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Abstract: Extreme nutrient solution temperature significantly affects photosynthetic characteristics of hydroponic vegetables
and gives rise to slow plant growth. In this study, a method was proposed to obtain the suitable nutrient solution temperature
range of hydroponic crops. Nested experiments of net photosynthetic rates were designed. The experiments considered the
impact of nutrient solution temperatures, air temperatures, photon flux densities, and CO, concentrations. Then we established a
prediction model of photosynthetic rate based on a regression support vector machine. The results have shown that the
coefficient of determination between the measured values and the predicted values of photosynthetic rate is 0.982, and the root
mean square error is 0.990 umol/m’-s. Taking the net photosynthetic rate prediction model as the objective function, the
maximum photosynthetic rate could be found using multiple population genetic algorithms, and then the nutrient solution
temperature response curve could be created. According to the U-chord curvature theory, the suitable nutrient solution
temperature range was calculated. After optimization by the multi-population genetic algorithm, the coefficient of
determination between measured values and optimized values of maximum photosynthetic rate was 0.989 and the mean square
error was 0.003. An analysis of the calculation based on the theory of U-chord curvature indicated that the suitable nutrient
solution temperature range to grow hydroponic lettuce is 20.04°C-26.32°C. The proposed method provides a solid foundation
to accurately acquire the suitable nutrient solution temperature range for a crop grown in hydroponics.
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1 Introduction

As the main indicator for evaluating the accumulation of dry
matter in plants, photosynthesis is mainly affected by environmental
factors such as air temperature (AT), CO, concentration (CO,), and
photosynthetic photon flux density (PPFD)!"., In particular, nutrient
solution temperature (TNS) directly affects root growth and nutrient
absorption in hydroponically grown crops*’. During the growth of
lettuce, the TNS is easily affected by high temperature in summer
and low temperature in winter. It limits root growth and nutrient
absorption and fails to satisfy the growth requirements of
aboveground plant organs®”. Huang et al.®believed that
photosynthetic rate (Pn), root fresh weight, root number, N, P, and
K contents of bentgrass decreased with the increase of TNS, thus
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accelerating root mortality and affecting root growth rate and
nutrient accumulation. Taranet et al.”’found that the increase of root
zone temperature inhibited the accumulation of dry matter in sweet
potato roots, and this effect increased with the increasing root zone
temperature. When the temperature exceeded 40°C, the root tubers
and the content of dry matter would decrease significantly. In
addition, many studies have focused on the plant response to TNS
from different perspectives, explored the physiological mechanisms
by which plants are affected by TNS, and provided a theoretical
basis for the regulation of TNS#'. Many experimental studies have
shown that changes in leaf photosynthetic components, chlorophyll
fluorescence physiological
parameters reflecting the intensity of photosynthesis can be

parameters, and photosynthetic
significantly observed by controlling TNSP*'*"l. Therefore, it is
critical to explore the effects of plant photosynthesis influenced by
TNS and obtain the optimal TNS range for plants.

However, the photosynthesis of plants is usually not
determined by changes in a single environmental factor alone, but
rather by the combined effects of several environmental factors*.
To explore the synergistic regulatory effects of multiple
environmental factors, we selected several environmental factors
that have a significant impact on plant photosynthetic capacity
based on previous research. AT is a critical factor affecting enzyme
activity within the photosynthetic machinery and overall plant
metabolism™'?. Carbon dioxide is a fundamental substrate in the
photosynthetic process. CO, affects multiple aspects including

carbon fixation efficiency, photosynthetic rate, stomatal regulation,
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accumulation of
influences the

photosynthetic enzyme activity, and the

photosynthetic  products®"”. PPFD directly
photosynthetic rate by regulating the
PPFD
photosynthetic efficiency, but excessive PPFD can limit the
photosynthetic capacity of the plant®. Therefore, synergizing the
combined effects of multiple environmental factors is essential for

energy supply for

photosynthesis.  Appropriate levels can enhance

building models of photosynthetic rate regulation.

Effective prediction and decision-making models play a crucial
role in agricultural production and regulation. In recent years there
have been many studies on prediction models of agricultural
production due to the excellent nonlinear fitting capability and
adaptability of machine learning algorithms such as neural network
algorithms, support vector regression (SVR) algorithm, and so on.
The neural network algorithms could capture complex nonlinear
relationships in agricultural data™!. Li et al. established a
photosynthetic rate prediction model based on back propagation
(BP) neural network for quantitative regulation of CO, in
greenhouses. Some studies have shown that the fuzzy neural
network effectively handles uncertainty and variability in
agricultural data, making it ideal for handling fluctuating
environmental conditions!>'?. Zhang et al.l'! built a tomato price
time series prediction model using the wavelet neural network,
which could effectively capture short-term and long-term
environmental variations through wavelet transform feature
extraction. However, neural network algorithms have problems such
as complex parameter settings and susceptibility to overfitting!*.
Currently, due to the advantages of SVR algorithm, such as simple
parameter settings and strong fitting ability to high-dimensional
data and nonlinear relationships, the research in agricultural
applications is gradually increasing and showing significant results.
Wei et al.l'! built a photosynthetic rate prediction model using the
SVR algorithm for the prediction of the cucumber photosynthetic
rate during the whole growth period. Therefore, efficient algorithms
need to be selected for modeling optimization to provide the
technical basis for obtaining the optimal TNS range.

Traditional agricultural regulation often focuses on optimizing
specific points. However, with the increasing complexity of
agricultural production, single-point optimization may not
adequately account for interactions and changes among multiple
factors. Therefore, in practical applications, shifting to an interval
optimization strategy appears more suitable and effective. This
strategy comprehensively considers variations of different factors
within specified ranges, rather than narrowly focusing on precise
single-point adjustments. Interval optimization enables agricultural
production to better adapt to environmental changes and seasonal
variability, thereby enhancing production stability and efficiency.
Curvature, as a morphological tool, plays a crucial role in analyzing
and identifying local shape features within these intervals.
Curvature is used to measure the degree of the curve unflatness and
is often used for the acquisition of curve feature points. An explicit
functional relationship of the curve is required to traditionally
calculate the curvature value. Therefore, Guo and Zhong™”
proposed the U-chord curvature, which can calculate the curvature
values of discrete points and has good robustness. In the agricultural
field, Gao et al.?" proposed a method based on U-chord curvature to
avoid excessive consumption of light and CO, resources and
improve the photosynthetic rate. Hu et al.”” obtained the optimal
soil moisture content regulation range under photosynthetic rate
constraints by applying the U-chord curvature to the response
discrete curves of photosynthetic rate to the soil moisture content.

These studies demonstrated the rationality of using U-chord
curvature to obtain the optimal TNS range.

This study explored the photosynthetic characteristic of
hydroponic lettuce under different TNS, AT, CO,, and PPFD. The
Pn prediction model was established by using support vector
machine regression (SVR) algorithm. A multi-population genetic
algorithm (MPGA) was used to obtain the optimum AT, CO,,
PPFD, and the corresponding maximum Pn (MPn) under different
TNS. Then, the response curve of MPn to TNS was obtained. The
optimal TNS range was calculated based on U-chord curvature
theory. The acquisition of optimal TNS range provides a theoretical
foundation for the growth of protected crops.

2 Materials and methods

2.1 Experimental materials and data acquisition
2.1.1 Experimental materials

The experiment was conducted in the College of Mechanical
and Electronic Engineering, Northwest Agriculture and Forestry
University (at 34°07'39''N, 107°59'50''E, and 648 m above sea
level). The researched samples of cream lettuce were acquired from
the Modern Agricultural Demonstration and Innovation Park in
Yangling District, Xianyang City, Shaanxi Province. The
experiment was carried out using hydroponics™®. The hydroponic
cultivation box was 40 cmx20 cmx15 cm, with a capacity of 8 L.
The hydroponic nutrient solution was prepared as listed in Table 1.
Healthy seedlings with 4 to 5 leaves and a leaf size reaching 3%
5 cm were selected for the experiment. On the first day of the
experiment, the lettuce seedlings were transferred to MD1400
incubator (Snijders, the Netherlands) to pre-adapt the seedlings to
the environment. The incubator is shown in Figure 1. The incubator
was set to conditions at a temperature of 25°C, humidity of 50%,
and CO, of 400 uL/L. To effectively avoid the “midday break”
phenomenon, the test was performed from 8:30-11:30 and from
14:30-17:30. No pesticides were sprayed during the experiment,
following the normal management of the greenhouse hydroponic
system.

Table 1 Prescription of the hydroponic nutrient solution
Ingredient Content /mmol-L"'
Ca(NO,),"5H,0 5
(NH,4),SO, 5
K,S0, 0.75
KH,PO, 0.5
KCl 0.1
MgSO,-7TH,0 0.65
H,BO, 1.0x10°
MnSO,-H,0 1.0x10°
CuSO,-5H,0 1.0x10*
ZnS0,-7H,0, 1.0x10°
(NH,)¢M0,0,,-4H,0 5%10°
EDTA-Fe 0.1

2.1.2  Data acquisition

The photosynthetic rate was measured by using Li-6800XT
portable photosynthesis instrument (LI-COR, USA). During the
experiment, multiple sub-modules selected by the photosynthesis
instrument were used to control the temperature, CO,, and PPFD
around the leaf as required. Temperature control block set 5 AT
gradients (10°C, 15°C, 20°C, 25°C, and 30°C). CO, injection block
set 3 CO, volume ratio gradients (400, 800, and 1200 xL/L). LED
light source block set 9 PPFD gradients (0, 20, 50, 100, 300, 500,
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550, 600, and 700 umol/m’:s). The humidification block set the
chamberhumidityto50%.Inaddition,watertemperatureheatingblockset
9 TNS gradients (13°C, 15°C, 17°C, 19°C, 21°C, 23°C, 25°C,
27°C, and 29°C). A total of 810 nested experiments were

‘ Cultivation
L environment

material

a. MD1400 incubator
Figure 1

2.2 Data pre-processing

Considering the inconsistent dimensionality of the four-
dimensional data, the data of different dimensions, such as TNS,
AT, CO,, and PPFD, were normalized. The range of normalization
was [-1, 1]. The 810 sets of sample data were randomly divided
into training and test sets in a ratio of 8:2. 650 groups of sample
datasets were randomly selected as the training set. 160 groups of
sample datasets were randomly selected as the validation set. The
training set and test set sample were used for the construction and
training of the Pn prediction model, respectively.

2.3 Modeling and determination of targets

This study constructed the Pn prediction model by SVR
algorithm. The corresponding response curves of maximum
photosynthetic rates under different TNS conditions were obtained
by applying the optimization algorithm of MPGA. The curvature
curve was calculated based on U-chord curvature theory. In
addition, the local maximum value point of the curvature was
obtained by the mountain climbing method and defined as the
curvature feature points, which were used as regulation targets. The
optimization process of the TNS response curve is shown in Figure
2.

2.3.1 Prediction model of photosynthetic rate

Considering the advantages of the SVR algorithm, such as its
robustness to overfitting and effective handling of high-dimensional
data, this study used the SVR algorithm to construct a
photosynthetic rate prediction model.

TNS, AT, CO,, and PPFD were used as inputs of the Pn
prediction model, and the Pn was used as output of the model. The
input signals were defined as X = (x,,x,, x3,x,), where x,,x,, x;, and
x, were TNS, AT, CO,, and PPFD, respectively. The Pn prediction
model f(x) was established by using SVM algorithm. The decision
function is shown in Equation (1).

1
fE)=wdx)+b=>  (a,~a)K(x,x)+b (1)
i=1
where, K(x;,x;) = ®P(x;,)P(x;)is the kernel function; @;, @, is the
Lagrange multiplier; / is the number of support vectors; w is the
weight vector; and b is the offset.

The selection of an appropriate kernel function and parameters
¢ and g was essential to construct the model and find optimization.
The complexity of the radial basis function was invariant with the
change of parameters in the calculation process by comparing the

Experimental

b. Experimental material

performed. Three plants of the same age were randomly selected
from each group as replicates to form a set of 810 groups of
experimental samples with AT, CO,, PPFD, and TNS as inputs, and
the Pn as output. The experimental equipment is shown in Figure 1.

Experimental
apparatus ‘

c. LI-6800 photosynthesis equipment

Experimental equipment

radial basis function, the linear function, and the polynomial
function. Thus, the radial basis function was selected to construct
the prediction model as shown in Equation (2).

| Import test sample data |

i
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]
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Figure 2 TNS response curve optimization flow chart

K(x,x) = exp(—o x||lx; — x| )

where, ¢ is width information; x is input signal; and x; is input of the
training sample.
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After cross-validation, the under different
combinations were calculated several times. Finally, the optimal
parameter value for ¢ was 5.657 and for g was 0.250.

Meanwhile, we also employed the commonly used BP neural

network (BP), wavelet neural network, and fuzzy neural network

parameters

algorithms to construct a photosynthetic rate prediction model for
comparison in order to validate the modeling effectiveness of the
SVR model. The BP network is trained using the backpropagation
algorithm and can adapt to complex nonlinear relationships; the
wavelet neural network utilizes wavelet transform for feature
extraction and has advantages in handling time series data and
frequency domain data; while the fuzzy neural network, by
introducing fuzzy logic to handle the uncertainty and fuzziness of
the data, is suitable for dealing with the variability of environmental
conditions. These algorithms were implemented in Python.

2.3.2 MPn discrete curves acquisition

In the standard genetic algorithm (SGA), the selection of the
values of P. and P, is random. For different options, the
optimization results vary greatly*. The multi-population genetic
algorithm compensates for the deficiency of the SGA and evolves
through multiple populations with different control parameters. Due
to the algorithm’s concurrent global search and local search ability,
the optimization results of the algorithm are more accurate® .
Therefore, on the basis of the Pn prediction model, the multi-
population genetic algorithm (MPGA) was used to find the optimal
AT, CO,, PPFD, and the corresponding MPn under different TNS.
Then, the MPn curve under different TNS was obtained.

First, the individual length of the initial population was 40.
TNS was used as a variable, and AT, CO,, and PPFD as the
optimization objective to find the MPn. The initial population P (7)
was generated randomly and divided according to the information
exchange model: P(t) ={P,(?),...,P;(?),...,P,(t)}, in which n was
the number of groups. Then the individual’s fitness P;(¢),
(i=1,2,...,n) was calculated by grouping.

Second, the values of P, and P, determined the balance
between the algorithm’s global search and the local search ability.
They can be calculated according to Equation (3):

P.(G) = P.(1)+Cfrua(M, 1) 3

{Pm(G) =P, (1) +mf,«(M,1) ®)

where, P.(1) is the initial crossover probability and P,(1) is the

mutation probability; G is the genetic manipulation algebras; ¢ , m

are interval lengths of the crossover and mutation operations,

respectively; M is the population numbers; and f,,,, is the function
that generated random numbers.

Finally, multi-population co-evolution can be realized by
connecting with the immigration factor. The worst individual in the
target population was replaced by the optimal individual from the
source population. The best individual from the other populations
was manually selected and was put into the elite population for
preservation in every generation of the evolution process. Genetic
manipulations, such as selection, crossover, and mutation, were not
performed for elite populations to ensure that the optimal
individuals produced by various groups were not destroyed or lost.

The optimal temperature, CO,, PPFD, and the corresponding
MPn under different TNS conditions were obtained. Then, the MPn
discrete curves were obtained.

2.3.3 Discrete curvature of the MPn-TNS response curve

The U-chord curvature method was adopted to calculate the

discrete curvature of the TNS response curve. The solution process

is as follows:

First, the parameters U and current point Pi(x,y) were
determined, starting with the current point to move back and front.
The discrete points with Euclidean distances larger than the values
of U were used as the initial support of the current field. Discrete
digital curves could satisfy the constraint conditions approximately.
Therefore, the implicit strategy was used to enhance the accuracy of
the calculation. Eventually, the support domain[P?, P/]was obtained
by refining the digital curve. Figure 3 describes the method for
determining the support domain of U-chord curvature.

pr Pt
P

i

Figure 3 P, support neighborhood

In the final support domain, a cosine value related to the
included angle of the front and rear arm vectors in the support
domain was used as the discrete curvature. The specific calculation
equation is shown as follows:

c,:s,-\/l—(zl)(})z 4)

where, s, = sign[(x; = x))(v/ =31 = (x/ =xD), =37
Pis the data point on the response curve of screened

chlorophyll fluorescence parameters to nitrogen concentration;
[P?, P!] is the support area for P; points; D is the distance between
two pointsP’ and P/; S, is the symbol of discrete curvature
values;(x’,y")are the coordinates of P’; (x/,y/)are the coordinates
ofP,.f ; and (x,,y,)are the coordinates of P;.

2.3.4 The feature point of the curvature response curves

Based on the curvature response curve, the local maximum
value point of the curvature was obtained by the mountain climbing
method. In discrete curve of MPn response, the local maximum
value point was the feature point of its response curve. The Pn
among the curvature feature points was high and the lettuce grew
well. The method of mountain climbing is to continuously detour,
evaluate the difference between two adjacent points, determine the
direction of progress, and continue to detour until reaching the top
of the mountain. The steps are as follows:

1) The initial point ¢, and the initial direction are selected.
Then, the algorithm runs in the initial direction.

2) The curvature ¢,_; and ¢, at the two adjacent points ¢;_; and
gy, are compared. If ¢, ;<c;<c:1, it has not reached the top of the
mountain and continues to move in the positive direction. If
Cr1>C>Crey»> 1t changes the forward direction and continues in the
opposite direction.

3) The status is tested by repeating Step 2 until the point
reaches ¢ <c;>ciy. Then, the test is stopped and the result is
returned.

4) If no peak is found at the end of the test, it goes back and
continues the test in the opposite direction from the initial state.

The two local maximum points adjacent to the global
maximum point on U-chord curvature response curve and the
corresponding TNS were recorded. The temperature range between
the two TNS values is the optimal TNS range for lettuce growth.

2.4 Evaluation of predictive model performance

During the modeling process, the performance of the Pn

prediction model was verified by applying different check methods,
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such as the root mean square error (RMSE), average absolute error
(AAE), average relative error (ARE), and determination factor (R?).

> (fx)-vy

i=1

RMSE= |/ =——(—— (%)
AAE = % XN: If(X) - Yl (6)
ARE = % zN:(|f(Xi) -Y|/Y) (M
EN: (fX) =Y
R=1-—2" 3 )

N

N
1
> (-2
=1 =1
,where f(X) denotes the predicted value of the photosynthetic rate
model corresponding to the input feature X; N denotes the number
of samples; and Y, represents the measured Pn data of the /" sample.

3 Results

3.1 Comparison of modeling methods for Pn prediction
models

The method considered and selected several environmental
factors (TNS, AT, CO,, and PPFD as inputs, and net photosynthetic
rate as output) in order to establish the Pn prediction model.
However, the multidimensional input in the modeling process
increased the complexity of the model, which reduced the accuracy.
Therefore, it was particularly important to select an appropriate
modeling method. This paper selected modeling methods such as
BP neural network (BP), wavelet neural network, fuzzy neural
network, and regression support vector machine (SVR) to build the
model. The optimal modeling method was selected by the root mean
square error, average absolute error, average relative error,
determination coefficient R?* and other indicators. The results
indicated that the Pn prediction model established by SVR
algorithm was accurate. The specific results are listed in Table 2.

Table 2 Comparison of evaluation indices from different
modeling methods

Root mean Average absolute Average relative

Forecast model square error error/% error/% r
BP 1.314 0.379 9.141 0.974
Wavelet neural network 3.782 8.374 13.125 0.933
Fuzzy neural network 2.825 0.205 14.098 0.948
SVR 0.990 2.667 2.950 0.982

Based on the above comparison and analysis of modeling
methods, the optimal modeling method was obtained, and the
photosynthetic rate prediction model was established. The error for
each model between the measured values and the predicted values
of Pn were used as the benchmarks for model validation. Based on
160 sample data from the validation set, the comparison of the
measured and the predicted value of the Pn is shown in Figure 4.
The model determination coefficient is 0.982. The slope of the
linear line is 0.9424, and the intercept of the vertical axis is 0.6225,
which suggests a good fitting degree.

3.2 Optimization algorithm comparison analysis
The optimal AT, CO,, PPFD, and corresponding MPn under

different TNS were obtained by the TNS response curve. Therefore,
standard genetic algorithms and multi-population genetic algorithms
were respectively used to perform optimizations. In order to
effectively avoid the occurrence of accidental events, TNS of 17°C
as an example, random optimization was performed five times. The
available evolution process is shown in Figure 5.

1=0.9424x+0.6225
- 2 RMSE=0.99 gmol-m s
5 MAE=0.83 umol'-m2s™!
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Figure 4 Verification of the Pn prediction model
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Figure 5 Optimization evolutionary process

As shown in Figure 5a, when the standard genetic algorithm
evolved at least 100 generations, the AT, CO,, and PPFD under
different TNS tended to be stable. As shown in Figure 5b, when the
multi-population genetic algorithm evolved up to 14 generations,
the AT, CO,, and PPFD under different TNS tended to be stable
without oscillation or partial flat area in the training process.

As shown in Table 3, maximum error analyses were performed
five times for the results of random optimization. The results from
MPGA showed that the optimal PPFD and the MPn error for the
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random optimization of five populations were zero. The maximum Eye
errors of the optimum PPFD and optimum CO, obtained by the £ a5l
random optimization of SGA were 0.377 and 15.971, respectively. g ol
Therefore, MPGA had higher search precision and stability than g sl .
SGA. o
E 22
Table 3 Analysis of the maximum error of standard genetic 520
o
and multi-population genetic optimization 5 207
(=%
Optimization  Error of Err_or of Error of g 19 s
. R optimum . Error of MPn/ 3
algorithm optimum PPED/ optimum (umol-ms™) £ Bf &
optimum AT/°C gy CO(LLY z U
(pmol'm ™5 ') = 13 15 17 19 21 23 25 27 29
SGA 0317 0377 15.971 0.004 Root temperature/°C
MPGA 0 0 0.002 0

Based on the analysis of the above optimization results, in
order to further verify the optimization accuracy of MPGA, the
algorithm was repeated to obtain maximum photosynthetic values at
different TNS (13°C, 15°C, 17°C, 19°C, 21°C, 23°C, 25°C, 27°C,
and 29°C). Then, the predicted values of Pn were compared with the
corresponding measured values of Pn, the determination coefficient
was 0.989, and the root mean square error was 0.003. The
experiment not only verified the accuracy and reliability of the Pn
prediction model, but also verified the accuracy of the optimization
result of MPGA, which could provide theoretical support for
obtaining the optimal TNS range.

The optimal values of AT, PPFD, CO,, and corresponding MPn
under different TNS were obtained based on MPGA Pn prediction
model. The MPn response curves under different TNS were
obtained as shown in Figure 6.

3.3 Suitable TNS range

The curvature of the MPn-TNS response curve was calculated
by curvature theory. The TNS values corresponding to the curvature
feature points were 20.04°C, 23.23°C, and 26.32°C, respectively.
According to the response curve of Pn to TNS, the MPn was in the
optimum range when TNS was in the range of 20.04°C to 26.32°C
(Figure 7), and it reached the optimal level when the temperature

Figure 6 MPn curve at different TNS
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Figure 7 U-chord curvature response curve and feature point

was 23.23°C. Therefore, the suitable TNS range of lettuce growth is
20.04°C-26.32°C. In the suitable range of TNS, the Pn is high in
different environments (Figure 8).

In order to further verify the cultivation effect of the suitable
TNS range, the hydroponic lettuces from two areas of 5 mx
4 m were selected to take a test and carry out a 30-d natural control
treatment. The lettuce cultivar was still “cream lettuce”. Among
them, the TNS control device was used to keep the TNS in the
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Figure 8 Example verification of light response curves in different circumstances
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suitable range. The natural control treatment used a conventional
culture mode without any intervention. These two treatment zones
were subjected to standard hydroponic management during the test.
The treatments were carried out at the seedling stage. 15 samples
were randomly selected from the two treatment zones for weighing
when these samples were cultured to 30 days. The average weight
of the samples cultured in the test treatment area was 335 g. The
average weight of the samples cultured in the natural control area
was 280 g. The results suggested that the average weight of the
samples cultured in the test treatment area increased by 19.6%
compared with the natural control area. Therefore, the suitable TNS
range has a good promotion effect on the growth of hydroponic
Crops.

4 Discussion

Building a stable and accurate photosynthetic rate prediction
model is the foundation for TNS optimization. The SVR algorithm
and three neural network algorithms were used to build
photosynthetic rate prediction models for comparison. As shown in
Table 1, the SVR model had the highest R? and the lowest RMSE,
indicating that the difference between its predicted and actual values
was the smallest and the model had the highest prediction accuracy.
In terms of AAE value, BP and fuzzy neural network had low
values, indicating that they perform well in terms of absolute error.
This implies that the models obtained from the BP and fuzzy neural
network algorithms have less average deviation between predicted
and true values and are more suitable for situations where the data
magnitude is consistent. However, SVR performed significantly
better than the other models in ARE value, which suggests that it is
more stable when dealing with different orders of magnitude of
data. Many studies have shown that BP neural networks are prone
to an overfitting phenomenon in the training process, the parameter
settings are complicated, and the training time is long®™. On the
other hand, wavelet neural network and fuzzy neural network have
the problems of high model complexity and large computational
costl**. However, the superior performance of SVR algorithm is
mainly attributed to its ability to handle high-dimensional feature
space and good generalization ability. In addition, the SVR
algorithm can effectively deal with nonlinear data and improve the
robustness and stability of the model through appropriate kernel
function selection. Given the actual modeling needs of
photosynthetic rate prediction models and the performance of these
four algorithms, we concluded that the SVR algorithm not only has
the advantages of high model fit and high prediction accuracy, but
also shows good stability and consistency under different data
magnitudes.

The TNS of hydroponic crops directly affects root nutrient
absorption, which causes a change in the photosynthetic
characteristics of aboveground increased
transpiration rate is due to increased TNS and increased root flow. It

provides the PSII reaction center with a suitable environment,

organs™**.  The

which contributes to photochemical reactions and electron
transfer™. The Pn greatly increases under suitable conditions. When
TNS and AT increase to a certain extent, the transpiration rate
gradually decreases and stomata on the leaf surface close. Under
these conditions, the Pn gradually stagnates as the crop cannot
perform adequate photosynthesis. Photosynthesis was in the optimal
state when the TNS rose to 23.3°C. This is consistent with the law
shown in the MPn response curve under different TNS (Figure 8).
Furthermore, suitable TNS is beneficial to alleviate the cold stress
in the aboveground organs, promote cell division and leaf area

expansion, and provide necessary conditions for the production of
chlorophyll®'", Therefore, based on the response of the hydroponic
crops to the TNS, the optimal TNS range for hydroponic crops is
obtained by optimum Pn. This is important for improving crop yield
and quality.

Based on the TNS response curve as shown in Figure 7, it is
obvious that the curvature response curve shows multiple peaks,
revealing the existence of curvature inflection points difficult to
observe. Therefore, the curvature of TNS response curve was
calculated to reflect the locations of all inflection points, which laid
a foundation for the accurate acquisition of the optimal TNS range.
This method not only ensures effective nutrient solution
temperature regulation but also underscores the importance of
precise environmental control in hydroponic cultivation, offering a
solid theoretical basis for the environmental regulation of lettuce in
other growth periods or other vegetables. In future work, we will
expand the experimental data and incorporate
physiological indicators (like leaf chlorophyll content, leaf weight,

additional

and other factors reflecting both immediate and long-term plant
responses) to track physiological indicators over multiple growing
seasons and explore deep insights about the sustained impacts of
environmental factors on crop productivity.

5 Conclusions

This study proposed a method to optimize TNS regulation
range for hydroponic crops by integrating external environmental
factors into a Pn prediction model. The Pn prediction model was
built by SVR with AT, CO,, PPFD, and TNS as inputs, which had
high accuracy and great stability. Subsequently, a novel multi-
population genetic algorithm was employed to obtain the maximum
Pn curve with a determination factor of 0.989. The optimal TNS
range obtained by the U-chord curvature and the climb method was
20.04°C-26.32°C. The validation experiment showed that within
this temperature range, the average weight of hydroponic lettuce
increased by 19.6% compared to the natural control group. The
results indicate that the optimal TNS range identified in this study
could address the needs of hydroponic crops. The proposed method
in this research provides a theoretical foundation and offers new
ideas for the precise regulation of nutrient solution temperature.
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