence, the OA of the two base
classifiers is judged, the base classifier with lower OA value is
eliminated, and the base classifier with higher OA value is
temporarily reserved. Next, all the DF are traversed and the base
classifiers with high DF and low OA are continuously removed, and
finally the result of the first-step selection is obtained. Assume that
the number of base classifiers after the first-step selection is L,.

/ L, base classifiers /

| ForVi € A,V € A, calculation DF;; |

A

No

A

| Remove C,- |

| Remove C;

Figure 8 Flowchart of the first-step base classifier
selection algorithm.

There will be several combinations for the first-step selected L,
base classifiers (if the number of base classifiers is more than three)
according to the number of fusion classifiers. Therefore, an
additional selection need to be made. The second-step base
classifier selection algorithm is shown in Figure 9. Firstly, various
combinations of all L, classifiers were obtained and grouped based
on the number of fusion classifiers. Subsequently, the OADF of
each set was calculated, and the OADF and the corresponding
combinations were sorted from big to small. Finally, the
combinations with top N percent in each group of OADF are
reserved for classifier fusion.

2.2.5 DS evidence theory

DS evidence theory is an uncertain reasoning approach
proposed by Dempster™ and further developed by his student
Shafer’™. DS evidence theory can deal with uncertain information
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Figure 9 Flowchart of the second-step base classifier
selection algorithm

and is broadly used in pattern recognition and other fields®***". For
example, let 2 be the identification framework, the function m(-)is
a mapping from 22 to [0,1] , 4 is a subset of © and satisfy:

m(Q) =

Zm(A) -1 ®)

AcQ

Subsequently, m(A) is the basic probability assignment (BPA)
function of proposition 4, which denotes the support degree of
evidence to proposition A. For proposition 4, when there are several
different BPAs(m,,m,,...,
as follows:

m,) on £, the composition rule is given

m(A) = ;

T D m@Am@A).m@) )

AINAZN..NA,=A

while,

K= > mA)m4)...mA4,) (10)

AINAN...NA,=0

where, K is the conflict coefficient, the greater the K, the greater the
conflict between the evidence.

DS fusion is the fusion of the output probability of each
classifier. The KNN output probability may appear to be 0 or 1. At
this time, DS fusion will lead to a “one-vote veto,” that is, if there is
an output probability of 0 in a single base classifier, the output
probability must be 0 after DS fusion. This may result in the fusion
of classifiers not getting any advantage or even result in
performance degradation. Thus, the KNN output probability of 1
and 0 were transformed to @ and 1—a. The range of « is [0.5,1].
The optimal value of o can be obtained by the linear search.

2.2.6 Distance fusion

Distance fusion refers to the fusion of distances between the

testing set and training set samples of various features“. x’ is used

ith

to represent the i feature vector of the j” training sample and y; to
denote the i" feature vector of the current testing sample, where
i=1,2,3,4 represent LPCC, MFCC, GTCC, and PSD, respectively.
Let p(j) be the class of the j” training sample and d; represents the
distance between y;, and x; The Manhattan distance is used to
estimate the distance between the training and testing samples. The
fusion distance D; from the current testing sample to the j* training

sample is defined as follows:

where, M is the total number of training samples, the class R of the
testing sample is presented as follows:

R=p (argminD‘,v) (13)
J

2.2.7 DS—distance algorithm

DS evidence theory achieves a better classification by fusing
the output probabilities of various base classifiers. However, in
practical applications, when the fusion result is close to the decision
boundary of 0.5, DS fusion’s classification result is unreliable due
to noise interferences and other factors. Thus, this study proposed a
DS-distance fusion algorithm to mitigate this problem. For the
unreliable interval, the distance fusion algorithm was used rather
than the DS fusion. The flowchart of the DS—distance algorithm is
shown in Figurel0.

A sound signal

Base classifier 1 | | ~~~~~~
[ T T
v

2 v
Probability | / /- 7
[

| DS evidence theory for fusion |

| |Base classifier n |

Probability n
]

/F usion probability of cough P/

Ye sNo

|Output DS fusion decision result| |Output distance fusion decision resultl
[ ]

End

Figure 10  Flowchart of the DS—distance algorithm, where S is the
conversion boundary

For testing sample x, let the probability of coughing by DS
fusion is P and the classification result of distance fusion is RD, the
final classification result R of the testing sample is given as follows:

1, P>1-8
R={RD, B<P<1-8 (14)
0, P<p

among them, 1 represents a cough, 0 illustrates noncough, 8 is the
conversion boundary, the value range is [0.3,0.5]. In this study, a
linear search is used to find the optimal B for all base classifier
fusion strategies.

This approach effectively combines DS fusion and distance
fusion by transferring decision-making power within an unreliable
interval, thereby enhancing classification accuracy.

3 Results

The software used in this work was Matlab2018a (MathWorks,
MA, USA). The machine learning functions used were in the
Statistics and Machine Learning Toolbox. In the preprocessing, the
bandpass filter bandwidth was 100-16 000 Hz, the pre-emphasis
coefficient was 0.9375, the window was hamming window, the
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frame length was 20 ms, and the overlap length was 10 ms. The
coefficient numbers of MFCCs, LPCCs, and GTCCs were 13, 24,
and 13, respectively. The number of FFT points for PSD was 1024.
The SVM kernel function was set to “RBF,” and the “KernelScale”
was set to “auto.” The RF decision tree was set at 100. The
hyperparameters of KNN were all set to “auto.” In classifier fusion,
the KNN output probability transformation parameter a was 0.65.

This study choses the commonly used classification evaluation
indicators: accuracy (equivalents to OA), recall, precision, and F1-
score to evaluate the model. The dataset was shuffled, and 4/5 of
them were randomly selected as the training set, and the remaining
1/5 was used as the testing set. All the experimental results were
obtained by averaging 10 runs to reduce the error.

The OA of each base classifier is listed in Table 3, where the
row represents the classifier, and the column represents the feature.
It can be observed that the OA of each base classifier was above
91.14%. The SVM classification performed slightly better than the
other two classifiers except for LPCC features. The LPCC and
MEFCC features were marginally better than those of GTCC and
PSD.

Table 3 OA of the single base classifier

Classifier LPCC MFCC GTCC PSD
SVM 93.88% 94.84% 94.24% 91.70%
KNN 95.48% 92.68% 92.04% 91.88%

RF 93.96% 92.14% 91.14% 92.48%

The DF between each base classifier is shown in Figure 11,
where 1-12 denotes C, —C,,. The DF threshold was set to 2.5%.
Following the first-step selection, the base classifiers include C,,
C,, Cs, Cq, and C,.

1 [Blo.62] 0.7 [0.54] 1.6 [0.78]0.64[0.34] 2.4 [0.94(1.08]0.88
2]0.62 228/ 0.5 [2.8 [2.64]1.24]0.54/3.44[2.98]2.15| [ ®
307 2.34]0.58 1.78]0.68 264 BN ;
4]0.54[2.28[2.34 [FFM0.38[2.48| 2.9 [32]0.54] 2.9 [3.08 .
5116 | 0.5 [0.58]0.38 [452]0.74|0.68 |0.26 |2.28]0.88[0.94/0.54

6 [0.78] 2.8 [3.58]2.48]0.74 268] 1 2.34| BN 5
7(0.64]2.643.54] 2.9 [0.68 332.44]0.84 298 N,
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12]0.88[2.18[2.64| 3.6 [0.54 [2.342.98/3.14| 0.8 [2.84

1 2 3 4 5 6 7 8 9 10 11 12

Figure 11 DF between base classifiers (%)

According to the number of fusion base classifiers, four sets of
classifiers with different numbers of 2, 3, 4, and 5 could be obtained
which were recorded in sets 2 to set 5. Among them, set 5 had only
one combination, which was (C,, C,, Cs, Cs, Cy). Therefore, this
set was reserved for additional comparison. The OADF of various
combinations in each set are shown in Figure 12. By obtaining the
top 20% OADF in each set, the resulting fusion combinations
included (C,, Cs), (C,, Cy), (Cy, C,, Cs), (C,, Cs, Cy), (C, C,, Cs,
G), (Cy, Cy, Cs, Cg, Cy).

The DS fusion and DS-distance fusion results of the above-
selected fusion combinations and the corresponding conversion
boundary g are listed in Table 4. Compared with the results in

Table 3, it is not difficult to find that DS and DS—distance fusion
recognition accuracy is significantly enhanced. Generally, the
accuracies of DS-distance are better than DS fusion results. The
accuracy of DS fusion is associated with the number of fusion
classifiers. This demonstrates an increasing trend as the number of
fused classifiers increases as a whole. The best result is 98.48% for
the fusion of four base classifiers. The accuracy of DS-distance
fusion is largely unaffected by the number of fused classifiers. The
result of the fusion of two classifiers achieved the accuracy of DS
fusion of four classifiers. These primarily benefits from the effects
of misclassification data nearing the decision boundary were
categorized by the distance fusion strategy rather than DS fusion.
The proposed method has obvious advantage, that is, the classifier
result is not significantly affected by the number of fusion
classifiers, and the result of fusing two classifiers is close to the
result of combining five classifiers. Therefore, good classification
result can be obtained by using a few classifiers.

95

94

OADF/%
© ©
N <

Figure 12 OADF of all base classifier combinations for each set

Table 4 OA of DS fusion, DS-distance fusion and the
corresponding conversion boundary

Classifier fusion DS DS—distance g
(G, Cs) 97.36% 98.04% 0.40
(G, Co) 97.52% 98.48% 0.32
(€1, Gy, C5) 98.20% 98.76% 0.35
(G, Cs, Cy) 97.88% 98.60% 0.30
(Cy, Gy, Cs, Cy) 98.48% 98.68% 0.46
(Cy, Gy, Cs, Gy, Co) 98.24% 98.76% 0.31

In this section, the effectiveness of the classifier and feature
fusion is compared. Feature fusion is the process of classifying data
by joining several acoustic features into a single feature vector.
Figure 13 depicts the OA variation of the three base classifiers with
the number of fused features. The classification accuracy of SVM
and RF classifiers gradually improves with the increase of the
number of fused features. The classifiers have the highest accuracy
when all the features are combined. For the KNN classifier, the best
performance occurs when three features are fused. However, there
is a significant drop when fusing the four features. Overall, SVM
has the highest classification accuracy when fusing four features,
which reaches 97.64%.

The optimal results of feature fusion of the three base
classifiers and the best DS-distance classifier fusion results are
presented in Table 5. It can be observed that the algorithm proposed
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in this study is obviously better than the feature fusion. Comparing
the results in Table 4, even fusing two classifiers, the accuracy is
higher than the feature fusion. Although four features were used in
the feature fusion and only two were used in the classifier fusion,
classifier fusion still gains more benefits by adding one more
classifier. These outcomes show that classifier fusion has significant
benefits and is promising in pig cough sound recognition. It can
offer a practical way to accomplish highly accurate and stable pig
cough sound recognition in complex pig houses.

98

97 +
96

| 2
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—

OA/%
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92 I I I )
1 2 3 4

Feature number

Figure 13 OA variation of the three base classifiers with the
number of fused features

Table 5 Performance comparison between the proposed
method and feature fusion method

Method OA Recall Precision Fl-score
SVM 97.64% 96.40% 98.85% 97.61%

KNN 97.48% 96.96% 97.98% 97.46%

RF 96.00% 94.96% 96.99% 95.95%
Proposed method 98.76% 98.94% 98.61% 98.76%

In order to further illustrate the advantages of the proposed
method, its performance was compared with the existing typical
methods using deep learning models and feature fusion which have
been introduced in the Introduction part in recent two years. Both of
them are all based on the same dataset. The performance
comparison is listed in Table 6. It can be seen that the highest
accuracy of the existing research is 97.35% by fusion of acoustic
(two time-domain features, six frequency-domain features and
MFCC) and deep features (extracted by CNN model) and SVM
model. The proposed model used four features and three machine
learning models to construct the base classifiers and selected the
best combination by two-step base classifier selection method. The
accuracy of the proposed method achieved 98.76 %, which is higher
than the existing state-of-the-art methods. Meanwhile, compared
with the method proposed by Shen et al.'*) the complexity and the
computational load of the proposed method are much lower.

Table 6 Performance comparison between the proposed
method and previous methods.

Method Feature Model OA  Recall Precision
score
Yinetal."™  Spectrogram AlexNet  95.40% 96.80% 95.50% 96.20%
Shen et al."! MFCC CNNs+SVM 96.68% 97.72% 96.81% 97.26%

Jietal™ Acoustict+Visual SVM 96.45% 97.33% 96.83% 97.08%
Shen et al." AcoustictDeep CNN+SVM 97.35% 96.51% 98.41% 97.46%

Proposed SVM+KNN+
method” MFCCHLPCC DS-distance
Note: *It shows the best combination (C), C,, Cs) result. The base classifiers are

composed by MFCC, LPCC features and SVM, KNN models.

98.76% 98.94% 98.61% 98.76%

4 Discussion

The purpose of the data collection experiment is to obtain the

sounds including pig coughs and noncoughs in a piggery in order to
explore and study the method of pig cough recognition. Limited by
the experimental conditions, only one microphone near the door
was put to collect the sounds. The pickup distance of the
microphone is approximately 10 m and the piggery is 27.5 m long.
There is no guarantee of collecting coughs from all the pigs in an
entire barn, and that is not necessary. The purpose of this
experiment is not to identify all the coughs of an entire barn. Other
studies usually use a recording pen to pick up pigs’ cough at close
range. In this experiment, the data were collected continuously for
one week. Due to the depletion of the microphone battery, some
data for part of the time was lost. The data were segmented and
labeled manually with the help of experts. The overlapped and hard
distinguished sounds were not considered. The dataset contained the
sounds with different signal-to-noise ratios and limited types of
noncoughs. More data will be needed to verify the proposed
algorithm and train the model to make it more robust.

The features involved in the sound signal processing can be
summarized into three categories: acoustic features, image/visual
features and deep features. Image features and deep features were
commonly used in the deep neural networks. In this study, only four
acoustic features were considered and no deep neural network was
involved. Besides the frequently used MFCC and PSD features, the
LPCC and GTCC features were also considered, which had
performed well in some other classification tasks. However, they
were seldom discussed in the pig cough recognition before. In this
work, first, the performance of these two features in pig cough
recognition were discussed. Meanwhile, more excellent and
different base classifiers were created for classifier fusion. The
results in Table 3 revealed that they were comparable with MFCC.
LPCC was even better than MFCC for some classifiers. The feature
fusion was also researched for comparison, as listed in Table 5. The
best accuracy of feature fusion reached 97.64%, which was better
than the results in Ji et al."” (acoustic and visual feature fusion:
96.45%) and in Shen et al.'” (acoustic and deep feature fusion:
97.35%). The accuracy was further increased by the proposed multi-
classifier fusion. This is because multi-classifier fusion essentially
implied feature fusion and it increased the accuracy by adding
classifiers. Meanwhile, the performance was improved by the
proposed DS-distance algorithm.

Other classifier fusion methods have also been tried. Firstly, the
features were selected and fused as a feature vector, and then the
feature vector were input into three classifiers for fusion. When four
features were fused, the classification accuracy was 97.80%.
According to the results in Table 5, when each classifier selected
the optimal feature for fusion, the classification accuracy reached
98.04%. They were all lower than the proposed method. The results
indicate that the selection of feature and classifier had a certain
impact on multi-classifier fusion. Although the fusion feature was
better than the single feature, due to the similarity of the features,
the difference between each classifier output was small, so the
accuracy was not significantly improved for this kind of fusion. For
the proposed algorithm, the base classifiers with large classification
differences were selected for fusion through the error similarity
indicator, so as to obtain a good fusion result.

Although deep neural networks have shown excellent
performance in many classification tasks, machine learning has
more potential in the rapid establishment of pig respiratory disease
early warning system. In the current study, whether pig cough
sounds at different growth stages or different farms can be
identified by the same training model has not been clearly
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concluded. If a new model needs to be trained from scratch for
different growth stages or different pig barns, it is hope that an
accurate model can be quickly established by a small amount of
training data. However, due to the rapid development of deep
learning, the research in recent years has spent too much energy on
deep learning, ignoring the basic acoustic features and the
advantages of machine learning methods. For this reason, further
research on machine learning and acoustic features has been done,
and the fusion of multiple acoustic features and classifiers has been
deeply studied. Table 6 shows that the proposed method has
achieved a good results and the accuracy is higher than the recent
deep learning models. In order to ensure the fairness of the
comparison, only the latest researches using the same dataset as in
this paper were compared. The accuracy of early studies was
relatively low. In recent years, although the accuracy has been
significantly improved, most of them are based on deep learning
models. The accuracy of the proposed algorithm is 98.76%, which
is higher than the existing methods. The proposed method only uses
traditional acoustic features and machine learning models.
Compared with the existing methods in recent years, this method
has the advantages of short training time and low complexity which
is more conducive to practical engineering applications.

For multi-classifier fusion, a critical procedure is to choose the
excellent base classifiers which are related to the selection of
features and classifiers. In this work, only four features and three
classifiers were provided for selection. More representative features
and classifiers are deserved to be explored to gain a more robust
recognition. Although the proposed method achieved good
performance, the results were only tested on a private dataset which
collected in one pig barn. Meanwhile, the dataset in this study was
segmented manually which did not consider the accuracy loss in the
voice active detection process. The overlapped sounds and the
sounds which cannot be distinguished by experts did not considered
in the dataset. In a real-time pig cough sound detection scenario in a
large-scale piggery, the data will be more complex than the dataset
in this work. More experiment will be conducted and the new data
will be used to test the algorithm in the future. This study hope that
a high-quality public pig sound dataset will be opened soon for
more researchers, contributing their good ideas and approaches to
accelerate the application of this technique.

5 Conclusions

In this work, the multi-classifier fusion based on machine
learning was proved to be an effective way to enhance the accuracy
of pig cough recognition. The features of MFCC, LPCC, GTCC and
PSD provide the characteristics of different sound from different
perspectives. The machine learning model of SVM, KNN and RF
performed well in the pig cough recognition task. Among the
combinations of different base classifiers, the combinations of
(MFCC+SVM, LPCC+KNN) and (MFCC+SVM, LPCC+RF)
showed an outstanding performance. The combination of
(LPCC+SVM, MFCC+SVM, LPCC+KNN) achieved the best
performance. The accuracy of the proposed algorithm reached
98.76%, which is better than 97.64% of feature fusion and 97.35%
of state-of-the-art method. This proves that classifier fusion has
significant advantages and the potential in the establishment of pig
respiratory disease early warning system.
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