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Intelligent sorting method for assembly line based on visual positioning

and robotic arm model predictive control

Ruining Zhang, Wei Lu , Xingliang Jian, Hui Luo
(College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China)

Abstract: The existing steering device in the fruit and vegetable packaging assembly line cannot adjust the attitude of lettuce to
a unified attitude, affecting the input and packaging process of the packaging machine. This study proposes an intelligent
assembly line sorting method based on the visual positioning and model predictive control of a robotic arm. First, lightweight
improvement based on the YOLOVS is realized, the lettuce stalk in the background of the conveyor belt is promptly identified,
the image of the lettuce stalk in the anchor box area is processed, and the edge contour point set is determined to extract the
pixel coordinates of the optimal grasp point and mirror inclination angle of the lettuce. For the intelligent assembly line system,
a robot arm kinematics model is constructed and the robot kinematics inverse solutions are calculated. Additionally, the lettuce
movement speeds are dynamically measured by the vision system. A combination of the model prediction control, dynamic
tracking, and rapid sorting of the lettuce by the robot claw is realized. The results show that the average detection time of a
single frame image in the visual positioning part is 0.014 s, which is reduced by 50%; the accuracy and recall are 98% and
95%, respectively. The detection time is significantly reduced by ensuring accuracy. Within the current speed range of the
packaging assembly line conveyor belt, the manipulator can grasp lettuce at different speeds stably and fast; the average axial
error, average radial error, and adjusted average inclination angle error are 0.71 cm, 1.02 cm, and 3.79°, respectively, verifying
the high efficiency and stability of the model. The proposed method of this study enables application in the intelligent sorting
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1 Introduction

Lettuce is one of the most popular crops in the world. It is
cultivated all over the world and has valuable dietary value and
medicinal value'. With the development of agricultural technology
and crop cultivation technology, the total production value of grain
production is approximately 500 million t, which creates a huge
market for the packaging production industry. Crops need to be
packed as soon as possible after harvest to ensure freshness and
completeness. In the era of artificial intelligence, the selection,
processing, and packaging of lettuce can be completed on an
assembly line. However, at the input end of the packaging machine,
the random supply of lettuce leads to a random attitude, packaging
materials cannot fit lettuce perfectly, and it is difficult to achieve the
preset packaging requirements, damaging the packaging machine.
Therefore, to change the transportation state of the packaged object,
it is necessary to configure the reversing device before entering the
packaging machine. The original transportation direction and center
of gravity position of the object remain unchanged after reversing.
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However, the currently available reversing device can only rotate
the lettuce at the same angle, creating a risk of lettuce leaves getting
stuck in the machine. Moreover, manual sorting has disadvantages
such as a small batch, low precision, and an increase in manpower
and time consumption. Therefore, it is necessary to design
intelligent visual recognition and grasping systems that can
automatically adjust the lettuce posture to a unified posture.
Presently, the combination of vision technology and robots has
become an important way to improve the level of intelligence in
various industries”. The real-time, stability, and accuracy of the
visual positioning module and the manipulator control grasping
module cause challenges in lettuce sorting using the intelligent
assembly line system. Therefore, to establish a better combination
of vision and control to realize the fast recognition and ranking of
pipeline lettuce, a strong real-time lightweight network, and image
processing method to realize the real-time recognition, positioning,
and speed measurement of lettuce is required, as well as an accurate
and efficient feedback control system to drive the fast-tracking and
ranking of the robot arm. Ayyad et al.” first estimated the initial
pose of the workpiece, performed multi-view reconstruction, and
then performed accurate localization based on a position and image
visual serving method. Ruan et al.*! reviewed two main methods of
fruit location and recognition, including digital image processing
techniques and algorithms based on deep learning, and conducted
target tracking in dynamic jamming environments. Do et al.”¥
generated both target and reference model point clouds based on a
depth camera system. Lim et al.' extracted the coordinates of
feature points of boxes with different shapes and then controlled the
robot. However, the grasping method lacks real-time state feedback
and adjustment of the tracking path, and the grasping accuracy is
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relatively low. It is only suitable for situations where the shape of
the target object is simple and the path changes slightly. Therefore,
to establish a better combination of vision and control to realize the
fast recognition and ranking of pipeline lettuce, a strong real-time
lightweight network, and image processing method to realize the
real-time recognition, positioning, and speed measurement of
lettuce is required, as well as an accurate and efficient feedback
control system to drive the fast-tracking and ranking of the robot
arm.

With the continuous development of deep learning represented
by convolutional neural networks, object detection has been widely
applied in various fields”*. Object detection algorithms can be
divided into two categories, one is the two-stage algorithm,
including the R-CNN series and FPN algorithms. However, there
occurs a double calculation of images, which consumes time, and
causes low efficiency. The other is the one-stage algorithm,
including the YOLO series and SSD algorithms. The YOLO
algorithm conducts object classification and candidate box
prediction directly, and the detection speed is significantly
improved. The SSD algorithm combines the advantages of the
YOLOY algorithm; the faster R-CNN algorithm proposes feature
maps of different scales to detect objects; and CNN directly makes
predictions!”. This kind of algorithm has a robust real-time
performance, which promotes the application of object detection
algorithms based on deep learning in industrial applications. The
YOLOVS algorithm is suitable when the detection object is a big
target and the speed is pursued.

Over the past few decades, the control and design of robotic
arms have become a major area of interest in robotics. In the 21st
century, researchers began to pay attention to the application of
agricultural robots. PID controller has been widely used in the early
stage of the robot industry because of its simple structure and
acceptable performance. However, because the manipulator is a
complex system with nonlinear, strong coupling and time-varying
characteristics, how to obtain the optimal PID parameters is a big
challenge. In order to improve the control accuracy of robots,
people have been focusing on the implementation of robust optimal
control, such as fuzzy logic controllers'’, sliding mode
controllers!”, controllers based on reinforcement learning!*, Model
Predictive Control (MPC)", A and other optimal control strategies.
Among them, Model Predictive Control (MPC) is an effective way
to optimize future behavior over a limited range to track desired end-

effector locations!. Tracking control, online obstacle avoidance,
and path tracking of end-effector attitude have been realized, and
the calculation time is short.

With the intelligent assembly line system as the research object,
object detection is realized by the lightweight improvement of the
YOLOVS5 algorithm, the lettuce pose is extracted by real-time image
processing, and the lettuce speed is detected by coordinate
transformation from the lettuce clipping pixel coordinate system to
the physical coordinate system of the manipulator. The manipulator
conducts dynamic tracking, grasping, and sorting based on model
predictive control to provide a technical reference for the target
object sorting process of the modern crop packaging line.

2 Experimental setup and method flow chart

In this study, to solve the problems of the input and packaging
process caused by the randomness of the delivery posture of lettuce
in the packaging line, an intelligent assembly line sorting method
based on visual positioning and robot arm model predictive control
was proposed. The method consisted of vision and control parts.
The main components of the system included a camera, a robot arm,
an industrial computer, and an assembly line conveyor belt. The
vision part was responsible for the recognition, acquisition, and
image processing of the lettuce. The positioning and speed
information were input into the IPC control system to realize the
real-time signal input in the control part. The IPC and manipulator
transmitted the target information and optimized the feedback in
real-time based on the model's predictive control. The specific
experimental setup diagram, flow chart, and closed-loop control
diagrams are shown in Figures 1-3.
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Figure 1  Specific experimental setup of this study
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3 Rapid identification and dynamic positioning
method of lettuce stalk based on vision system

3.1 Lettuce image collection and data set production

The image acquisition device was the Shengyue USB HD wide-
angle camera (60 frames, 6 mm focal length, USB interface,
resolution of 1920x1080 pixels). The images were orthophotos of a
single intact asparagus lettuce. To ensure the diversity of the
samples, 794 RGB images were collected under different
background and light conditions. To enrich the dataset, three
methods of image flipping, brightness adjustment, and blur were
used. Labeling software was used for manual annotation, and the
data set was created according to the VOC format. The minimum
outer rectangular box of the lettuce was regarded as the real box.
3.2 YOLOVS network model

The YOLOvVS5 model uses the Pytorch framework to directly
predict input images. Compared with the earlier YOLO algorithm,
its detection speed and accuracy are significantly improved. The
intelligent packaging pipeline studied in this study took lettuce as
the research object. In order to achieve better real-time and
lightweight detection, YOLOVS was improved.
3.2.1 Backbone network

The backbone network of YOLOvS was replaced by the
backbone network of MobileNetV3!'*'. MobileNetV3 used H-
SWICH to replace the time-consuming SWICH activation function,
shown in Equation (1), which makes the operation speed faster
while maintaining accuracy and is more convenient for application
in embedded devices.

ReLU6(x+3)
e M
where, x represents the input size of the neuron.
The light attention module SE"¥ (squeeze and excitation SE)
was used for the color difference between the lettuce and assembly

h—swich(x) = x

line; the structure is shown in Figure 4. The purpose of SE is to
create different weights of different regions of the image, to obtain
significant feature information"**”. This improves the attitude of the
lettuce in the image and improves the recognition accuracy.

(IX1xC) Excitation (IXIXO
11 +

Squeeze

| > ifis

Input (WxHx*C) Output (WxHx*C)

Figure 4 SE attention module

3.2.2 Depthwise separable convolution

Depthwise separable convolution can replace conventional
convolution by combining depthwise and pointwise convolution for
feature extraction® . The process of conventional and depth-
separable convolution is shown in Figure 5.

Let the input size of the feature map be DgxDg, M be the

number of input channels, the size of the convolution kernel be
DpxDy, the number of convolution kernels be N, compared with
the computational burden of the
depthwise separable convolution is reduced as Equation (2).
Dy-DyDy Dy M+Dy Dy M-N _ 1 1
Dy-Dg-Dy-Dy-M-N N D

conventional convolution,

@)

The computational efficiency of the depthwise separable
convolution is considerably better than that of conventional
convolution, thus, this study uses depthwise separable convolution
instead of the convolution in YOLOVS5s.

3 channel input Filtersx2 Mansx2

a. Conventional convolution

3 channel input Filtersx3 Mapsx3 3 channel input Filtersx2 Mapsx2

b. Depthwise convolution c. Pointwise convolution

Figure 5 Process of conventional and depth-separable convolution

3.2.3 Loss function

YOLOVS uses GIOU _LOSS as the loss function, which is
composed of bounding box confidence loss L., category loss L,
and coordinate loss Lgioy™**. The calculation of the loss function is
shown in Equations (3)-(5).

L= Lepys+ Lo+ Laiou 3)
ANB

I0U = 0B “4)

GIOU = 10U - w )

where, A is the area of the real box; B is the area of the predicted
box; C is the area of the minimum surrounding rectangle of 4 and
B. When the real and prediction boxes exhibit inclusion relation or
width and height alignment, the difference set is 0. Therefore, the
loss function of CIOU is selected as the coordinate loss, as shown in
Figure 6 and Equation (6).

2 t
CIOU = 10U - ‘%”) —av ©6)

where, c is the diagonal distance of the smallest enclosing rectangle
containing both the prediction and real boxes; d is the distance of
the center point of the real and prediction boxes; p*(b, b*) is d
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Figure 6 Schematic of CIOU loss function.

squared.
The CIOU™ loss function can continuously approach the
prediction box to the real box through iteration, ensuring that the

Cut
stalk image

b. Stalk image

a. Original image

Pprocessing - ¢, Binarized
- J

aspect ratio of the prediction box and the real box is closer, and
accelerating the regression convergence speed of the prediction
box.
3.3 Lettuce characteristic point localization method

In the assembly line, to use the mechanical arm to grab lettuce,
the key is to determine the optimal grab point and tilt angle of the
stalk. Therefore, after identifying the lettuce, it is necessary to
further determine the specific position and coordinates of the stalk.
In this study, the lettuce is identified first, the specific pose of the
lettuce stalk is recognized in the image, coordinate transformation is
carried out, then the moving speed of feature points on the assembly
line is dynamically estimated. The flow chart of the lettuce feature
point location method is shown in Figure 7.

Fit lettuce slope,
point
and tilt angle

image [
-

d. Feature location

¢2. Morphological
image

Figure 7 Flow chart of lettuce characteristic point localization method

3.3.1 Lettuce stalk cutting based on anchor box

After the lettuce image is input into the improved YOLOVS
model, the model identifies and selects the correct lettuce target box
(anchor box), outputs the coordinates, length, and width of the
anchor box, and cuts the lettuce stalk part on the lettuce image. The
lettuce leaves are discarded in this step to avoid their influence on
subsequent image processing, as shown in Figure 7b.
3.3.2 HSV color space

The color feature is a global feature, which describes the
surface properties of the corresponding objects in the image or
image region. It is less dependent on the size, direction, and
perspective of the image itself, and has high robustness, thus, it is
often used for image recognition.

The color parameters in HSV are hue (H), saturation (S), and
lightness (V) which are closer to human visual perception than
the RGB color space, hence they are widely used to segment objects

with specified colors. The histogram of the HSV color space
component of the lettuce image was drawn, and it was found that
the fluctuation of the H component was the most obvious compared
with other components, as shown in Figure 8. Therefore, single
threshold segmentation was conducted based on the H channel.
3.3.3 Threshold split processing

First, the color image acquired by the camera is transformed to
the gray level. The threshold is then processed, changing the pixel
value within the threshold to 0 and the pixel value outside the
specified range to 255P7. Single threshold segmentation has the
characteristic of simple operation. In the lettuce assembly line, the
lettuce and pipeline background color difference is obvious, which
is suitable for the application of single-threshold segmentation. By
analyzing the histogram of the lettuce HSV three-channel
component and continuous testing, it was deduced that the best
effect of the background removal was achieved when 105<H<125.
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Figure 8 Lettuce stalk HSV transform map and HSV three-channel histogram

Owing to the difference in the H component between the
stem and non-stem nodes of lettuce, the binary image of the lettuce
stalk is disconnected, as shown in Figure 7cl. Therefore, it is
necessary to obtain the ideal lettuce image through morphological

processing.
3.3.4 Morphological processing

To connect the stem elements in the figure above, the noise can
be eliminated by the morphological operation of corrosion and



210 July, 2023 Int J Agric & Biol Eng

expansion, the independent stem elements in the image can be
segmented, connecting the stem. The image becomes smaller after
the corrosion operation and can be used to remove isolated noisy
pixels.

After the expansion operation, the image becomes larger, which
can be used to connect the isolated pixels with close locations.

After several operation tests, it was found that the optimal
operation of first expansion and then corrosion is carried out using
structural elements, as shown in Figure 7¢c2.

3.3.5 Lettuce stalk identification and labeling

After morphological treatment, the minimum outer rectangular
box is determined and the slope of the lettuce is calculated and
marked with purple. The pixel coordinate system of the image is
different from that of the manipulator, and coordinate
transformation is needed to calculate the mirror tilt angle of the
lettuce and the optimal grasping point, which are marked in red, as
shown in Figure 7d.

3.4 Robot arm control system based on machine vision
3.4.1 Calculation of lettuce moving speed

The lettuce speed can be obtained by the ratio of the
displacement (AS) and time generated within a certain time (AT),
and the calculation is as follows:

_AS 51—
TAT Tt -1,

v (M

In this study, the labeled optimal grab point of lettuce is
regarded as the feature point, and the difference between the
positions of the feature points of the five adjacent frames of lettuce
is shown in Figure 9. By calculating the video frame rate, the frame
rate obtained in this study is 28.13 fps.

al. Lettuce feature localization )
. ~ ~ . T
in the first frame image

b. Lettuce displacement in
adjacent five frames

a2. Lettuce feature localization
in the fifth frame image

Figure 9 Lettuce characteristic point displacement

3.4.2 Lettuce visual velocimetry model

The camera used in this study is based on the pinhole camera
model. The overall coordinate model is shown in Figure 10, and the
relationship between the image’s physical and pixel coordinate
systems is shown in Figure 11. Xy, Yy, and Z; represent the world
coordinate system, that is, the coordinates of the object in the real
world; X;, Y;, and Z; represent the coordinate system of the
manipulator; X, Y., and Z represent the camera coordinate system;
xOy represents the physical coordinate system of the image; and
uOv represents the image pixel coordinate system. To achieve
cutting image pixel coordinates to the mechanical arm coordinate
system, the coordinate transformation is required to go through five
steps: cutting image pixel coordinates into pixel coordinates; image
pixel coordinates transformation to image physical coordinates;
image physical coordinates transformation to camera coordinates;
camera coordinates transformation to world coordinates; and world
coordinate conversion to the mechanical arm coordinate.

Open Access at https://www.ijabe.org Vol. 16 No. 4
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Figure 11 Relationship between image physical coordinate and

image pixel coordinate

We assume that there exists a point P(x,, ., z.) in the camera
coordinate system, whose coordinates in the picture physical
coordinate system are denoted as P,(x, y), and the coordinates in the
picture pixel coordinate system are denoted as Py(u, v). First, the
cutting image pixel coordinates are converted to the image pixel
coordinates through the coordinate origin translation. Subsequently,
the image pixel coordinates are converted to the camera
coordinates. The relationship between the three coordinate points
can be expressed as Equations (8) and (9).

Xc
—f
x Ze
MEE ®)
y} Ye
Zcf
=t
u dx
{v}: v ©)
y

where, f represents the focal length of camera imaging, mm; u, and
v,, represent the image center in the u, v direction pixels; dx and dy
denote the physical size of a single pixel in the x and ydirections of
the sensor, mm/pixel.

It was assumed that there is a point P(Xy, Yy, Zj) in the world
coordinate system, P(X¢, Y, Z¢) in the camera coordinate system®,
and P(X;, Y;, Z;) in the manipulator coordinate system. To simplify
the calculation, the world coordinate system is set to coincide with
the manipulator coordinate system, and the origin is the fixed joint
point of the manipulator, thus, the corresponding relationship can be
expressed as Equation (10).

Xc Xw X.
Ye R ¢ Yy { R ¢ } Y,
= = 1
Zc { 0 1 } Zy 0 1 Z, (10)
1 1 1
1 0 0 t,
R=1] 0 «cosf sinf |, andr=| ¢
0 —sinf cosf t

N

where, R represents the rotation matrix of the world coordinate
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system to the camera coordinate system, which is a 3x3 matrix; ¢
represents the translation vector of the world coordinate system to
the camera coordinate system, that is, the position of the camera
photocenter in the world coordinate system.

It was assumed that there is a point P in the space whose
coordinate in the world coordinate system is P(xy, vy, z,, 1), and
the coordinate in the picture pixel plane coordinate system is (u, v,
1) transformed by this model. The corresponding relationship
between the two coordinates is as shown in Equation (11).

Xy

u fi 0 wu O
Zlv|=l0o £ v o {’g ” ol
1 00 1 0 o

1
f

where, f. and f, represent the camera internal values, f, = o’
X

_f
h=&

4 Dynamic tracking and grasping of manipulator
based on model predictive control

After obtaining the specific pose of lettuce, the manipulator con-
troller drives the manipulator to complete path tracking, grasping,
and pose adjustment. The following is the establishment and explana-
tion of the overall velocity model and predictive control model.
4.1 Model building and MPC controller design

Model predictive control (MPC) is a strategy to achieve control
effects through repeated optimization and feedback correction of the
predictive model, which has good robustness and control effects 2%\,
Therefore, the predictive control method of the manipulator model
is proposed, which regards the dynamic feature points of the
assembly line lettuce as the solution and ensures the real-time
dynamic tracking of the manipulator. The model predictive control
principle used in this study is shown in Figure 12. Considering the
fixed height of the manipulator grasping lettuce, the manipulator is
simplified into a two-degree™ of freedom model, and the real and
model pictures are shown in Figure 13.

(k) T Optimizer u(k) Controlled | Y(A)
4 min J(k) device s
y(klk+)) Dynamic
prediction
" model
State - l\y(k‘k)
feedback (O¢ +
correction

Figure 12 Model predictive control of manipulator

a. Physical picture of the robot arm

b. Two degrees of freedom
manipulator model

Figure 13 Robot arm physical object and model.

where, m; and m, are the masses of the two links, respectively;

and L,,L, are the lengths of the two links, respectively. The
Lagrange equation is used to establish the dynamic equation of the
manipulator®', as shown in Equation (12).

M(g)g+Clg.9)g =7 (12)

M]I MIZ

Gi+4» }
MZ] M22

} , C(q,9) = —-myL,r,s8in(qs) { CIz.
—q 0

M(g) = {
where, ¢ is the angular displacement of the joint; ¢ is the joint
angular velocity; 4 is the joint angular acceleration; M(q) is the
inertia matrix of the manipulator; C(g,¢) is Criolli centrifugation;
and 7 denotes the control torque vector. The dynamic variable is
defined as x=[q ¢]", the control vector as u =7, and the output
vector as y=¢q, At time k, the output vector at time k+; is estimated
as y(klk+j).

After linearization and discretization, the current given input is
used for prediction, and the trajectory is tracked by minimizing the
cost function while satisfying the constraints. The least square
method is used to calculate the distance between the actual and
desired states, and the minimum distance is regarded as the cost
function and satisfies the constraint conditions®" to track the desired
trajectory. where x, is the reference trajectory state at time k. At
time k and N steps are predicted backward, the control input is U;,
and the error column vector is E;, as shown in Equation (13).

1
Jin = EUZ(GTQG+R)Uk +(Fx,+Th—-Xd)" QGU,
E, =Fx,+GU,+Th-X,
_ 1
A]
¢ A+l
F= : , T = .
AN : (13)
- e AV 4 A+
[ B. 0 .. 0
AlB. B. ... 0
G:
| AY'B. AY?B. ... B.

where, Q is the control weight matrix; R is the input state weight
matrix. The constraint conditions are shown in Equation (14).

{Xmin < ka+GUk+Th—Xd<X

max
Unin S Ui < Upix

(14)

In the control law of predictive control, the control input of the
first step is considered. The current position of the manipulator claw
is calculated according to the expression of the manipulator system.
The dynamic model is established and the control law is finally
obtained until the system reaches the desired state.

The translation vector Vi, is the maximum distance J between
the manipulator and lettuce when grasping. When ||V,.¢|<0 and
V=0, the controller controls the manipulator to complete the
grasping and pose adjustment.

4.2 Simulation and verification

To verify the control effect of this method, a 2-DOF manipul-
ator (Figure 14b) is taken as the control object to conduct data simul-
ation. The parameters of the manipulator are L,=L,= 20 cm, m;=m,=
0.5 kg, 2=9.8 N/kg, and the sampling period 7=0.35 s. The state

_I T

3 3

m T

constraint of the manipulator is 3 <x< 3
-10 cm/s 10 cm/s
-10 cm/s 10 ci/s
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According to the different running speeds of the pipeline R= TPiFN (16)
. . . +
conveyor belt, the static state, constant speed, sinusoidal speed, and
step speed path tracking are obtained. 1 —
Assuming that the initial position of the manipulator is at x= mAP = N ZAP" (17)
i=1

5 cm, the characteristic point of the lettuce moves from x=0 in the
positive direction of the x-axis, and the coordinates of the
manipulator and characteristic point of the lettuce on the y-axis
remain unchanged. The simulation results are shown in Figure 14.

The above results can be obtained under conditions satisfying
the constraints and for different trajectories, the mechanical arm
control under the MPC can meet the requirements in a relatively
short tracking time. Consequently, the desired trajectory error is less
than J, and overshoot and oscillation do not occur. This ensures the
real-time accuracy of the dynamic trajectory tracking. Error-free
tracking can be realized for the desired trajectory with a large
velocity variation. The average descending time of the manipulator
is 0.5 s, the average rotation time of the manipulator claw is 0.45 s,
and the average delay time of the visual part is 0.015 s.

5 Experiment and analysis

5.1 Experimental results and analysis of vision

To prove that all the improved parts of the improved network
are better compared with the original network, this study conducts
comparative tests based on average precision (mA4P), recall (R), and
average detection time. Precision (P) refers to the proportion of the
retrieved information that is of interest to the user. R refers to the
proportion of the information of interest that is detected. AP is the
area enclosed by the curve and coordinate axes, and the mAP of
each category is the average AP value. The calculation is shown in
Equations (15)-(17).

TP

P: —_—
TP+FP

(15)

where, TP is the correct number of positive samples predicted; FN
is the wrong number of negative samples predicted; FP is the wrong
number of positive samples predicted; TN is the number of negative
samples predicted; p(r) is the recall rate under different precision
rates 7; AP; is the detection accuracy of class i; and N is the total
number of categories. The specific experimental results are listed in
Table 1.

Table 1 Comparison of improvement results

Object detection network mAP Recall Mean detection time
Network before improvement 0.98 0.95 0.021s
Improved network 0.98 0.95 0.014s

Compared with YOLOVS before the improvement, the average
detection time of the single frame image of the improved network is
0.14 s, which is 50% faster. The average accuracy rate was 98% and
the recall rate was 95%, which remained unchanged. Therefore, the
improved network can not only ensure high accuracy and a high
recall rate but also significantly reduce the detection time and
ensure the real-time performance and high efficiency of the visual
part.

5.2 Experimental results and analysis of control

To verify the effectiveness of the proposed assembly line
intelligent sorting method based on visual positioning and
manipulator predictive control, the manipulator's end claw is located
in the initial position. The lettuce moves on the conveyor belt, and
enters the camera pixel coordinates, and the vision system obtains
the speed and position information of the lettuce. Based on the
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moving trajectory of the lettuce feature points, the best-expected
grasping point of the manipulator claw was obtained and the
tracking trajectory was planned. The control system solved the
inverse kinematics solution to control the manipulator to track the
lettuce feature points and grasp and adjust the posture. The
experimental process is shown in Figure 15.

¢. Manipulator
descending

a. Initial position b. Claw rotating

of the manipulator

d. Adjusting the
lettuce position

¢. Manipulator descending
and closing the claw

Figure 15 Experimental process diagram of the control part

Presently, the transportation speed of the packaging assembly
line is between 8 and 50 mm/s, the speeds are 0, 8, 16, 33, and
50 mm/s, respectively. The experiment was divided into five
groups, and four expected grasping points were randomly selected
for each group to conduct several experiments and record the errors.
The results are listed in Tables 2 to 6.

Table 2 Measurement results when the conveyor
belt is stationary

Average error 1.66 3.75

Table 5 Measurement results at a conveyor speed of 33 mm/s

Desired grasp point

. Experiment Mean axial Mean radial Adjusted average
coordinates and

inclination angle times error/cm  error/cm tilt angle error/(°)
(150, 0) 45° 50 1.20 1.50 3.0
(307, 19) 120° 50 0.83 -3.20 5.0
(276, 29) 230° 50 2.48 1.36 5.0
(311, 30) 315° 50 1.80 0.57 5.0
Average error 0.06 4.5

Table 6 Measurement results at a conveyor speed of S0 mm/s

Desnred. grasp point Experiment Mean axial Mean radial A(busted average
coordinates and . tilt angle error
TR times error (cm)  error (cm)
inclination angle (degree)

(150, 0)45° 50 -0.49 3.89 4
(307, 19)120° 50 2.60 1.35 2
(276, 29)230° 50 1.43 3.10 3
(311, 30)315° 50 1.42 1.33 3

Average error 2.42 3

Desired grasp point

. Experiment Mean axial Mean radial Adjusted average
coordinates and

inclination angle times error/cm  error/cm tilt angle error/(°)
(150, 0) 45° 50 0.86 0.57 5.0
(307, 19) 120° 50 —-1.45 —0.56 4.0
(276, 29) 230° 50 1.74 0.43 4.0
(311, 30) 315° 50 1.20 0.46 4.0
Average error 0.59 0.22 4.2

Table 3 Measurement results at a conveyor speed of 8 mm/s

Desired grasp point

. Experiment Mean axial Mean radial Adjusted average
coordinates and

inclination angle times error/cm  error/em  tilt angle error/(°)
(150, 0) 45° 50 -0.34 1.10 3.0
(307, 19) 120° 50 —-1.56 1.20 4.0
(276, 29) 230° 50 -1.36 0.49 3.0
(311, 30) 315° 50 1.40 0.24 4.0
Average error —0.46 0.76 35

Table 4 Measurement results at a conveyor speed of 16 mm/s

Desired grasp point

. Experiment Mean axial Mean radial Adjusted average
coordinates and

inclination angle times error/cm  error/ecm  tilt angle error/(°)
(150, 0) 45° 50 1.62 0.98 3.00
(307, 19) 120° 50 0.77 225 3.00
(276, 29) 230° 50 —-1.55 2.48 4.00
(311, 30) 315° 50 -1.30 0.92 5.00

The results show that the average axial error was 0.71 cm, the
average radial error was 1.02 cm, and the adjusted average angle
error was 3.79° of the different conveyor belt speeds within the
scope of the belt speed. The mechanical arm can grab the lettuce
steadily and fast at different speeds, which verifies the efficiency of
the mechanical arm control method based on model predictive
control.

6 Conclusions

1) Because the current reversing device of the packaging
machine line was unsuitable for crops, and artificial sorting
efficiency was low, the first task in this study was to design a vision
system with higher accuracy and real-time. In this study, the
assembly line lettuce recognition model was established based on
the improved YOLOvVS. Using MobileNetV3 as the backbone
feature extraction network, the depthwise separable convolution and
SE attention mechanism were combined to optimize the extraction
effect, and the loss function of the original model was modified to
establish an assembly line lettuce recognition model. The optimal
grasping point and tilt angle of the lettuce stalk were obtained by
image morphology processing. Finally, an assembly line coordinate
system was established for coordinate transformation and visual
speed measurement. The collected lettuce dataset was used for
training and application. The average accuracy rate was 98%, the
recall rate was 95%, and the average detection time of a single
frame image was 0.014 s, which was improved by 50%. While
ensuring the recall rate and detection accuracy, the detection speed
was improved to meet the requirements of the assembly line
deployment on the embedded side.

2) This study proposed a manipulator control method for a two-
link robot system. Guided by the localization of the target feature
points and dynamic velocity measurement of the vision system, a
kinetics model of the manipulator was constructed. In the time
domain, the model predictive control was used for continuous
prediction and feedback optimization to track the desired trajectory
and complete the dynamic path tracking of the lettuce stalk feature
points. When the translation and rotation vectors of the manipulator
and lettuce feature points meet the preset requirements, the
controller controls the manipulator to complete the grasp and
posture adjustment of the lettuce. When lettuce is stacked, multi-
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machine coordination can be used for attitude adjustment. At the
same time, the more challenging image processing and positioning
of lettuce will also be considered in the future. This experiment can
realize stable, fast, and accurate lettuce grasping and sorting. This
method can significantly improve the production capacity of the
assembly line, with high productivity and intelligence, and can
liberate workers from complicated manual labor.
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