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Abstract: Drying paddy with low-pressure superheated steam (LPSS) can effectively increase the γ-aminobutyric acid content in 
paddy.  This study aimed to investigate the characteristics and mathematical models (MMs) of thin-layer drying of paddy with 
LPSS.  The experimentally obtained data were fitted by nonlinear regression with 5 MMs commonly used for thin-layer drying to 
calculate the goodness of fit of the MMs.  Then, the thin-layer drying of paddy with LPSS was modeled with two machine 
learning methods as a Bayesian regularization back propagation (BRBP) neural network and a support vector machine (SVM).  
The results showed that paddy drying with LPSS is a reduced-rate drying process.  The drying temperature and operating 
pressure have a significant impact on the drying process.  Under the same pressure, increasing the drying temperature can 
accelerate the drying rate.  Under the same temperature, increasing the operating pressure can accelerate the drying rate.  The 
comparison of the model evaluation indexes showed that 5 common empirical MMs (Hederson and Pabis, Page, Midilli, 
Logarithmic, and Lewis) for thin-layer drying can achieve excellent fitting effects for a single experimental condition.  However, 
the regression fitting of the indexes by calculating the coefficient(s) of each model showed that the empirical MMs produce poor 
fitting effects.  The BRBP neural network-based model was slightly better than the SVM-based model, and both were 
significantly better than the empirical MM (the Henderson and Pabis model), as evidenced by a comparison of the training root 
mean square error (RMSE), testing RMSE, training mean absolute error (MAE), testing MAE, training R2, and testing R2 of the 
Henderson and Pabis model, the BRBP neural network model, and the SVM-based model.  This results indicate that the MMs 
established by the two machine learning methods can better predict the moisture content changes in the paddy samples dried by 
LPSS. 
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1  Introduction 

Rice is one of the most important grains in the world.  However, 
with the development of food diversification, the consumption of 
rice as a staple food has been decreasing each year.  Therefore, 
functional rice rich in γ-aminobutyric acid (GABA) has become a 
popular research topic worldwide[1,2].  GABA is a four-carbon 
nonprotein amino acid that is mainly produced by the conversion of 
glutamate through catalysis by glutamate decarboxylase (GAD).  
GABA acts as an inhibitory neurotransmitter in the central nervous 
system of mammals and participates in the physiological activities 
of cerebral circulation.  GABA has antihypertensive, 
antiarrhythmic, diuretic, analgesic, and anxiety-relieving effects.  
GABA insufficiency is closely associated with posttraumatic stress 
disorder, schizophrenia, fibromyalgia, and other central pain 
syndromes, and GABA dysfunction is associated with the 
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occurrence of bipolar disorder[3-6].  Li et al.[7] found that the 
combined use of low-pressure wet steam enrichment and LPSS 
drying processes can effectively increase the GABA content in rice 
and that 10% of the total GABA content can be attributed to 
enrichment in the LPSS drying stage. 

LPSS drying combines superheated steam in direct contact with 
a damp material under low pressure to remove moisture from the 
material.  LPSS can dry a damp material at a relatively low 
temperature in an oxygen-free environment, which effectively 
reduce the loss of nutrients by oxidation and thermal degradation 
during the drying process.  Therefore, LPSS can dry material to a 
suitable moisture level at a relatively low temperature and can 
ensure a quality appearance and the nutrient composition of the 
material[8-12].  LPSS has been successful in the drying treatment of 
agricultural products, such as wood, silk, onion, silkworm cocoon, 
carrot chunks, and parsley[13-16]. 

Drying mathematical models (MMs) can be used to optimize 
drying parameters, design and improve drying equipment, reduce 
drying energy consumption, and improve drying quality.  Currently, 
there are many LPSS drying models.  For example, Elustondo et 
al.[17] constructed an MM to calculate the process of LPSS drying of 
food particles.  Zhang et al.[18] studied the thin-layer drying 
characteristics of sludge under superheated steam, constructed MMs, 
analyzed the thin-layer drying characteristics of sludge under 
superheated steam, and fitted the data with seven types of thin-layer 
drying MMs.  These results showed that the Midilli model can 
simulate the superheated steam drying process of sludge well.  Li et 
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al.[19] studied the LPSS drying characteristics of green radish slices 
and showed that superheated steam produces a faster drying rate.  
Yuan et al.[20] constructed an MM for the superheated steam drying 
of Penaeus vannamei and showed that the lower superheated steam 
temperature results in a higher drying quality of Penaeus 
vannamei. 

In the research on paddy processing.  already researchers have 
mainly focused on the method of reducing paddy drying costs and 
the crack ratio.  Due to the high cost of LPSS drying of paddy, there 
are few previous studies on this topic.  However, GABA-enriched 
paddy has high economic value, so increasing the drying cost to 
improve paddy quality is a worthwhile endeavor.  Since LPSS 
drying can effectively increase the GABA content in paddy, this 
method was selected for this study. 

In this study, the effects of temperature, pressure, and time of 
LPSS on the moisture content in paddy were analyzed.  The 
experimental data were fitted with five types of thin-layer drying 
MMs.  However, the moisture content of paddy is significantly 
nonlinear and time-varying during the drying process, and using 
only a single model to fit the processes under different conditions 
inevitably limits the adaptability and prediction accuracy.  In recent 

years, machine learning-based MMs have been constructed to 
predict the relationships between complex process parameters, 
showing excellent adaptability and predictive power[21-24].  
Therefore, a Bayesian regularization backpropagation (BRBP) 
neural network and a support vector machine (SVM) were used to 
establish MMs for LPSS drying of paddy, and the results were 
compared with those of empirical MMs.  This study provides a 
theoretical reference and technical guidance for the application of 
the LPSS drying technology to paddy. 

2  Materials and methods 

2.1  Test materials 
Test sample: Suijing-18 japonica rice produced in 2021 was 

provided by Qing’an Donghe Jingu Grain Reserve Co., Ltd (Harbin, 
China). 
2.2 Test equipment 

The drying test bench is shown in Figure 1, which is mainly 
composed of 20 components, including a sealed acrylic box, an 
aluminum foil heater, a gas superheater, a temperature sensor, a 
condenser, and a vacuum pump (1550D, Maximum pressure −0.098 MPa, Taizhou Fujiwara Tools Co., Ltd., China). 

 

 
1. Water bathtub  2. Water bath thermostatic heater  3. Vacuum barrel  4. Superheater  5. Drying box  6. Pressure gauge  7. Vent valve  8. Air extraction port           
9. Material rack  10. Temperature sensor  11. Medium-weight sensor  12. Aluminum foil heater  13. Aluminum foil heater  14. Weighing system  15. Temperature 
detection system  16. Condenser air inlet  17. Vapor-water condensate separator  18. Condenser air outlet  19. Drain  20. Vacuum pump 

Figure 1  Drying test bench 
 

The other instruments used include an electronic balance 
(JT1003D, 100 g/0.1 mg, Shanghai Hengji Scientific Instrument Co., 
Ltd.) and a digital electric thermostatic drying oven (101-A, 
300°C/±1°C, Shanghai Jinping Instrument Co., Ltd., China). 

In this experiment, the paddy was dried using the LPSS 
generated by the test bench as shown in Figure 1.  An appropriate 
amount of clean water was placed in the vacuum barrel, and the 
water bath heater was turned on to heat the vacuum barrel.  Then, 
the gas superheater and the aluminum foil heaters were turned on.  
Next, the vacuum pump and the cooling tank were turned on.  The 
steam generated in the vacuum barrel reached the superheated state 
after passing through the gas superheater and the aluminum foil 
heater.   
2.3  Test method 
2.3.1  Preparation of test samples 

Select plump rice grains and place them on the bench., set at an 
absolute pressure of 0.026 MPa, a temperature of 60.66°C, and a 
drying time of 5.01 h for the enrichment of GABA in rice.  Under 
these enrichment conditions, the GABA content in rice reached 
94.1751 mg/100 g.  After the enrichment was completed, the paddy 
samples were removed and cooled at room temperature (22°C) for 
1 h.  After cooling, the paddy samples were placed in sealed bags 
and stored in a refrigerator at 4°C for later use[7].  Two hours before 
the experiment, the paddy samples were taken out from the 
refrigerator and placed in an airtight glass container to reach room 
temperature for further experiments. 

2.3.2  Cooperation method and experimental design 
The system was preheated according to the specific 

experimental design temperature, and 100 g samples were taken and 
placed on the sample rack (10), the parameters of the test bench were 
adjusted according to the test plan, and steam flow is set at 0.5 L/h, 
and the test was started, 10 g paddy was sampled every 10 min to 
measure the moisture content at that time. 

The pressure, temperature, and drying time of the test bench 
were adjusted to (0.01 MPa, 0.015 MPa, 0.02 MPa, 0.025 MPa, or 
0.03 MPa), (50°C, 55°C, 60°C, 65°C, or 70°C), and (10 min, 20 min, 
30 min, 40 min, 50 min, or 60 min), respectively, to analyze the 
effects of these parameters on the moisture content of paddy. 
2.3.3  Moisture content measurement method 

1) Determination of the initial moisture content of the paddy 
samples 

The paddy samples were placed in an electric thermostatic 
drying oven at 103°C for 40 min. 

2) Calculation of the moisture ratio (MR) 
The MR of the paddy samples at the drying time t was 

calculated through Equation (1): 

0
MR t e

e

M M
M M





                  (1) 

where, MR is the moisture ratio of a paddy sample at time t; Mt is the 
moisture content of the paddy sample at the drying time t, %; M0 is 
the initial moisture content of the paddy sample, %; Me is the 
equilibrium moisture content of the paddy sample, %. 
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There is no equilibrium Me in superheated steam drying, and the 
paddy samples can be dried to a very low moisture content.  Hence, 
the equilibrium MR is considered to be zero, and the expression of 
the MR can be simplified as Equation (2)[25]. 

0
MR tM

M
                      (2) 

2.3.4  Establishment of drying MMs 
1) Establishment of empirical MMs 
The data of the LPSS drying experiment were fitted with five 

common thin-layer drying MMs, and the goodness of fit of the MMs 
under a single experimental environmental condition was analyzed.  
The model coefficients under each experimental condition were then 
calculated and subjected to regression fitting to obtain the overall 
goodness of fit between each model and the experimental data.  The 
five common MMs analyzed in this study are listed in Table 1[26-28]. 
 

Table 1  Empirical MMs for thin-layer paddy drying 
Serial number Model name Model equation 

1 Hederson and Pabis MR exp( )a kt 

2 Page MR exp( )xkt   

3 Midilli MR exp( )xa kt bt    
4 Logarithmic MR exp( )a kt c    
5 Lewis MR exp( )kt   

Note: MR is the moisture ratio of a paddy sample, %; a, k, x, b, and c are the model 
coefficients; t is the drying time, s. 
 

2) Establishment of a drying MM based on a BRBP neural 
network 

(1) Determine the inputs and outputs 
In the experimental design, the steam content was set to 0.5 L/h 

to analyze the effect of pressure and temperature on moisture drying.  
Therefore, temperature T, pressure P, initial moisture content W0, 
and drying time t were selected as the input variables, and the ratio 
of rice moisture content to initial moisture content at a given time 
MR was used as the output variable. 

(2) Sample point selection and division 
The moisture content results at six-time points were recorded 

for each of the 25 sets of experiments.  To comprehensively 
evaluate the effectiveness of the machine learning model algorithm, 
the model evaluation strategy was as follows: The six pieces of 
experimental data of the i-th set were selected as the test samples, 
and the test data of the other 24 sets were used as the training 
samples.  Then, the BP neural network was trained; i was set to 1, 2, 
3,···, 25, and the model was trained 25 times and tested 25 times[29]. 

(3) Neural network topology and parameter selection 
Corresponding to the built model, 4 traversals are input, and 1 

variable is output.  The neural network has 4 input nodes and 1 
output node.  According to the Kolmogorov theorem, a hidden 
layer with 20 hidden layer nodes is required.  The transfer function 
was a sigmoid function, the output layer was a linear function, the 
maximum number of iterations was 1000, the training mean square 
error was 0, and the training speed was 0.05[30].  Some studies have 
shown that the BP neural network with the sigmoid function as the 
transfer function can approximate any continuous and bounded 
nonlinear function with arbitrary precision, even if the network has 
only one hidden layer. 

3) Establishment of an MM for LPSS drying of paddy based on 
SVM[31] 

(1) The inputs and outputs of the model are consistent with the 
input and output variables of the BRBP neural network model; 

(2) The sample set division is consistent with that of the BRBP 

neural network model; 
(3) The hyperparameters are selected using the regression SVM 

algorithm; 
(4) ε is the insensitive coefficient, with a parameter search space 

of (1e−3, 1e2); 
(5) B is the penalty coefficient, with a parameter search space of 

(1e−3, 1e3); 
(6) γ is the kernel width, with a parameter search space of (1e−3, 

1e3); 
(7) The hyperparameter is optimized through the Bayesian 

optimization algorithm, with the 5-fold cross-validation error of the 
training samples as the optimization objective. 

3  Results and discussion 

3.1  Analysis of the characteristics of LPSS drying of paddy 
Two representative sets of experimental data were selected for 

discussion and interpretation.  One set of data was from the set of 
experiments at the same pressure (0.03 MPa) and different 
temperatures (50°C-70°C), and the other set of data was from the set 
of experiments at the same temperature (50°C) and different 
pressures (0.01-0.03 MPa).  The time-dependent curves of the 
moisture content, drying rate, and MR of the paddy samples under 
different experimental conditions are shown in Figures 2-4, 
respectively. 

Figure 2a shows the time-dependent curves of the paddy 
moisture content under the same temperature and different pressures.  
As shown in the figure, the paddy moisture content decreased over 
time.  The pressure affects the paddy moisture content.  
Specifically, the lower the absolute pressure is (the higher the degree 
of vacuum is), the lower the paddy moisture content at the same 
drying time.  This occurs because the drying efficiency of paddy, 
which is a porous thermosensitive medium, is higher at a lower 
pressure (larger degree of vacuum) as the lower pressure enhances 
the internal diffusion through porous particles and boosts water 
evaporation by lowering the boiling point of water.  The formula 
for calculating the degree of superheating is ∆Tsh=To−Tsat, where 
To is the operating temperature, °C; Tsat is the saturation 
temperature, °C; ∆Tsh is the degree of superheating.  A lower 
operating pressure results in a lower saturation temperature Tsat.  
If the operating temperature remains unchanged, a higher degree 
of superheating is obtained, and the degree of superheating is 
considered an important parameter in the LPSS drying 
process[32,33]. 

Figure 2b shows the time-dependent curves of the paddy 
moisture content under the same pressure and different temperatures.  
As shown in the figure, the paddy moisture contents decrease with 
time, and the temperature has an evident impact on the paddy 
moisture content as the higher the temperature is, the lower the 
moisture content at the same drying time.  This is attributed to a 
higher temperature leading to a faster water evaporation rate.  The 
constant boiling point of water at constant pressure and higher 
temperature results in a higher degree of superheating and thereby a 
faster drying rate[34]. 
3.2  Empirical model fitting results and analysis 

Table 2 shows the goodness of fit (R2) between the experimental 
results and the five common thin-layer drying MMs (Henderson and 
Pabis model, Page model, Midilli model, logarithmic model, and 
Lewis model) under various drying conditions.  The R2 values of 
each model are listed in Table 2, and the effects of fitting between 
the data and the empirical MMs are shown in Figures 3-7. 
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a. Under different pressures 

 
b. Under different temperatures 

Figure 2  Variation of moisture content with time 
Figures 3-7 show the goodness of fit (R2) between the experimental 

results and the five common thin-layer drying MMs (Henderson and 
Pabis model, Page model, Midilli model, logarithmic model, and 
Lewis model) under various drying conditions. 

Based on each individual experiment, the Henderson and Pabis 
model, the Page model, the Midilli model, and the logarithmic 
model produce good fitting results.  Of them, the Midilli model 

shows the best fitting effect (maximum R2: 0.9996, minimum R2: 
0.970), and the Lewis model has the worst fitting effect (minimum 
R2: 0.7381).   
 

Table 2  Fitting results of five common thin-layer drying MMs 

T 
/°C

P 
/MPa 

R2 

Hederson and 
Pabis[26-28] 

Page 
[26-28] 

Midilli 
[26-28] 

Logarithmic
[26-28] 

Lewis
[26-28]

50 0.0100 0.9767 0.9606 0.9853 0.9850 0.9672
50 0.0150 0.9894 0.9834 0.9889 0.9884 0.9713
50 0.0200 0.9868 0.9894 0.9892 0.9875 0.9361
50 0.0250 0.9715 0.9919 0.9847 0.9808 0.9708
50 0.0300 0.9271 0.9865 0.9901 0.9670 0.8997
55 0.0100 0.9639 0.9689 0.9996 0.9980 0.9471
55 0.0150 0.9966 0.9963 0.9973 0.9965 0.9920
55 0.0200 0.9902 0.9895 0.9975 0.9975 0.9899
55 0.0250 0.9813 0.9764 0.9914 0.9840 0.9451
55 0.0300 0.9783 0.9802 0.9941 0.9940 0.9813
60 0.0100 0.9803 0.9801 0.9991 0.9989 0.9788
60 0.0150 0.9783 0.9908 0.9982 0.9944 0.8318
60 0.0200 0.9861 0.9942 0.9967 0.9955 0.9578
60 0.0250 0.9669 0.9707 0.9976 0.9976 0.9656
60 0.0300 0.9922 0.9934 0.9971 0.9943 0.9872
65 0.0100 0.9920 0.9918 0.9943 0.9933 0.9445
65 0.0150 0.9810 0.9915 0.9893 0.9867 0.7832
65 0.0200 0.9796 0.9852 0.9852 0.9817 0.7380
65 0.0250 0.9778 0.9656 0.9860 0.9858 0.8641
65 0.0300 0.9835 0.9946 0.9989 0.9983 0.9690
70 0.0100 0.9761 0.9906 0.9925 0.9926 0.9298
70 0.0150 0.9900 0.9962 0.9943 0.9940 0.9834
70 0.0200 0.9657 0.9750 0.9715 0.9673 0.8720
70 0.0250 0.9987 0.9981 0.9990 0.9989 0.9779
70 0.0300 0.9987 0.9950 0.9991 0.9991 0.9142

Note: T is the drying temperature, °C; P is the drying pressure, MPa.  Same below. 

 
Note: MR is the moisture ratio of a paddy sample,%; t is the drying time, s; T is the drying temperature, °C; P is the drying pressure, MPa.  Same below. 

Figure 3  Regression relationships between MR and t under different experimental conditions based on the Henderson and Pabis model 
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Figure 4  Regression relationships between MR and t under different experimental conditions based on the page model 

 

 
Figure 5  Regression relationships between MR and t under different experimental conditions based on the Midilli model 

 
3.3  Regression fitting results of the coefficients of each model  

According to the above-mentioned discussion, it can be 
concluded that each model has a great prediction under each 
individual experimental condition.  But it was preferred to use 
one expression to predict results for all experimental conditions.  

Therefore, the coefficients of 25 expressions obtained from 25 
groups of experiments of each model were fitted as a whole, and 
different experimental independent variables were used to 
calculate and express the coefficients.  The results are listed in 
Table 3. 
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Figure 6  Regression relationships between MR and t under different experimental conditions based on the logarithmic model 
 

 
 

Figure 7  Regression relationships between MR and t under different experimental conditions based on the Lewis model 
 
The equation and goodness of fit of each coefficient of the five 

common thin-layer drying MMs are obtained by calculating the 
model coefficient(s) of each model under each experimental 
condition and performing regression fitting.  The five MMs can 
predict the MR at different times under a single experimental 

condition but have a poor fit for the overall experimental conditions.  
Hence, none of them can be used as the drying model for the 
experimental conditions in this study.  Therefore, a more adaptive 
model construction method is necessary to accurately predict the 
MR under different drying conditions. 
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Table 3  Regression fitting results of the coefficients of each model 
Model name Model equation Expression of coefficient R2 

Hederson and Pabis MR exp( )a kt   
2 22.3345 0.0444 0.0004 0.2506 432.4688a T T T P P       0.6177 

20.0116 0.0008 0.0034 5.6662k T T P P      0.4035 

Page MR exp( )xkt   
21.2020 0.7861 1372.7241k T P P     0.5833 
20.0005 0.0551 93.1454x T P P      0.3974 

Midilli MR exp( )xa kt bt    

20.0306 0.0010 0.3366 8.0295a T P P      0.1192 
20.0104 0.0003 0.1487 3067k T P P      0.1594 

20.0038 0.0001 0.0007 1.1412x T T P P      0.5010 
2 20.0040 0.5106 0.0007 10.6793b P T P     0.0535 

Logarithmic MR exp( )a kt c     

210.9677 20.9539 38643a T P P     0.2562 
20.5418 0.0188 0.0002k T T     0.3696 

29.8812 20.7313 38277c T P P      0.2521 

Lewis MR exp( )kt   20.0548 0.0022 0.0001k T T     0.4163 

 
3.3  BRBP neural network-based drying MM 

According to the training and testing strategies in this study, 
the following results are obtained.  1) The test results are 
shown in Figure 8; 2) The training and testing accuracy and 
errors of the BRBP neural network-based drying MM are listed 
in Table 4. 

The BRBP neural network-based drying MM has a mean 
training root mean square error (RMSE) of 0.019, a mean testing 
RMSE of 0.027, a mean training mean absolute error (MAE) of 
0.069, a mean testing MAE of 0.044, a mean training R2 of 0.974, 
and a mean testing R2 of 0.940. 
3.4  SVM-based drying MM 

According to the training and testing strategies in this study, the 
following results are obtained.  1) The test results are shown in 
Figure 9; 2) The training and testing accuracy and errors of the 

SVM-based drying MM are listed in Table 5. 
The SVM-based MM for paddy drying has a mean training 

RMSE of 0.025, a mean testing RMSE of 0.027, a mean training 
MAE of 0.081, a mean testing MAE of 0.048, a mean training R2 of 
0.957, and a mean testing R2 of 0.942. 

According to the modeling results based on the BRBP neural 
network and support vector machine with the fitting coefficients of 
the five empirical models in Table 3, the BRBP neural 
network-based MM is slightly better than the SVM-based MM in 
terms of training RMSE, testing RMSE, training MAE, testing 
MAE, training R2, and testing R2 and both are significantly better 
than the empirical MM (the Henderson and Pabis model).  The 
results indicate that the MMs established by the two machine 
learning methods can better predict the moisture content of paddy 
during LPSS drying. 

 

 
 

Figure 8  Test results of the BRBP neural network-based drying MM 
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Table 4  Training and testing accuracies of the BRBP neural network-based drying MM 
T/°C P/MPa Training RMSE Test RMSE Training MAE Test MAE Training R2 Testing R2 

50 0.01 0.0154 0.0331 0.0579 0.0613 0.9848 0.9306 
50 0.015 0.0147 0.0176 0.0564 0.032 0.9862 0.9751 
50 0.02 0.0152 0.0253 0.0495 0.0391 0.9855 0.9432 
50 0.025 0.0148 0.0333 0.0895 0.0579 0.9859 0.9345 
50 0.03 0.0169 0.0336 0.0889 0.055 0.9811 0.9482 
55 0.01 0.0149 0.0338 0.051 0.0452 0.9858 0.9278 
55 0.015 0.0147 0.029 0.0506 0.0593 0.9862 0.9364 
55 0.02 0.015 0.0257 0.0612 0.0406 0.9855 0.9624 
55 0.025 0.0143 0.0319 0.0425 0.0638 0.9869 0.9323 
55 0.03 0.0274 0.014 0.0698 0.0175 0.9516 0.9889 
60 0.01 0.0167 0.0714 0.0914 0.089 0.9822 0.6631 
60 0.015 0.0191 0.027 0.1202 0.0392 0.9766 0.9417 
60 0.02 0.0261 0.0215 0.0765 0.0353 0.9566 0.9685 
60 0.025 0.0273 0.0275 0.072 0.0493 0.9522 0.9576 
60 0.03 0.0147 0.0224 0.041 0.0366 0.9861 0.968 
65 0.01 0.0147 0.0242 0.0397 0.0313 0.9862 0.9556 
65 0.015 0.0274 0.0298 0.0831 0.0396 0.9517 0.9251 
65 0.02 0.0166 0.0173 0.0577 0.0281 0.9823 0.9728 
65 0.025 0.0158 0.0258 0.0749 0.037 0.9842 0.9413 
65 0.03 0.0167 0.0281 0.1151 0.052 0.9821 0.951 
70 0.01 0.0274 0.0293 0.0703 0.0555 0.9523 0.9328 
70 0.015 0.0274 0.0243 0.0712 0.0435 0.9523 0.9595 
70 0.02 0.0266 0.0294 0.0721 0.0443 0.955 0.9283 
70 0.025 0.0149 0.0098 0.0458 0.0143 0.986 0.9921 
70 0.03 0.0275 0.0199 0.0773 0.0383 0.9522 0.9637 

 

 
 

Figure 9  The test results of the SVM-based drying MM 
 



January, 2023 Li Y, et al.  Characteristics and mathematical models of the thin-layer drying of paddy rice with low-pressure superheated steam Vol. 16 No. 1   281 

Table 5  Training and test accuracies of the SVM-based drying MM 
T/°C P Training RMSE Test RMSE Training MAE Test MAE Training R2 Training R2 

50 0.0100 0.0168 0.0321 0.0723 0.0548 0.9819 0.9348 
50 0.0150 0.0180 0.0199 0.0718 0.0350 0.9794 0.9682 
50 0.0200 0.0394 0.0187 0.0899 0.0370 0.9017 0.9691 
50 0.0250 0.0241 0.0260 0.1035 0.0451 0.9623 0.9601 
50 0.0300 0.0224 0.0402 0.0704 0.0874 0.9668 0.9259 
55 0.0100 0.0276 0.0273 0.0833 0.0410 0.9511 0.9529 
55 0.0150 0.0177 0.0217 0.0707 0.0399 0.9801 0.9642 
55 0.0200 0.0257 0.0238 0.0890 0.0465 0.9575 0.9678 
55 0.0250 0.0157 0.0399 0.0707 0.0776 0.9842 0.8945 
55 0.0300 0.0231 0.0262 0.0814 0.0458 0.9656 0.9612 
60 0.0100 0.0352 0.0572 0.0816 0.0943 0.9208 0.7837 
60 0.0150 0.0224 0.0315 0.0882 0.0528 0.9680 0.9208 
60 0.0200 0.0209 0.0328 0.0778 0.0542 0.9721 0.9267 
60 0.0250 0.0257 0.0238 0.0919 0.0510 0.9576 0.9680 
60 0.0300 0.0214 0.0300 0.0939 0.0499 0.9706 0.9425 
65 0.0100 0.0279 0.0251 0.0763 0.0432 0.9507 0.9521 
65 0.0150 0.0157 0.0242 0.0593 0.0307 0.9841 0.9505 
65 0.0200 0.0193 0.0251 0.0716 0.0408 0.9761 0.9427 
65 0.0250 0.0404 0.0189 0.0962 0.0416 0.8967 0.9686 
65 0.0300 0.0289 0.0204 0.0898 0.0328 0.9464 0.9743 
70 0.0100 0.0331 0.0186 0.0796 0.0309 0.9306 0.9727 
70 0.0150 0.0307 0.0332 0.0797 0.0502 0.9397 0.9243 
70 0.0200 0.0279 0.0292 0.0911 0.0398 0.9508 0.9293 
70 0.0250 0.0167 0.0253 0.0687 0.0451 0.9823 0.9478 
70 0.0300 0.0290 0.0256 0.0836 0.0450 0.9468 0.9398 

 

4  Conclusions 

1) The Bayesian regularization back propagation (BRBP) neural 
network-based drying mathematical model (MM) has a mean 
training root mean square error (RMSE) of 0.019, a mean testing 
RMSE of 0.027, a mean training mean absolute error (MAE) of 
0.069, a mean testing MAE of 0.044, a mean training R2 of 0.974, 
and a mean testing R2 of 0.940, showing a good fitting effect; 

2) The SVM-based paddy drying MM has a mean training 
RMSE of 0.025, a mean testing RMSE error of 0.027, a mean 
training MAE of 0.081, a mean testing MAE of 0.048, a mean 
training R2 of 0.957, and a mean testing R2 of 0.942, showing a good 
fitting effect; 

3) The BRBP neural network-based MM is slightly better than 
the SVM-based MM in terms of training RMSE, testing RMSE, 
training MAE, testing MAE, training R2, and testing R2, and both are 
significantly better than the empirical MM (the Henderson and Pabis 
model).  The results indicate that the MMs established by the two 
machine learning methods can better predict the moisture content of 
paddy during low-pressure superheated steam (LPSS) drying. 
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