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Abstract: Accurate crop detection is the prerequisite for the operation of intelligent agricultural machinery.  Image 

recognition usually lacks accurate orientation information, and Lidar point clouds are not easy to distinguish different objects.  

Fortunately, the fusion of images and Lidar points can complement each other.  This research aimed to detect maize (Zea mays 

L.) seedlings by fusing Lidar data with images.  By applying coordinate transformation and time stamps, the images and Lidar 

points were realized homogeneous in spatial as well as temporal dimensions.  Deep learning was used to develop a maize 

seedling recognition model, then the model recognized maize seedlings by labeling them with bounding boxes.  Meanwhile, 

Lidar points were mapped to the bounding boxes.  Only one-third of points that fell into the right middle of bounding boxes 

were selected for clustering operation, the calculated center of the cluster provided spatial information for target maize 

seedlings.  This study modified the classical single shot multi-box detector (SSD) by merely linking the last feature map to the 

final output layer, owing to the higher feature maps having the unique advantages of detecting relatively larger objects.  In 

images, maize seedlings were just the largest objects owing to be shot on purpose.  This modification enabled the recognition 

model to finish recognizing an image by only consuming around 60 ms, which saved about 10 ms/image compared with the 

classical SSD model.  The experiment was conducted in a maize field, and the maize was during the elongation stage.  

Experimental results demonstrated that the standard deviations for maximum distance error and maximum angle error were  

1.4 cm and 1.1°, respectively, which can be tolerated under current technical requirements.  Since agricultural fields are 

subject to staple crop-orientated and changeable ambient environment, the fusion of images and Lidar points can derive more 

precision information, and make agricultural machinery smarter.  This study can act as an upstream technology for other 

researches on intelligent agricultural machinery. 
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1  Introduction

 

Indisputably, intelligent agricultural machinery is the future 

development direction.  More and more sensors are equipped for 

agricultural machinery to let them become smarter, such as cameras 

and Lidar.  The cameras’ advantage is that they can present visible 

images and let agricultural machines know what they see, the 

Lidar’s advantage is that it can present exact spatial information by 

sparse points[1].  Therefore, the fusion of the camera and Lidar can 

extend reliability for each other[2]. 

All agricultural works serve crops.  For example, in the 
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weeding control stage, the crops are going to be avoided and weeds 

are going to be removed.  In the harvesting stage, the crops are 

going to be touched.  No matter which agricultural procedures, 

distinguishing crops and weeds, as well as obtaining crop locations 

are very important.  As for intelligent agricultural machinery, 

recognizing crops and mastering their locations are 

pre-technologies.  Nowadays, image processing and deep learning 

are used widely in all kinds of research fields.  Image processing 

is the technology of using computers to analyze digital images to 

achieve the desired results[3].  Deep learning is to learn the 

inherent laws and presentation levels of sample data, and its 

ultimate goal is to enable machines to have the ability to analyze 

and learn like human beings[4,5].  As a preliminary technology, 

image processing plays an important role in crop recognition, but 

compared with image processing only based on morphological 

features, deep learning has stronger generalization and robustness 

for crop detection[4]. 

Up to now, scientists had developed many object detection 

models based on deep learning framework, including the serial 

model of a Region-based Convolutional Network (R-CNN)[6-8], the 

serial model of ‘You Only Look Once’ (YOLO)[9-11], as well as 

single shot multi-box detector (SSD), and so on.  In terms of 

R-CNN, which belongs ‘two-stage’ object detection strategy[6], it 

needs about four steps to complete object detection.  As for each 

picture, R-CNN applies selective search to get many proposal 
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regions[12], each region will be scaled and imported to a 

Convolutional Neural Network (CNN) to extract features.  A 

Support Vector Machine (SVM) will be used to classify these 

features.  Aiming at these classified proposal regions, training a 

linear regression model to predict real bounding boxes, which 

showing target object labels and positions.  R-CNN applies a 

pre-trained neural network model to extract features, compared 

with artificial features, R-CNN increases target detection accuracy 

efficiently[6].  YOLO is a ‘one-state’ target detection frame, 

different from R-CNN serials, YOLO does not need to get proposal 

regions, it uses a single neural network to predict bounding boxes, 

as well as target probabilities[11].  The convolution output of 

YOLO is 7×7 points, rather than a single point, so each point can 

label a corresponding region in the original picture.  The unique 

benefit of YOLO is that each point can converge based on the 

corresponding region target while training, thus avoiding 

background interference[10].  SSD is one representative of 

one-stage algorithms, its basic principle is to discretize the 

bounding box into the default bounding box in output space, then 

predict and adjust in the default bounding box[13].  During the 

predicting process, the network will give each object a score based 

on the object's existing situation, so as to well match the object's 

shape[13].  In addition, SSD has the unique character of multiscale 

feature mapping[13]. 

Although there already exist some vision recognition models 

that can distinguish background interference, camera-based 

recognition is extremely computation consuming compared with 

Lidar, which is owing to Lidar having abundant depth information.  

Instead of merely applying object-detection models based on a 

camera, Yandún Narváez et al.[14] got rid of ground interferences by 

the fusion of Lidar, hence they detected fruit trees more easily.  

Both 3D and 2D Lidar can be fused to cameras, but compared with 

3D Lidar, 2D Lidar is more cost-effective.  Generally, 3D Lidar is 

usually used in autonomous vehicles[15], and 2D Lidar may be 

enough in agricultural machinery according to specific 

requirements.  Since mechanized planting is widely applied at 

present, the inter-row spacing and intra-row spacing are uniform, 

thus 2D Lidar can detect crop positions through appropriate 

mounting adjustment[16].  In the fusion process, time 

synchronization between two sensors is really important[17].  

What’s more, since the camera and Lidar have their own specific 

coordinate systems, the coordinate transformation is also a 

necessary procedure in data fusion.  Usually, one world 

coordinate system is needed, it will be used to act as a benchmark[1].  

The world coordinate system can be either the camera or Lidar 

coordinate system, or a system independent from them.  The 

prevailing operation of fusing camera and Lidar is to project points 

to an image, then detect whether these points belong to a specific 

target[18].  But how to find the pixels of target objects in images 

accurately, then fused these pixels and Lidar points is still a 

longstanding challenge. 

Crop detection is a popular research topic in intelligent 

agricultural machinery[19,20], crop detection pursues high-quality 

recognition and position in a certain scenario.  For example, 

intelligent agricultural machinery needs to acquire crop positions, 

so as to reach or avoid them.  The intelligent agricultural 

machinery needs to recognize a target, then the target can be 

simplified to a mass particle or a vertical line.  Therefore, the crop 

recognition model needs to provide a bounding box for the target 

crop, then only the Lidar points that belong to the bounding box 

will be taken into consideration.  Although the bounding box is a 

limited area, there still covers numerous points, so point cluster 

operation is also a necessary procedure[21].  According to different 

application scenarios, researchers have developed a large number 

of clustering algorithms for point clouds[19].  It is a truth that 

complex does not mean good, if the application scenarios are 

agricultural fields, it always looks forward to a clustering algorithm 

with more accurate positions and better effect.  No matter whether 

staple crops or any kind of vegetation, they extend their leaves 

while growing, this phenomenon amplifies the actual bounding box 

area.  So how to define the center of clustering points is related to 

the accuracy of crop positioning. 

It is no doubt that weeding control is an essential procedure in 

agricultural production.  The coercion effect of weeds on maize is 

particularly obvious in the early stages, which contain the 

elongation stage[22].  Thus the weeding control studies at maize 

early growth stages are particularly important.  Since crop 

positions are more uniform than weeds, hence only if weeding 

executing parts can avoid crop seedlings, then executing weeding 

operations in the other areas, weeding control operations can be 

implemented successfully[23-25].  So in real agricultural production 

scenarios, obtaining the positions of crop seedlings is wiser than 

obtaining the positions of weeds.  The above literatures illustrated 

that the fusion of camera and Lidar has so many advantages, but 

the relative researches aimed at maize were still limited, most of 

which is mainly laboratory research.  The maize planting area is 

about 4×107 hm2 in China[26], detecting maize seedlings is a 

prerequisite for realizing mechanical weeding.  So much chemical 

herbicide can be saved if mechanical weeding can replace herbicide 

weeding in the near future, so the goal of this research was to detect 

maize (Zea mays L.) seedling’s position through the fusion of a 

monocular camera and a 2D Lidar, a maize seedling recognition 

model was going to be achieved by deep learning technology, point 

clouds which within the target-bounding-box would provide 

accurate spatial information for the recognized maize seedling. 

2  Materials and methods 

2.1  Maize seedling recognition model 

In order to provide training images for deep learning, 

training-used images were acquired in Lishu County, Jilin Province, 

China (43.31°N, 124.62°E) on May 15th, 2021.  The maize’s 

inter-row distance was 65 cm and with different intra-row distances.  

Its species was Jidan 209, which is a prevailing maize species in 

Northeast China.  This field was sown by a no-till planter, through 

adjusting the handle which controls the intra-row distance in the 

no-till planter, different planting densities could be obtained.  

Specifically, the intra-row distances of 30.7, 25.6, and 21.9 cm are 

corresponding to 50 000, 60 000, and 70 000 plants/hm2, 

respectively.  Finally, this field was divided into three planting 

densities equally.  Five shooting periods were selected, and the 

specific environmental conditions at that time are listed in Table 1.  

One charge-coupled device camera (Model MV-EM200C, Shanxi 

Vision Manufacturing Technology Co., Ltd., China) and one fixed 

focus lens (Model AFT-2514MP, its focal distance is 2/3″, Shanxi 

Vision Manufacturing Technology Co., Ltd., China) were applied 

for image acquisition.  Color temperature was marked by using 

color temperature equipment (Model HPCS-320, Hangzhou 

HONGPU light color technology Co., Ltd., China) at the same time.  

One pole of 1 m was inserted into the field vertically, and 0.7 m 

was above the field.  In order to measure the solar altitude, a 

virtual line formed by the endpoint of the pole and the endpoint of 

the pole shadow was created, the angle between the line and the 
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vertical direction was the solar altitude.  By measuring the angle 

between the pole shadow and the north direction, the solar azimuth 

was obtained.  Solar altitude and solar azimuth were measured 

every 15 min during the image acquisition periods.  Maize 

seedling was during the elongation stage, the heights were about 40 

cm, and six to eight leaves could be found during the image 

acquisition period.  During shooting, in order to get maize 

characteristics as much as possible, and tried to not overlap the 

leaves in the image, the distance from the lens to central maize 

rows was set to about 15 cm, and the main optical axis was set 

−45° to the horizontal. 
 

Table 1  Mean ambient conditions while acquiring 

training-used images 

Time section 
Mean solar 

altitude/(°) 

Mean solar 

azimuth/(°) 

Light color 

temperature/K 

07:00-08:30 29 101 5500 

10:00-11:30 56 154 6500 

12:00-13:30 59 195 6500 

15:00-16:30 33 252 6300 

18:00-19:30 1 309 5500 
 

The camera was set to manually triggered for image 

acquisition.  Three planting densities (i.e. 50 000, 60 000, and 

70 000 plants/hm2) contributed 100 images, respectively.  300 

images were acquired during each shooting period, in other words, 

1500 images were acquired totally.  These acquired images were 

1280×800 pixels, their formats were ‘.jpg’.  Then LabelImage 

(Version 1.7, Google Brain, US) was applied to mark individual 

maize seedlings in these images.  During the labeling process, 

each marked object would generate a corresponding label.  

Furthermore, foreground maize seedlings nearest to the camera 

were picked out in this procedure, as shown in Figure 1.  

Corresponding labels were going to be used for training the 

recognition model.  Subsequently, these marked images were 

separated into a training set, a testing set, and a verifying set 

according to the ratio of 8:1:1 randomly.  Deep learning 

framework Tensorflow (Version 1.11.0) was adopted in this step.  

General information about the hardware and software were, the 

operating system was Ubuntu 20.04, the memory was 16 GB, the 

processor was Intel® Core™ i7-7 700 KCPU@ 4.00 GHz×8, the 

digital image processor (GPU) was NVIDIA GTX 2080Ti.  

Python (Version 3.6.5, Gudio van Rossum) incorporated with 

OpenCV (Version 3.4.2, computer vision repository,) was used as 

the programming language.  Only target maize seedlings in the 

foreground were marked and labeled, so background objects would 

be avoided during the training process.  In addition, the luxuriant 

leaves which were too stretched were excluded, too. 
 

 
Figure 1  Image labeling aimed at the stem parts of maize 

seedlings 
 

The classical SSD model was obtained from the feedforward 

neural network, which is Visual Geometry Group 16 (VGG16).  

Classical SSD added six extra feature layers, they were Conv4_3, 

Conv7, Conv8_2, Conv9_2, Conv10_2, Conv11_2, and their sizes 

decreased gradually.  The reason for linking six feature maps to 

the final output layer was to realize target detection at different 

scales[27].  The top larger feature maps are more easily to detect 

small objects, while the rear smaller feature maps are more 

conducive to detecting larger objects.  This study was detecting 

maize seedlings in real production, so the camera and Lidar would 

shoot maize seedlings on purpose, which resulted that maize 

seedlings would be the largest objects compared with the other 

objects (e.g., weeds) in the images.  For this reason, our research 

modified the classical SSD model.  Specifically, the top five links 

were abandoned, and only the last link to the final output layer was 

retained, as shown in Figure 2.  The other configurations of the 

modified SSD network were the same as described in Liu et al.[27] 
 

 
Note: SSD: Single shot multi-box detector; Conv: Convolution; VGG: Visual Geometry Group Net; FC: Fully connected layers. 

Figure 2  Network of modified SSD used in this study 
 

2.2  Fusion of camera and Lidar 

The same camera and fixed focus lens mentioned above were 

applied in this procedure.  One 360° laser scanning ranging Lidar 

(Model A2M8, Shanghai Silan Technology Co., Ltd., China) was 

fused to the camera.  The Lidar’s pitch angle ranges from −1.5° to 

1.5°, its scanning distance ranges from 0.2 to 12 m, and its ranging 

resolution is less than 0.5 mm.  The camera and Lidar were up and 

down installed, the Lidar was 40 cm above the field surface and 5 

cm below the camera, and the camera’s main optical axis was set 

−45° to the horizontal, as shown in Figure 3. 

Synchronization of the camera and Lidar should be conducted 

so as to achieve successful fusion.  The synchronization included 

both time dimension and spatial dimension.  Owing to the camera 

frame rate is 40 fps, which is equal to 40 Hz, while the Lidar 

scanning rate is only 10 Hz.  So this research regarded the Lidar 

scanning rate as a benchmark, the sampling rates of both the 
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camera and the Lidar were set to 10 Hz.  In order to implement 

one-to-one correspondence, time synchronization was implemented 

based on their time stamps.  The main project was mapping Lidar 

data to image coordinates, so as to obtain spatial information for 

target objects in images.  The Lidar coordinate and image 

coordinate were transformed according to Equation (1).  In the 

transformation, the original image coordinate matrix and Lidar 

coordinate matrix should undergo homogeneous transformation. 

qi = K[RT]pi                            (1) 

where, qi represents the image coordinate of the ith Lidar data, 

qi=[ui, vi, 1]T; ui and vi represent the horizontal and vertical 

coordinate values, respectively; K represents the intrinsic matrix of 

the camera, which is given by the camera manual; R represents 

rotation matrix used for converting Lidar coordinate to image 

coordinate; T represents translation matrix used for converting 

Lidar coordinate to image coordinate; pi represents the Lidar 

coordinate of the ith Lidar data, pi=[xi, yi, zi, 1]T; xi, yi, and zi 

represent the coordinate values in three dimensions, respectively. 
 

 
Figure 3  Positional relationships among the major components 

 

In this study, the Lidar coordinate was also set as the world 

coordinate, which was a virtual right-hand Cartesian coordinate 

system, as shown in Figure 4.  The origin was set to the geometry 

center of the Lidar, and the positive direction of the x-axis was set 

as the reverse direction of the Lidar junction cable.  Such a setting 

was accordant with the definition of Lidar data scanning coordinate.  

According to Zhang[28], this research obtained the camera intrinsic 

matrix.  The converting matrix from the Lidar coordinate to the 

camera coordinate was obtained with the aid of Lidar reflection 

cone.  The specific calculation steps were as follows: 

 
Figure 4  Schematic diagram of the virtual world coordinate 

system 
 

Firstly, put the Lidar horizontally, and adjust the angle and 

height of the reflection cone, which aim was to maximize the radar 

cross section (RCS) with respect to a corresponding detection 

target.  With the above premises, the center of the reflection cone 

was equivalent to the Lidar coordinate origin.  That was to say, 

the vertical coordinate of zi=0 in the matrix of pi=[xi, yi, zi, 1]T, at 

this time, xi, yi were recorded. 

Secondly, a corresponding image was shot manually, then the 

center coordinate of the reflection cone was labeled manually; 

Thirdly, step one and step two were repeated until 50 group 

numbers were obtained. 

Fourthly, 25 groups of data were selected randomly, and 

Equation (2) was used as the objective function to solve a nonlinear 

optimization problem, which was to get the transformation matrix 

parameters from Lidar coordinate to the camera coordinate. 

2

1
argmin || [ ] ||

n

i ii
q K RT p


   [1,  25]n        (2) 

According to Budil et al.[29], the above solution was obtained. 

Fifthly, the remaining 25 groups of data were used to verify the 

effect of conversion matrix parameters, if average error 

requirements were within the threshold, the conversion matrix 

parameters would be retained.  The threshold was described by 

Zhang et al.[30] 

In light of the maize seedling recognition model, a bounding 

box would surround a target maize seedling, as shown in Figure 5.  

As for Lidar points, they would project to the image.  This study 

was going to put the emphasis on the points located within the 

bounding box, rather than all the points.  Moreover, since the 

bounding box exceeded the maize seedling’s real outer contour, so 

points within a narrower area were going to be taken into account.  

These points were in the inner rectangle of Figure 5.  Specifically,  
 

 
Note: Only the maize seedling that was close to the data acquisition device was 

regarded as the target maize seedling, maize seedlings located in the other 

locations were regarded as background objects.  The same as below. 

Figure 5  Maize seedling which was recognized successfully 

 
Note: The blue dotted line is a vertical center line of the bounding box, the two 

purple lines are used to show the bounders of the real used section, and the red 

points are Lidar scanning points. 

Figure 6  Schematic diagram of extracting effective Lidar points 

for clustering 
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the corner coordinates of the bounding box could be got according 

to the coordinates of the top left corner and bottom right corner, 

and a vertical center line of the bounding box could be gotten, 

taking this center line as a benchmark, this research utilized 

one-third width of the original bounding box in the width 

dimension, then the points which located within this width were 

going to be clustered, as shown in Figure 6. 

In the following step, a cluster center was going to be 

calculated.  Specifically, these points’ spatial coordinates would 

be averaged and assigned to a new center point.  The new center 

point would be regarded as the cluster center, then the spatial 

information for a specific maize seedling can be derived based on 

the coordinate of this new center point.  As for the fusion of the 

camera and Lidar at the implementation level, it was based on 

Robot Operating System (ROS, the specific version was Noetic). 

2.3  Experiments 

On May 20th, 2021 which was 5 d after training-used image 

acquisition, a maize seedling detection experiment was taken place 

in the same field but with brand new maize rows.  This 

experiment lasted 3 d and corresponded to three different plant 

densities.  The maize was still during the elongation stage.  

There were still five shooting periods each day, the specific 

environmental conditions of three experimental days (from May 

20th to May 22nd) were listed in Table 2. 
 

Table 2  Mean ambient conditions while data acquisition 

Time section 
Mean solar 

altitude/(°) 

Mean solar 

azimuth/(°) 

Light color 

temperature/K 

07:00-08:30 28 100 5400 

10:00-11:30 55 156 6500 

12:00-13:30 57 194 6500 

15:00-16:30 32 251 6200 

18:00-19:30 0 307 5800 
 

The camera-Lidar combined device (Figure 7) was manually 

propelling along the maize rows, and the operations were the same 

with training-used image acquisition if there was no more specific 

explanation.  For the sake of getting real spatial information on 

maize seedlings, one high precision laser measuring instrument 

(‘HLM’ is short for ‘high precision laser measuring instrument’ in 

the following, Model MiLESEEY-X5, Shenzhen MAITEST 

Technology Co., Ltd., China, its measuring resolution reaches    

1 mm) was mounted close to the camera, as shown in Figure 3, 

then this study could obtain real distances and angles by the HLM.  

In light of HLM’s geometry dimension and basic parameters, the 

measuring benchmark could be converted to the world coordinate, 

which was also the Lidar coordinate.  According to the 

configuration in Figure 3, and only considering the stem parts, the 

HLM detecting point was in the middle of maize seedlings, besides, 

the detecting point was also on the Lidar scanning plane. 

According to the above interpretations, the camera and Lidar 

were set to a homogeneous data acquisition frequency of 10 Hz, 

and they had identical starting times by using time stamps.  As for 

any specific maize seedling, a random approach position was 

selected as shown in Figure 7, and the data acquisition lasted about 

1 s.  During this period, about 10 images were acquired for each 

maize seedling.  At the same time, the HLM recorded the 

corresponding distance and angle information.  What was needed 

to emphasize is that after fine-tuning manually, the HLM 

measuring plane was parallel to the Lidar scanning plane, and its 

measuring points were in the right middle of the target maize stems.  

About 100 maize seedlings were measured during each acquisition.  

There were three replicates for each shooting period, so 

15 acquisitions occurred and about 1500 maize seedlings were 

detected for 1 d experiment. 

 
Figure 7  Experimental scenario with the fused device of  

camera and Lidar 
 

As for the modified SSD model, for the sake of figuring out 

the real influence of abandoning the top five links from six extra 

feature layers, this research conducted a series of comparative 

experiments by substituting the modified SSD model with classical 

SSD, YOLOv1 and Faster R-CNN.  This study was also going to 

evaluate the detecting performance from the following aspects, i.e., 

the maize seedling recognition accuracy, the distance detecting 

accuracy, and the angle detecting accuracy based on the world 

coordinate.  The automatically obtained angle was measured by 

the fused method proposed in this study.  There are three angles 

between a line and a plane, and the line was formed by the new 

cluster center and the origin of the world coordinate system.  The 

automatically obtained angle based on ‘xoy’ plane was the angle 

between the line and the ‘xoy’ plane, and so did the automatically 

obtained angles based on the other two planes. 

The HLM-obtained angle was regarded as a comparative 

standard.  Specifically, the HLM obtained angle based on ‘xoy’ 

plane was the angle between ‘xoy’ plane and laser beam emitted 

from the HLM, through manual fine-tuning, the laser beam would 

reach the width center of a maize seedling.  So did the 

HLM-obtained angles based on the other two planes.  Individual 

maize seedling detecting accuracy was calculated according to 

Equation (3). 

100%
j j

j

j

 





                 (3) 

where, αj represents the final data, %; γj represents the 

automatically obtained data; βj represents the standard data; j 

represents different statistical items, i.e., maize seedling 

recognition accuracy, distance accuracy, angle accuracy based on 

‘xoy’ plane, angle accuracy based on ‘yoz’ plane and angle 

accuracy based on ‘xoz’ plane.  As for maize seedling recognition 

accuracy, γj represents the maize seedling numbers that are 

recognized successfully by the camera; βj represents the manually 

counted seedling numbers.  As for distance accuracy as well as the 

angle accuracies based on ‘xoy’ plane, ‘yoz’ plane, and ‘xoz’ plane, 

they were calculated within these successfully recognized maize 

seedlings. 

2.4  Data analyses 

SPSS 22.0 for Windows (SPSS Inc., US) was used for statistical 

analyses.  The least significant difference (LSD) analysis, including 

Student’s t-test and F-test, was used to compare whether there 

existed significant differences among different data acquisition 
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periods or different plant densities, etc. (*p<0.05, **p<0.01) 

3  Results 

Figure 4 reflects that the modified SSD model reached a 

recognition accuracy of more than 92% in the training procedure.  

As for field experimental results, Table 3 demonstrates that the 

recognition accuracy was affected by planting densities, as for 

planting densities of 50 000, and 60 000 plants/hm2, their 

recognition accuracies were all above 90%, no matter when were 

the data acquisition periods.  However, with regards to the 

planting density of 70 000 plants/hm2, four recognition accuracies 

were lower than 90%.  Generally speaking, the recognition 

accuracy decreased along with the increase in planting density.  

But in the premise of identical planting densities, the recognition 

accuracies nearly did not exist significant (p>0.05) difference 

among different data acquisition periods. 

Table 4 lists that the modified SSD model did not show a 

significant (p>0.05) advantage compared with the classical SSD 

model.  But both the modified and classical SSD models exceeded 

the other two models significantly (p<0.05).  The recognition 

accuracies of YOLOv1 decreased significantly (p<0.01) from 

60 000 to 70 000 plants/hm2.  However, unlike the others, the 

recognition accuracies of Faster R-CNN kept stability regardless of 

planting density. 

 
Figure 4  Recognition accuracy curve during training procedure for modified SSD model 

 

Table 3  Mean maize seedling recognition accuracies in 

different time sections 

Planting  

density 

/plants∙hm
−2

 

Time section/% 

07:00-08:30 10:00-11:30 12:00-13:30 15:00-16:30 18:00-19:30 

50 000 91.3
a
 92.3

a
 91.5

a
 92.6

a
 92.2

a
 

60 000 90.4
b
 90.3

b
 91.2

b
 91.1

b
 90.2

b
 

70 000 89.2
c
 89.9

c
 89.7

c 
89.4

c
 90.5

c
 

Note: Different lowercase letters representing the designated parameters had 

significant differences (p<0.05) compared with the others.  The same as below. 
 

 

Table 4  Mean maize seedling recognition accuracies among 

different deep learning models 

Planting density 

/plants∙hm
−2

 

Modified  

SSD/% 
SSD/% YOLOv1/% 

Faster 

R-CNN/% 

50 000 91.98
a
 91.30

a
 81.50

b
 89.60

c
 

60 000 90.64
d
 90.63

d
 81.20

b
 89.10

c
 

70 000 89.75
e
 89.59

e
 75.70

f
 89.40

c
 

 

Table 5 exhibits different time consumptions with regard to 

different models, the modified SSD shows significant (p<0.05) 

time advantage compared with the others.  Compared with three 

commonly used models which are classical SSD, YOLOv1, and 

Faster R-CNN, this modified SSD saved about 10, 30, and     

130 ms/image, respectively.  As for any specific model, there did 

not show any time consumption difference (p>0.05) among 

different planting densities. 
 

Table 5  Mean time consumptions among different deep 

learning models (ms/image) 

Planting density/plants∙hm
−2

 Modified SSD SSD YOLOv1 Faster R-CNN 

50 000 61.3
a
 72.3

b
 82.5

c
 192.6

d
 

60 000 60.4
a
 70.3

b
 82.2

c
 191.1

d
 

70 000 59.2
a
 69.9

b
 83.7

c
 189.4

d
 

In order to evaluate the measured distance accuracy and angle 

accuracy, these standard data were obtained by using HLM 

mentioned above.  Table 6 reveals that averaged across data 

acquisition periods, and with regards to the planting density of 

50 000 plants/hm2, the average distance error (d), average angle 

errors based on ‘xoy’ plane (x), ‘yoz’ plane (y), and ‘xoz’ plane (z) 

were 0.88%, 0.76%, 0.80%, and 0.78% respectively.  They were 

1.38%, 1.44%, 0.88%, and 1.18% with respect to the planting 

density of 60 000 plants/hm2.  And in terms of the planting 

density of 70 000 plants/ hm2, they were 1.36%, 0.62%, 1.02%, and 

1.08%, respectively.  Focused on planting densities and data 

acquisition periods, further statistical analyses showed that they did  
 

Table 6  Mean positional errors of different data acquisition 

periods and different planting densities 

Planting  

density 

/plants∙hm
−2

 

Data acquisition period/% 
Mean  

standard  

deviation 
07:00- 

08:30 

10:00- 

11:30 

12:00- 

13:30 

15:00- 

16:30 

18:00- 

19:30 

50 000 

d 1.1 0.9 0.8 0.7 0.9 1.1 cm 

x 1.1 0.5 0.6 1.2 0.4 0.71° 

y 0.5 0.8 0.9 1.1 0.7 0.45° 

z 0.2 0.1 1.9 1.0 0.7 0.9° 

60 000 

d 1.8 1.6 0.1 1.2 2.2 0.9 cm 

x 1.0 1.0 1.2 2.1 1.9 0.68° 

y 0.8 0.5 0.9 0.7 1.5 0.78° 

z 1.5 1.1 1.1 1.3 0.9 0.88° 

70 000 

d 1.0 2.0 0.9 1.1 1.8 1.4 cm 

x 0.2 0.6 0.6 0.8 0.9 0.91° 

y 1.1 1.2 1.3 1.1 0.4 1.1° 

z 2.0 1.5 0.6 0.4 0.9 0.31° 

Note: lower letter ‘d’ represents average distance error, lower letter ‘x’ 

represents average angle error based on ‘xoy’ plane, lower letter ‘y’ represents 

average angle error based on ‘yoz’ plane, the lower letter ‘z’ represents the 

average angle error based on ‘xoz’ plane. 
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not cause significant (p>0.05) differences in the above-mentioned 

errors.  Furthermore, statistical analyses showed that the errors 

were in a normal distribution, and the mathematical expectation 

was close to 0.  Besides, the real spatial parameters and detecting 

spatial parameters did not have significant differences at a 

significance level of 0.05. 

4  Discussion 

4.1  Maize seedling recognition accuracy 

As listed in Table 3, the recognition accuracy of maize 

seedlings was around 90%, and the accuracy decreased along with 

the increase in planting density.  Object classification and object 

recognition have different levels of complexity.  Object 

classification always operates images that have only one kind of 

object, and object recognition always operates images that have 

several kinds of objects, besides, it always needs to label different 

objects in the operation of object recognition, so object recognition 

is more complex than object classification[31].  The fewer objects 

in the image, the easier for successful detection.  It is a truth that 

images acquired from high-density fields are more complex than 

those acquired from low-density fields.  For example, there were 

more overlapping leaves in high-density field images, as shown in 

Figure 9.  Substantial overlapping leaves caused more trouble for 

the maize-seedling recognition model. 

 
Figure 9  Overlapping leaves of elongation maize seedlings under 

70 000 plants/hm2 

 

In the research field of computer vision, light does have a close 

relationship with the image process.  But to our surprise, 

statistical analyses showed that image acquisition periods did not 

have significant influence (p>0.05) on the recognition accuracy.  

Table 2 reveals that different image acquisition periods had a close 

relationship with light conditions, such as solar altitude, solar 

azimuth, and light color temperature.  The little light influence 

should ascribe to the modified SSD model in this research since 

different extracting feature maps have different unique functions, 

i.e., the relative lower maps have relative smaller receptive fields, 

which have unique advantages of detecting relative small objects[32].  

The relative higher feature maps have relative larger receptive 

fields, which have the unique advantage of detecting relative larger 

objects[32].  This research put emphasis on detecting maize 

seedlings, and we would shoot maize seedlings on purpose while 

working, so maize seedlings would be the largest objects in 

acquired images.  This is why we modified the classical SSD 

model, so as to let only the last feature map (the highest feature 

map) be linked to the final output layer.  All in all, the 

application-orientated purpose of this study, together with the 

modified linkage made the light influence no longer obvious while 

aiming at specific research objects.  Similar research results can 

be found in the study of Jia et al.[33], their purpose was to detect 

maize ears, and maize ears were shot on purpose while working, so 

even though illumination conditions changed all the time, their 

detecting accuracies did not have obvious variations. 

Although in terms of recognition accuracy, this modified SSD 

model did not have obvious advantages over the classical SSD 

model, this modified SSD model had obvious advantages compared 

with YOLOv1 and Faster R-CNN (Table 4).  This should ascribe 

to the unique advantage of SSD model, which added six extra 

feature layers and predicted by convolutional kernels[27].  The 

unique characteristics of SSD model were also reflected in time 

consumption, Table 5 illustrates that the time consumption of the 

modified SSD model was about 60 ms/image, which saved a lot of 

time compared with the others.  On the one hand, this was because 

the SSD model is a one-stage strategy model, while Faster R-CNN 

is a two-stage strategy model[7], so it is no surprise that SSD model 

has time consumption advantage over Faster R-CNN.  Some other 

researches also showed that SSD model was faster than 

YOLOv1[11].  On the other hand, this research abandoned the top 

five links compared with the original network architecture, owing 

to only one link being retained in the final output layer, this should 

save substantial time compared with the classical SSD model.  

Usually, one image contains about one effective maize seedling, 

namely, one maize seedling is exposed appropriately and can be 

detected successfully.  Assuming that the maize intra-row distance 

is 25 cm on average, thus a time consumption of 60 ms/image 

could guarantee a non-stop operating speed of 15 km/h.  Such speed 

could catch up with any kind of modern agricultural machinery. 

4.2  Maize seedling detecting accuracy 

Experimental results showed that camera and Lidar fused well 

enough to give a detecting result with a maximum error of less than 

1.38%.  As for the maximum mean standard deviations for 

distance and angle, they were 1.4 cm and 1.1°, respectively.  

Furthermore, the errors were in a normal distribution, and the 

mathematical expectation was close to 0.  According to the real 

growth scenario and agronomy in northeast China, the average 

diameter of maize seedlings is about 1.5 cm, the commonly used 

inter-row distance is 65 cm[34].  As for the distance-detecting 

accuracy in this research, the variation range was equivalent to a 

maize seedling’s diameter.  As for the angle detecting accuracy, 

the standard deviation was 1.1°.  Assuming that the weeding 

execution part is 65 cm long and starts from the origin of the world 

coordinate system, besides, the weeding execution part can reach 

the target point without significant deviation.  The final result is 

that such deviation will merely cause about 1.25 cm offset for the 

weeding execution part.  Under the current technical requirements, 

the above errors can be tolerated, owing to mechanical weeding 

will retain a circular safety zone, this zone is centered on maize 

seedlings, which is about one-fifth of the intra-row distance, 

namely, a circular zone with a diameter of about 5 cm in maize 

field[35].  More specifically, with regard to the current distance 

standard deviation and angle standard deviation, our research 

results will not cause seedling damage in real operation. 

Unaffected by light conditions is the unique advantage of Lidar.  

Table 6 demonstrates that the detecting accuracy did not change 

significantly (p>0.05) under any illumination circumstance.  

Owing to being unaffected by light, Lidar is usually used for 

outdoor object detection, such as agricultural crop detection and 

fruit tree detection[1,14,16].  If taken all the Lidar points within the 

bounding boxes into consideration, this research could not reach 
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such detecting accuracy.  The reason is that owing to 

two-dimension laser Lidar only emits one beam in height 

dimension, but many beams in the width dimension.  As for image 

recognition, it was a bounding box that surrounded a maize 

seedling.  The bounding box is larger than the real object, 

especially in the width dimension in this research.  Despite some 

points did fall into the bounding boxes, actually, they did not 

belong to the real target object, but belonged to background objects.  

In order to avoid such phenomenon, this research narrowed the real 

used areas of the bounding boxes, which retained only one-third in 

the width dimension.  And one-third of Lidar points in bounding 

boxes were clustered, then a new center coordinate that represented 

the cluster was used for spatial analyses. 

As for the actual composition of laser points, some of them 

were reflected by maize stems, while some of them were reflected 

by maize leaves, and even some laser points were reflected by 

background maize seedlings.  Although we narrowed the 

bounding box to one-third, this area still exceeded the actual width 

of the maize stems.  Actually, the maize stems only occupied a 

relative small area, as shown in Figure 6.  So it is inevitable that 

some laser beams reached background, and background reflected 

points were a major reason for error occurrence.  From another 

aspect, some maize seedlings were not in the right middle of the 

bounding boxes.  Under these circumstances, a majority of 

effective points were reflected by maize leaves.  If stem reflected 

points occupied a relative small proportion, while leave reflected 

points occupied a relative larger proportion.  However, the real 

positional detection was based on maize stems in this study, such 

leave reflected points made the calculated position deviate from the 

real position, too.  Besides, although there did not exist visible 

positional changes between the camera and the Lidar, their 

positional variations were inevitable, some studies hold the 

viewpoint that vibration-caused positional changes between the 

camera and the Lidar is also a non-negligible reason for error 

occurrence[36]. 

5  Conclusions 

This research achieved maize seedling detections by the fusion 

of camera and Lidar, which took full advantage of camera and 

Lidar.  Deep learning played an important role in maize seedling 

recognition based on the hardware of camera, and Lidar points 

provided accurate spatial information regardless of ambient light 

conditions.  The experiment was conducted in a maize field, and 

the maize was during the elongation stage.  Experimental results 

revealed that maize seedling recognition accuracies had a 

relationship with planting densities, but with a premise of identical 

planting densities, the recognition accuracy was stable.  No matter 

what were the planting densities and data acquisition periods, our 

detected positional errors did not have significant differences at a 

significance level of 0.05.  Furthermore, the errors were in normal 

distribution, and the mathematical expectation was close to 0.  

Therefore, although errors exist, this technology can guide an 

executing part to reach or avoid maize seedlings without damaging 

them.  We are sure this study does have some practical application 

value in intelligent agricultural machinery. 
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