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Automatic detection of sow estrus using a lightweight real-time
detector and thermal images

Haibo Zheng, Hang Zhang, Shuang Song, Yue Wang, Tonghai Liu
(College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300392, China)

Abstract: Determination of ovulation time is one of the most important tasks in sow reproduction management. Temperature
variation in the vulva of the sows can be used as a predictor of ovulation time. However, the skin temperatures of sows in
existing studies are obtained manually from infrared thermal images, posing an obstacle to the automatic prediction of
ovulation time. In this study, an improved YOLO-V5s detector based on feature fusion and dilated convolution (FD-
YOLOVS5s) was proposed for the automatic extraction of the vulva temperature of sows based on infrared thermal images. For
the purpose of reducing the model complexity, the depthwise separable convolution and the modified lightweight ShuffleNet-
V2 module were introduced in the backbone. Meanwhile, the feature fusion network structure of the model was simplified for
efficiency, and a mixed dilated convolutional module was designed to obtain global features. The experimental results show
that FD-YOLOVS5s outperformed the other nine methods, with a mean average precision (mAP) of 99.1%, an average frame
rate of 156.25 fps, and a model size of only 3.86 MB, indicating that the method effectively simplifies the model while ensuring
detection accuracy. Using a linear regression between manual extraction and the results extracted using this method in
randomly selected thermal images, the coefficients of determination for maximum and average vulvar temperatures reached
99.5% and 99.3%, respectively. The continuous vulva temperature of sows was obtained by the target detection algorithm, and
the sow estrus detection was performed by the temperature trend and compared with the manually detected estrus results. The
results showed that the sensitivity, specificity, and error rate of the estrus detection algorithm were 89.3%, 94.5%, and 5.8%,
respectively. The method achieves real-time and accurate extraction of sow vulva temperature and can be used for the
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automatic detection of sow estrus, which could be helpful for the automatic prediction of ovulation time.
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1 Introduction

Accurate estrus detection is a critical determinant of increased
profitability and productivity in the swine industry!". Also, these
profits are closely related to the use of artificial insemination, which
contributes to the genetic improvement of the pig herd, but the
timing of the insemination is important*’. Current research has
indicated that sows may ovulate 10 to 96 h after estrus and that
insemination within 0 to 24 h before ovulation can obtain optimal
fertility while reducing the number of inseminations®®. On the
contrary, incorrect insemination time may impair the reproductive
performance of the sow. Alternatively, missing the timing of
insemination can reduce the number of piglets produced per sow per
year. Either can cause a considerable economic loss**. There are
various methods of estrus detection, such as the back-pressure test,
which investigates the standing response of the sow when the back
was pressed"”, collecting the frequency and duration of sow visits to
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a boar"""", monitoring changes in activity"”, observing the swelling
and redness of the sow’s vulva” and the riding behavior between
pen mates!". Unfortunately, these methods to determine the
optimal time for insemination still rely on the breeder’s relatively
subjective evaluation of the sow’s behavior and physical signs.
Therefore, developing a technique for accurately predicting the
timing of ovulation is of great importance since this would allow for
more accurate insemination schedules, thus increasing litter rates
and reducing the cost of multiple inseminations.

There has been some research on detecting or predicting
ovulation in sows, such as ultrasonography for ovulation' and
analysis of the relationship between vaginal mucus resistance and
estrus'””. However, ultrasonography is time-consuming, requires
specialized personnel training!"*'"®, and does not predict ovulation.
Similarly, the electrical resistance of vaginal mucus varies
significantly = between individuals and between different
measurement locations within the vagina'”'**?!. More recently,
several studies have tested the feasibility of monitoring changes in
vulvar skin temperature of sows by infrared thermography as a
predictive tool for estrus and ovulation. Sykes et al.” recorded
thermal images of vulvar skin temperature in sows and found that
both maximum and mean values of vulvar skin temperature were
higher for sows in estrus than in diestrus ((36.6+£0.2)°C and
(33.440.3)°C vs. (35.6+0.3)°C and (31.8+0.6)°C, respectively). In a
similar method, Luifio et al."® combined ultrasonography to observe
the changes in the mean temperature of vulvar skin before and after
ovulation and showed a significant decrease in the vulvar skin
temperature 24-12 h before ovulation and a decrease to the lowest
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temperature at 12 h before ovulation. In a different approach,
considering the effect of ambient temperature, simultaneously
observing the temperature change of vulva and other body parts
(gluteal area, udder, and ear base), or the temperature difference
change between these body parts and vulvar skin temperature. The
results showed that changes in vulvar skin temperature were the
most correlated with estrus and that the mean temperature of vulvar
skin of gilts and multiparous sows increased at the onset of estrus
and decreased before ovulation®**. Moreover, the validity of
vulvar skin average temperature variation as a predictor of sow
ovulation was evaluated by inseminating sows once when the vulvar
skin temperature of diestrous sows was 20% increased"’ or below
35°CP, where the threshold of 35°C resulted from Lufio et al.l'*!
The results showed comparable reproductive performance with the
multiple insemination strategy of the conventional back-pressure
test. The above research shows that monitoring the changes in the
vulvar skin temperature can help predict the ovulation time of sows
and improve the accuracy of insemination time. However,
traditional manual temperature extraction is time-consuming, and
the operator’s skill level can also affect the results of the extraction
temperature””. Therefore, the efficiency, accuracy, and stability of
vulvar skin temperature extraction still need to be improved.

With the development of deep learning and object detection
technology has been rapidly advanced. Currently, object detection
networks include two-stage detectors (e.g., Faster RCNN™/) and
single-stage detectors (e.g., YOLO™). These networks provide new
solutions for livestock farming, including animal target detection”,
animal behavior recognition””, animal body size and weight
estimation®™, and animal disease detection®”. Zhang et al.’¥
proposed an improved SSD (single-shot multibox detector)>
network model to achieve behavioral recognition of grouped pigs in
pig houses. Zhang et al.”’ proposed an EFMYOLOV3 network
model for detecting key parts of cows based on YOLO-V3 (You
Only Look Once version 3)* and thermal images to achieve
localization of key parts of cows’ eyes, udder, and head with
automatic recognition of mastitis in cows. The average frame rate of
the algorithm was 99 frames per second, the average accuracy was
96.8%, and the accuracy of mastitis classification was 83.33%. This
also shows that deep learning can be successfully used for object
detection in thermal images.

In this study, an automatic temperature extraction method was
developed and used for sow estrus detection, which was the first
time to describe sow estrus detection using deep learning and
thermal images. The method could directly detect and extract the
temperature of sows’ vulva in thermal images to solve the problem
of time-consuming and unstable manual extraction. Firstly, the
YOLO-V5s®” object detection model was improved and named FD-
YOLOVS5s to achieve rapid and accurate detection of the vulva and
buttocks of sows. The buttocks detection box was used to determine

whether the sow’s buttocks posture was tilted to improve the
accuracy of vulvar skin temperature extraction. In FD-YOLOVS5s,
the modified lightweight ShuffleNet-V2"¥ and the depthwise
separable convolution®” modules were introduced into the backbone
network to reduce the number of model parameters. In addition, the
number of upsampling and downsampling operations was reduced
in the feature fusion process to simplify the network structure, thus
increasing the inference speed of the model. Meanwhile, to enhance
the model to capture global features, a multi-branch dilated
convolution*! module was constructed to capture global context
information. Then, vulvar temperatures were obtained by mapping
the coordinates of the detection box of the temperature matrix of the
thermal image and compared with the manually extracted
temperatures to verify the effectiveness of the FD-YOLOVSs
algorithm for extracting the vulvar temperatures of sows. Finally,
the continuous vulvar temperature of the sow was extracted to
identify estrus and compared with the manual estrus detection
results to verify the accuracy of the method of detecting estrus in
SOWS.

2 Materials and methods

2.1
2.1.1
This study was conducted on the sow farm of Anping County
Derun Breeding Co., Ltd. in Anping County, Hengshui City, Hebei
Province, China. From June to July 2021, 679 multiparous Large

Dataset
Sows and thermal image data collection

White and Landrace sows were selected for thermal image data
collection. The sows were situated in the individual housing and the
group housing, using the Fotric 225 infrared thermal camera (Fotric,
Shanghai, China) with a resolution of 320 pixels (horizontal) x 240
pixels (vertical) and an accuracy of +2°C to take thermal images
from directly behind the sows, and each image was required to
contain only one sow. The ambient temperature, relative humidity,
and emissivity were adjusted for the thermal imaging camera. We
used the VC231 intelligent temperature and humidity recorder
(VICTOR, Shenzhen, China) to obtain the ambient temperature and
relative humidity in the field with an accuracy of +0.3°C for
ambient temperature and +2% for relative humidity. The emissivity
was set to 0.96 according to Siewert et al.!!

As shown in Figure 1, the camera lens was about 0.6-0.9 m
away from the sow to ensure that the thermal imager could capture
the vulva and buttocks of sows, and 3 to 5 images per sow were
taken and stored on a secure digital memory card (32 GB). In
addition, Table 1 lists that the error of different shooting distances
on the maximum and average vulva temperatures of three sows did
not exceed 0.2°C. This indicates that the different shooting
distances in this study did not have a significant effect on the
temperature measurement results of the infrared thermal camera and
were able to obtain the vulva temperature of the sows effectively.

|l <—0.6-0.9 m—
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Note: a. Individually housed sows; b. VICTOR VC231; c. Fotric 225; d. Group-housed sows.

Figure 1

Schematic diagram of sow thermal infrared collection method
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Table 1 Sows’s vulva temperature data taken at
different distances

Vulvar maximum temperature/°C ~ Vulvar average temperature/°C

Distance/m
Sow 1 Sow 2 Sow 3 Sow 1 Sow 2 Sow 3
0.60 37.7 37.5 36.9 36.0 35.7 353
0.75 37.7 37.5 37.0 36.1 35.7 353
0.90 37.7 37.5 37.1 36.1 358 355

In addition, to verify the practicality of the proposed method,
30 multiparous sows were followed for sow estrus detection. From
the time the sows entered the pens, the vulva temperature was
measured twice a day, approximately 12 h apart, until 2 d after
estrus was detected. And the estrus was defined based on the skilled
technician’s identification of the typical signs of the sow’s standing
reflex and stinging ear response after a back-pressure test.
2.1.2 Dataset construction

In this study, 3462 images were captured from 649 sows and
used to construct the target detection model. Regarding the division
of the dataset, instead of using the leave-out method of directly
dividing the dataset into two mutually exclusive sets proportionally,
this study divided the dataset according to the pig population. Table
2 lists information on the division of the sow dataset, 2758 images
from 511 sows served as the training set, 430 images from 93 sows
as the validation set, and 274 images from 45 sows served as the
test set. Since the images used in the training set, validation set, and
test set were from different sows, the data sets were mutually
exclusive, and the distribution of samples was almost the same,
which met the requirements of data set division and also effectively
prevented overfitting. Furthermore, the test set was captured from
the group-housed sows and had a more complex background than
the wvalidation set, ensuring the proposed model’s high
generalizability. On the other hand, the overall performance of the
proposed model was also evaluated by randomly dividing the
dataset into ten equal parts and by ten-fold cross-validation.

Table 2 Division of sow vulva and buttocks data set

Dataset Number of images Number of sows
Training set 2758 511
Validation set 430 93
Test set 274 45
Total 3462 649

about the
temperature by measuring the radiation emitted from the target
surface. The measurement angle between the thermal imaging
camera and the target affects the temperature measurement result“?.

Infrared thermography provides information

Consequently, when the sow is standing, the left and right tilt of the
buttocks posture (relative to the direction of the infrared thermal
camera) will increase or decrease the angle between the sow’s vulva
and the infrared thermal camera, affecting the measurement of the
vulvar skin temperature. Therefore, to ensure the validity of the
extracted vulvar skin temperature of the sow, it is necessary to
detect the buttocks of the sow to distinguish the buttocks’ posture
and thus obtain an accurate vulvar skin temperature. Subsequently,
the sow vulva and buttocks in the training set, validation set, and
test set images were labeled using the Labellmg script open-sourced
on GitHub.
2.2 Overall technical route

The overall goal of this study was to accurately and rapidly
detect the vulva and buttocks of sows from thermal images and to
extract vulvar skin temperature so as to identify sows in estrus. The

technical route of this work is shown in Figure 2, including model
construction and evaluation, temperature extraction, and estrus
detection. First, the whole dataset was divided and labeled, and the
dataset division is presented in Section 2.1.2. Then, to simplify the
YOLO-V5s model, the feature extraction module in the backbone
network was replaced with an advanced lightweight module, and
the structure and modules of the feature fusion network were
modified, which further improved the model efficiency under the
premise of ensuring the detection accuracy, and the specific
implementation of the improvement is discussed in Section 2.3.
Next, during temperature extraction, the relative positions of the
buttocks detection box and the vulva detection box were used to
determine whether the sow’s buttocks posture was tilted and then
combined with the temperature matrix to obtain the sow vulva
temperature, and the details of this process are described in Section
2.4. Finally, a temperature curve was drawn using a fixed length of
continuous vulva temperature of the sow, and the trend of this
temperature curve was analyzed for estrus detection.

2.3 FD-YOLOVS5s

Since the focus of this study is on the extraction of vulva
temperature from standing sows, the real-time performance and
lightweight performance of the detection model are highly required.
Therefore, the most advanced algorithm of the YOLO series, YOLO-
V5, was used to detect the vulva and buttocks of the sow. Based on
the YOLO-V4¥! data augmentation algorithm, YOLO-VS5 adds
adaptive anchor box computation and adaptive image scaling to
improve the robustness of the model. Adaptive anchor box
calculation can automatically calculate the best anchor box value
based on different training datasets. Adaptive image scaling can
accelerate object detection by adding minimal black edges when
scaling the image. In addition, the YOLO-VS5 algorithm includes
four network structures, namely YOLO-VS5s (small), YOLO-V5m
(medium), YOLO-VS5I (large), and YOLO-V5x (extra-large), which
have the same structure, but with increasing network depth and
width in that order. Specifically, The YOLO-V5 network structure
consists of three main parts: backbone feature extraction network,
neck network, and head. In this study, based on the characteristics
of the sow vulva and buttocks dataset, the feature fusion network
structure in the neck network of the YOLO-VSs model was
modified and a mixed dilated convolutional module was designed to
further improve the model detection. Meanwhile, depthwise
separable convolution was introduced in the backbone network to
reduce the complexity and parameters of the model for future
deployment in mobile robots with less computational power. The
structure of FD-YOLOVS5s is shown in Figure 3.

2.3.1 Lightweight backbone network

To facilitate the deployment of FD-YOLOVSs model on some
low-performance devices with small memory, the Conv module and
C3 module in the original backbone network is replaced by the
depthwise separable convolution (DSC) and the modified Shufflenet-
V2 module (S5), respectively, as shown in Figure 4. Among them,
the improved backbone network mainly consists of the following
modules:

Conv: The Conv module is the smallest component of FD-
YOLOVS5s and includes the convolution layer, the batch
normalization (BN) layer, and the SiLU activation function.

Focus: The focus module is used to reduce the amount of
computation and speed up training. It divides the input image into
four slices and then splices them in the channel dimension, as
shown in Figure 4b, thus converting the width and height
information of the image into channel information.
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Figure 2 Schematic of the sow estrus identification process
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Note: DSC: Depthwise separable convolution; S5: Modified Shufflenet-V2; SPP: Spatial Pyramid Pooling; Conv: Convolution; MDC: Mixed Dilated Convolution.
Figure 3 FD-YOLO-V5s network structure

DSC: The DSC is a strategy for decomposing convolution,
which splits the standard convolution into two parts: deep
convolution and point-by-point convolution. Figure 4c and Figure 4d
show the process of standard convolution and depthwise separable
convolution, respectively, where N and D denote the length and
width of the feature map and convolution kernel, respectively, and
M denotes both the number of convolution kernels and the number
of channels of the output feature map, that is, the input feature map
dimension is NxNx3, the output feature map dimension is NXNxM
and the convolution kernel size is DxD. The number of parameters
for the standard convolution is DxDx3xM, and the number of
parameters for the DSC is DxDx1x3+1x1x3xM. It can be seen that
the number of parameters of DSC is about 1/2D+1/M of the
standard convolution, which can simplify the size of the model.

SPP: The SPP module consisting of 5x5, 9x9, and 13x13

maximum pooling layers converts the input feature maps into fixed-
size feature vectors to enhance the multi-scale fusion of the
network.S5: The S5 module is obtained by improving the
ShuffleNet-V2 module by replacing 3x3 DSC with 5x5 DSC to
increase the perceptual field of the network. As shown in Figure 4g,
first, it uses the “Channel Split” operation to divide the channel
dimension of the input feature map equally into two branches, one
branch contains two 1x1 convolutions and one 5%5 DSC, and the
other branch remains unchanged. Then, the outputs of the two
branches are combined by the “Concat” operation. Finally, a
“Channel Shuffle” operation is used to disrupt the order of the
output channels to exchange the feature information of the two
branches. This structure can enhance the feature information
exchange between different channels and reduce the computational
complexity and memory usage of the model.
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Note: a. Conv module; b. Focus module; c. Standard convolution module; d. Depthwise separable convolution module; e. Spatial pyramid pooling module; f. C3 module;

g. Modified Shufflenet-V2 module; BN: Batch Normalization; SiLU: Sigmoid Linear Unit; SPP: Spatial Pyramid Pooling; C3: Improved bottleneck layer containing 3

standard convolutional layers; DSC: Depthwise separable convolution; S5: Modified Shufflenet-V2.
Figure 4 Improved FD-YOLOVS5s backbone network

In addition, Table 3 lists the number of parameters before and
after the improved backbone network for each layer. With the same
number of input and output channels, the number of parameters of
the improved backbone network is reduced by about 77%.

Table 3 Comparison of the number of parameters before and
after the backbone improvement

No. Input  Output  Original Replaced Parameters
channels channels module module  YQOLO-V5s FD-YOLOVS5s
0 3 32 Focus -- 3520 3520
1 32 64 Conv DSC 18 560 704
2 64 64 C3 S5 18 816 3040
3 64 128 Conv DSC 73 984 1408
4 128 128 C3 S5 156 928 32528
5 128 256 Conv DSC 295 424 2816
6 256 256 C3 S5 625152 110 208
7 256 512 Conv DSC 1180672 5632
8 512 512 SPP -- 656 596 656 596
9 512 512 C3 S5 1182720 139 008
Total 4212372 955 460

2.3.2 Improvement of the neck network

Feature Pyramid Networks (FPN)*/ and Path Aggregation
Networks (PAN)“! are used as the neck network of FD-YOLOVS5s
for enhanced feature fusion. FPN transfers and merges high-level
semantic feature information from top to bottom through up-
sampling. PAN transfers location feature information from bottom
to top. Both are used simultaneously to fully integrate the low-level
and high-level features, which effectively enhances the model’s
ability to detect objects of different scales.

To improve the real-time performance and detection capability
of FD-YOLOVS5s, the neck network was improved by changing the
FPN+PAN network structure by considering the characteristics of
the dataset. In the field of object detection, the most common
definition of target size currently comes from the common dataset
MS COCO dataset, which classifies objects into three categories
based on area size, including small objects (area<32? pixels),

medium objects (322<area<96? pixels) and large objects (area>962
pixels). Figure 5 shows the object size distribution in the training set
of this study. As can be seen from Figure 5, there were no small
objects in this dataset, so the feature maps responsible for the
detection of small targets can be considered for deletion. On the
contrary, there were more large objects in this dataset, and the size
distribution was not dense enough, hence the detection of large
objects needs more attention.

Small
600 + Medium
Large
‘&, 400
= .
=
=y
Q
E .
200
96 |- =
3% | ) ) ) )
03296 200 400 600 800

Width/pixels

Note: The horizontal and vertical coordinates indicate the length and width of the
object detection box, respectively; The three color areas indicate the range of
small, medium, and large objects respectively.

Figure 5 Distribution of the size of objects in the dataset

Therefore, The C3 module in front of the 20x20 feature map
was replaced with our designed mixed dilated convolution (MDC)
module to improve the detection capability of the feature map for
large targets. Moreover, under the premise of ensuring the detection
task, the up-sampling and down-sampling operations were reduced,
and the 80x80 feature map was deleted, which further reduces the
computational cost of the model. The structure of the neck network
before and after the improvement is shown in Figure 6.

The MDC module enhances the detection of large targets by
introducing dilated convolution. Dilated convolution expands the
convolution kernel’s receptive field by changing the convolution
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Figure 6 Improved FD-YOLOVS5s neck network

kernel’s internal space. Compared with conventional convolution,
the number of parameters of the dilated convolution does not
increase with the expansion of the receptive field“?, and the dilated
convolution has a hyperparameter called the dilation rate, which
needs to be set manually. Figure 7a shows the receptive field of a
3x3 convolution kernel at different scale dilation rates. There is no
difference between the dilated convolution and the conventional

Dilation rate=1

Conv

Dilation rate=2

convolution when the dilation rate is equal to 1, but when the
dilation rate is 2, the receptive field is 5x5. Similarly, when the
dilation rate is 3, the receptive field becomes 7x7. Therefore, the
receptive field of the dilated convolution increases with the dilation
rate, and different scales of the dilation rate can extract feature

information at different scales.

_HN B

Dilation rate=3

1x1

Conv
1x1
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Conv Conv Conv Conv
1x1 1x5 5x1 5x1
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1x5 |
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Figure 7 Different dilation rates of dilation convolution and the structure of the MDC module

The MDC module structure was inspired by Inception-V3“”
network and can be seen in Figure 7b. First, the channel dimension
of the input feature map was equally divided into four branches by
1x1 convolution, and different convolution depths and asymmetric
convolution of each branch increased the diversity of semantic
information. In addition, dilated convolution was introduced at the
end of the three branches to increase the receptive field. The dilated
convolution rate varied between branches, enabling the construction
of diverse receptive fields so that the feature maps contained multi-
scale information. Then, more global feature information was
extracted by fusing the feature maps of different receptive fields.
Finally, the residual structure was used to enhance feature delivery

and reduce the risk of gradient disappearance. Moreover, there were
three dilated convolutions in the MDC module, and the dilation
rates were defined as 1, 2, and 5, respectively, and the setting was
experimentally verified to be optimal in Section 3.1.3.
2.3.3 Detection head

The head inherits the head structure from YOLO-V3, and the
loss function consists of three parts: bounding box loss,
classification loss, and confidence loss. Specifically, the complete
intersection over union (CloU) loss™*! was used as the loss function
of the bounding box, which better describes the regression of the
rectangular box. Binary cross-entropy was used as a loss function
for categorical loss and confidence loss to calculate category
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probabilities and target confidence scores.
2.4 Temperature extraction

In this study, the infrared thermal image acquired by the
infrared thermal camera has a resolution of 990x720 instead of
320%240, as shown in Figure 8a. The reason for this is that in order
to give the user a clear and intuitive view of the temperature
distribution in the thermal image, the manufacturer processed the
image through operations such as interpolation algorithms, adding
temperature bars and pseudo color after the infrared thermal camera
captured the 320%240 raw temperature data to increase the
resolution of the image to 990x720. To detect the temperature more
accurately and quickly, the obtained temperature matrix was
converted into a grayscale image using the calculation Equation (1).
ML =min) oss e [1.2400, € [1.320]
max(M) — min(M) )

where, gray img[7, j] is the gray scale of row 7 and column j in the

gray_img[i, j] =

gray scale image, M[i, j] is the temperature value of row i and
column j in the temperature matrix, max(}/), and min(M) are the
highest and lowest temperature in the temperature matrix,
respectively. The grayscale image obtained after applying this
formula to the temperature matrix is shown in Figure 8b.

+—990 pixels ———

+—— 320 pixels ——

+«———720 pixels——
«— 240 pixels—

a. Original thermal image b. Grayscale image

Figure 8 Image pre-processing

The extraction of sow vulvar skin temperature consists of three
steps. Firstly, the grayscale image is input into the trained model to
obtain the coordinates of the buttocks and vulva detection boxes in
the image. Secondly, the relative positions of the buttocks detection
box and vulva detection box are used to determine whether the
buttocks are tilted or not, and this process is described in Algorithm
1. Finally, the maximum and average temperatures of the vulva area
are calculated by mapping the coordinates of the vulva detection
box to the temperature matrix. The steps of Algorithm 1 are as
follows:

Input: The result of FD-YOLOVSs, i.e., the bounding box of
the vulva and buttocks of the sow;

Output: Sow’s buttocks posture;

Step 1 Define the x-axis coordinates of the upper left and lower
right corners of the vulva bounding box and the buttocks bounding
bOX a8 Vieg, Viigh» a0d byegr, brign, TESpeECtively;

Step 2 Judge the sow’s buttocks posture. When viq < (b +
(brighrbien)/3), the sow’s buttocks inclined to the left, when by;g, >
(brigh— (brighrbier)/3), the sow’s buttocks inclined to the right. If
none of the above judgment conditions were satisfied, it means that
the sow’s buttocks showed no inclination;

Step 3 Stop the procedure if the sow buttocks inclined. On the
contrary, continue to extract vulva temperature.

2.5 Estrus detection

The variation in sow vulva temperature can help analyze sow
estrus and ovulation. There was a circadian rhythm in the vulva
temperature of sows, with low values in the morning and high
values in the evening!®. However, the average duration of estrus in
sows was 52.6 h (range: 30-72 h)*) and vulvar temperature

increased with the onset of estrus and decreased significantly 36-
12 h before ovulation®*!. Therefore, when using vulva temperature
to monitor sow estrus, the vulva temperature in the morning and in
the afternoon was extracted first when the sow was standing to feed
or drink once each by FD-YOLOVS5s algorithm and stored in the
database. Subsequently, a temperature curve was plotted using the
last five consecutive vulval temperatures of the sow (each
approximately 12 h apart), and the inflection point of this curve was
calculated using the kneed algorithm®. Finally, the trend of the
temperature curve was obtained by the inflection point and the
temperature value to judge whether the sow was in estrus or not,
and the process is described in Algorithm 2. The above method was
applied to monitor the 30 multiparous empty-pregnant sows
mentioned in Section 2.1.1, and the schematic diagram of the
estrous and non-estrous temperature profiles is shown in Figure 9.
The steps of Algorithm 2 are as follows:

Input: The values and inflection points of the temperature
curve;

Output: Sow status (estrus or non- estrus);

Step 1 Define the temperature value array , the position of the
increasing inflection point and the position of the decreasing
inflection point of the temperature curve as A, K; and Ky
respectively;

Step 2 Judge the shape of the temperature curve. When A [0]
<=A[-1] and A[-1] <= A[-2], there is a bump in the curve;

Step 3 Judge the trend of the temperature curve. When K; <K,
the curve is rising first and then falling;

Step 4 When K; is not the first and penultimate point of the
temperature curve, it means the sow is in estrus;

Step 5 If the above conditions are not met at the same time, the
SOW is in non-estrus.

36.5+
36.0 -
355¢F
350+
345+
34.0 -
335+
33.0
32.5F -« Non-estrus(9F403)
320+ -~ Estrus(9.F195)

0 12 24 36 48
Time intervals/h

Temperature/°C

Note: ; is the inflection point of temperature increase; k, is the inflection point of
temperature decrease; 9F403 and 9F195 are the ear tag numbers of the sows, the
estrus curve is plotted from the 48-h temperature values when estrus was detected
in 9F195, and the non-estrus curve is plotted from the random 48-h temperature
values when estrus was not detected in 9F403.

Figure 9 Temperature change curve of estrus and non-estrus

2.6 Evaluation metrics
2.6.1 Evaluation of the model performance

In order to verify the effectiveness of the improved algorithm,
the evaluation of this study was carried out using five metrics:
precision (P), recall (R), mean average precision (mAP), F1-score,
and frames per second (FPS). The P and R are expressed in
Equations (2)-(4). Before that, the number of true positives (TP),
false positives (FP), and false negatives (FN) were need to be
determined based on the intersection over union (IoU) (which was
set to 0.5) between the detected box and ground-truth box and the
confidence level (which was set to 0.2) threshold. The Fl-score
considers both P and R to calculate the score given in Equation (5).
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I0UR,R') = :2 8 ﬁ:: ()
P= TPT+PFP % 100% 3)
R= TPT+PFN % 100% 4)
F1 —score = % % 100% &)

where, R is the area of the detected bounding box; R’ is the area of
the ground-truth bounding box; TP, TN, FP, and FN are the number
of true positives, true negatives, false positives, and false negatives,
respectively; TP and FP denote the number of bounding boxes with
IoU values greater than 0.5 and IoU values less than 0.5 between
the detected and ground-truth boxes, respectively, and FN denotes
IoU values equal to 0 for detected and ground-truth boxes, i.e., the
number of undetected ground-truth boxes. Fl-score is the harmonic
mean of precision and recall.

The AP; denotes the average precision of the i-th category with
a value equal to the region under the P-R curve, calculated as in
Equation (6). The definition of mAP is given in Equation (7) and
indicates the average precision of the C categories. The k in mAP,
stands for the IoU threshold; mAPs, is the average of the precision
of all categories when the IoU threshold is 0.5; mAPs.s is the
average of 10 values of mAPs;, mAPss, mAPg, ..., mAPy;,, mAPy;s,
as shown in Equation (8). In addition, the mAP in the following
refers to mAPs.

AP, = L' P.(R)dR, (6)

1 c
mAP = E Z,-:l API (7)

1
MAPsys = E(mAP50 +mAPss + ... + mAPg, + mAPys) ()

2.6.2 Evaluation of temperature extraction and estrus detection

To assess the accuracy of the temperature extracted by FD-
YOLOVSs, the manually extracted temperature m, was compared
with the temperature a, automatically extracted by the algorithm.
The following evaluation indicators were used: coefficient of
determination (R?), mean absolute error (MAE) and mean absolute
percentage error (MAPE). R? is the squared Pearson correlation
coefficient between manual extraction and automatic detection to
measure the linear association between the two values; MAE is the
mean of the absolute difference between manual extraction and
automatic detection; MAPE is the mean of the absolute percentage
error between manual extraction and automatic detection. The MAE
and MAPE are expressed in Equations (9) and (10). To evaluate the
effectiveness of estrus recognition in sows, the error rate,
specificity, and sensitivity of estrus detection were calculated based
on the results of the proposed algorithmic detection and manual
detection, as expressed in Equations (11)-(13).

MAE= 3™ | ©)
MAPE = %Z] ‘m’n;“‘xloo% (10)
Specificity = % x 100% (11)
Sensitivity = % x 100% (12)

FP+FN
TP +FP+TN+FN

where, TP, TN, FP, and FN are the number of true positives, true
negatives, false positives, and false negatives, respectively;
Specificity indicates the proportion of negative samples with correct
predictions to total negative samples; Sensitivity indicates the
proportion of positive samples with correct predictions to the total

Errorrate =

x 100% (13)

positive samples; Error rate represents the proportion of samples
with incorrect predictions to the total sample. In the calculation,
estrus and non-estrus were set as positive and negative, respectively.

3 Results and discussion

3.1 Vulva and buttocks detection
3.1.1 Training result analysis

In this study, Python, PyTorch, an Nvidia GeForce RTX
1080TI GPU, and an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz
have been utilized to implement the proposed FD-YOLOVSs. The
experimental environment is listed in Table 4. In model training, the
training hyperparameters of the model were set with batch sizes of
16 and 300 iterations. The momentum, initial learning rate, and
weight decay used the original parameters from the YOLO-V5
network. Figure 10 shows the changes in loss and mAP of FD-
YOLOVS5s during the training process. From Figure 10, the loss and
mAP values decreased and increased rapidly before 50 iterations,
respectively, and stabilized as the number of iterations increased.
The final loss value stabilized at around 0.06, and mAP stabilized at
around 99%. As the loss value and mAP gradually stabilized, the
model gradually converged, and the training achieved the expected
results.

Table 4 Experimental environment

Configuration Parameter
Programming language Python 3.8
Library and wrapper PyTorch 1.9
CPU Intel(R) Xeon(R) Gold 6132 CPU@2.60 GHz
GPU Nvidia GeForce RTX 1080TI

Operating system Ubuntu 18.06
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Figure 10  Variation of loss value and mAP value of the FD-
YOLOVS5s model during training

Figure 11 and Table 5 statistically analyze the model
parameters of YOLO-V5s and FD-YOLOVSs and their
performance on the validation set. As shown in Figure 10, FD-
YOLOV5s is significantly better than YOLO-VS5s in terms of model
lightweight. Specifically, there are 76.9%, 71.8%, 81.1%, and
12.3% reductions in the number of parameters, model size, floating-
point operations (FLOPs), and inference time, respectively, which
facilitate the deployment of the model in embedded devices.
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Moreover, as shown in Table 5, the proposed FD-YOLOVS5s
method outperformed YOLO-V5s for all the quantitative indexes of
the two detected classes. Compared with YOLO-VS5s, FD-
YOLOVS5s improved the mean Fl-score and mAP by 0.3% and
0.7% to 97.6% and 99.2%, respectively.

18
16| = YOLO-Vss
= FD-YOLOVS5s

14
12
10

= )

Parameters Model size  Floating-point Inference time
(Million) (MB) operations(G) (ms)
Figure 11 Comparison of model parameters of YOLO-V5s and

FD-YOLOVS5s

Table 5 Comparison of performance (F1-score and AP) in
detecting vulva and buttocks on the validation dataset

F1-score/% AP/%
Model ———— MeanFl-score/% —————— mAP/%
Vulva Buttocks Vulva Buttocks
YOLO-V5s  98.7 95.7 97.3 99.6 97.5 98.5
FD-YOLOVS5s  99.0 96.2 97.6 99.8 98.5 99.2

3.1.2 Effects of S5 and DSC modules

In Table 6, the impact of using the S5 module and DSC in the
proposed FD-YOLOVSs detector backbone network has been
mentioned. According to Table 6, the mAP of FD-YOLOVSs on the
validation set increased from 98.5% to 99.1% when the original
ShuffleNet-V2 (S3) module was used instead of the C3 module.
Furthermore, the mAP was further improved when the modified S5
module was applied. In addition, when the algorithm used DSC
instead of the Conv module for down sampling, mAP decreased
slightly with the model size reducing by 2.92M. Thus, these
methods increase efficiency.

Table 6 Effects of S5 and DSC modules in the proposed FD-

YOLOVSs detector
Method mAP/% Size/MB
C3, Conv 98.5 13.7
S3, Conv 98.8 10.4
S5, Conv 99.1 10.4
S5, DSC 98.9 7.48

3.1.3 Effects of MDC module and feature map discarding

In order to detect large targets in the image, this research
improved the neck network of YOLO-V5s, designed the MDC
module to replace the C3 module before the large target detection
feature map, and deleted the feature map responsible for small
target detection to reduce the number of model parameters. The
results are listed in Table 7. After deleting the feature map and re-
clustering the initial anchor box, the mAP of the validation set rose
from 98.5% to 98.7%, indicating that two feature maps were also
applicable to this task. On the other hand, when replacing the C3
module with the MDC module, mAP increased to 99.4%. The

results show that the improvement of the large target feature map
effectively improves the detection accuracy.

Table 7 Effects of MDC module and feature map discarding in
the proposed FD-YOLOVS5s detector

Method mAP/% Size/MB

F3,C3 98.5 13.7

DR, C3 98.7 9.4
DR, MDC 99.4 9.5

Note: F3: Original three feature maps; DR: deleting the feature map responsible
for small target detection and re-clustering the initial anchor box.

In addition, the detection performance of MDC was also tried
to evaluate when choosing different dilation rates. As listed in Table
8, the best detection performance was achieved when the dilation
rates were 1, 2, and 5. It not only obtained global information to
improve the detection accuracy of the buttocks but also took into
account the detection of the vulva. However, as the dilation rate
continues to increase, such as when the dilation rates were 1, 3, and
S5, the average precision of the vulva decreased from 99.7% to
99.2%. Therefore, the dilation rates in the MDC module were
selected as 1, 2, and 5.

Table 8 Results for the MDC module with different
dilatation rates

. AP/%
Dilation rates mAP/%
vulva buttocks
1,2,3 99.5 98.4 98.9
1,2,4 99.6 98.2 98.9
1,2,5 99.7 99.1 99.4
1,3,4 99.3 98.9 99.1
1,3,5 99.2 98.8 99.0

3.1.4 Comparison of different models of YOLO-VS5 detector

To evaluate the effectiveness and generalization of the
proposed method, the performance of the YOLO-VS5s applying
different improvement strategies and YOLO-V5 on the test set were
compared, and the results are listed in Table 9. Among the YOLO-
V5 algorithms, YOLO-V5x had the best detection effect. However,
after 1) replacing the C3 and Conv modules in the backbone
network with the S5 and DSC modules, respectively, and 2)
removing the small target detection layer and adding the MDC
module to the large target detection layer were performed on YOLO-
V5s, the highest mAP, R and Fl-score were obtained. More
specifically, R and mAP reached 99.2% and 99.1%, respectively,
and Fl-score was the same as YOLO-V5x. The results show that
the model detection accuracy is effectively improved through a
series of improvement strategies, and the model size was reduced.

Table 9 Comparison of detection parameters between YOLO-
V5s with different improvement strategies and YOLO-V5

Model P/% R/% Fl-score/% mAP/% Size/MB
YOLO-V5x 97.6 98.5 98.1 98.6 166
YOLO-V3l 97.5 97.3 97.3 97.5 89.3
YOLO-V5m 96.9 97.9 97.3 98.2 40.4
YOLO-V5s 96.3 97.7 97.0 97.8 13.7
YOLO-V5s+@ 95.7 98.6 97.1 98.1 7.48
YOLO-V5s+@D+@)(FD-YOLOVS5s) 97.0 99.2 98.1 99.1 3.86

Note: 1) The C3 and Conv modules in the backbone were replaced with S5 and
DSC modules, respectively; 2) The small target detection layer was removed and
the MDC module was added to the large target detection layer.
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In addition, to objectively evaluate the model’s performance,
ten-fold cross-validation was performed on the YOLO-V5s before
and after the improvements. First, the dataset was randomly and
equally divided into ten parts, nine of which were used for training
the model and the rest for validation, and repeated ten times to
ensure that each part constituted a validation set. Then, the FD-
YOLOVS5s and YOLO-VS5s were trained on the same training set
and tested on the same test set. The comparison of the performance
of FD-YOLOVSs and YOLO-VSs in ten-fold cross-validation was
shown in Table 10. The results showed that the proposed FD-
YOLOVS5s algorithm achieved higher accuracy compared to YOLO-
V5s. The average values of F1-Score and mAP were 98.4% and
99.4%, respectively, which were both higher than YOLO-V5s.
Moreover, the standard deviation (SD) was also smaller than YOLO-
VSs.

Table 10 Comparison of the performance of YOLO-VS5s and
the proposed FD-YOLOVSs detector on tenfold cross-validation

No No. of Training/ YOLO-V5s FD-YOLOVS5s
" Validation Images mAP/% Fl-score/% mAP/% Fl-score/%
1 3115/347 99.1 98.2 99.1 98.2
2 3115/347 99.3 98.3 99.4 98.3
3 3116/346 98.8 97.8 99.4 98.5
4 3116/346 99.0 97.8 99.2 98.4
5 3116/346 99.0 97.7 99.6 98.3
6 3116/346 99.1 98.3 99.5 98.8
7 3116/346 98.5 97.3 99.6 98.3
8 3116/346 99.4 98.2 99.1 98.5
9 3116/346 99.1 98.0 99.1 97.9
10 3116/346 99.2 98.3 99.8 98.6
MeantSD - 99.140.24 98.0+0.32 99.4+0.23 98.4+0.23

3.1.5 Comparison of detection methods

To verify the reliability and robustness of the FD-YOLOVS5s
detector, we compared it with nine mainstream target detection
models: Faster RCNN (Vggl6)®!, Faster RCNN (MobileNetv2)®2,
SSD 300 (ResNet50)**, ReinaNet*!, YOLO-V3, Tiny YOLO-V3,
YOLO-V4, Tiny YOLO-V4, and YOLOX-s*!. Each of these nine
models was trained using the training set, and the performance of
the different detection algorithms was evaluated on the test set.

The results of each detection model are listed in Table 11.
Analysis of the data shows that FD-YOLOVS5s detection accuracy
was better than all the other nine algorithms and had the lowest
number of parameters and smallest model size. Although Tiny
YOLO-V3 and Tiny YOLO-V4 obtained better FPS, the mAP was
still much lower than ours. The mAP for FD-YOLOV5s was 11.7%,
5.1% higher than Tiny YOLO-V3 and Tiny YOLO-V4,
respectively. In addition, the mAP of ReinaNet was comparable to

Table 11 Comparison of detection parameters of

different methods

Model mAPs/% mAPs.05/% Size/MB S
GPU CPU
Faster RCNN (Vggl6) 96.40 69.00 334.00 18.87 1.16
Faster RCNN (MobileNetv2)  97.90 71.30 628.00 27.93 1.46
SSD 300 97.90 72.20 102.00 99.01 5.87
ReinaNet 99.00 73.20 245.10 18.76 1.03
YOLO-V3 93.30 67.10 235.10 84.75 10.13
Tiny YOLO-V3 87.40 57.20 33.10 400.00 58.82
YOLO-V4 96.20 70.30 244.00 50.51 4.43
Tiny YOLO-V4 94.00 66.10 22.50  312.50 48.54
YOLOX-s 94.20 71.60 68.50 69.93 8.28
FD-YOLOVS5s 99.10 74.70 3.86 156.25 18.93

the proposed FD-YOLOVS5s, but its model size was about sixty-
three times larger than that of FD-YOLOVSs, and the inference
speed was also the slowest among the ten methods. Hence, judging
the detection effect, computational speed, and model size together,
FD-YOLOVSs is the most reliable and suitable algorithm for
embedded systems and portable devices for detecting the vulva and
buttocks of sows.

3.2 Performance of temperature extraction

To wverify the accuracy of the proposed algorithm for
temperature extraction, the differences between manually extracted
temperatures and automatically detected temperatures were
compared. Specifically, 100 randomly selected thermal infrared
images from the test set were used, and the temperatures acquired
by using the AnalystIR 4.13 software (Fotric, Shanghai, China)
were compared to the results detected by the proposed FD-
YOLOVS5s algorithm. In manual extraction, the thermal images
were loaded into the AnalystIR 4.13 software, and the vulva region
is selected by the mouse. Selected the maximum and average
temperatures of the selected region provided by this software as a
criterion to evaluate the proposed FD-YOLOVSs algorithm.
Furthermore, to reduce subjective errors when manually selecting
regions, the vulva temperatures were extracted by three people, and
their mean values were taken as the gold standard.

As illustrated in Figure 12, for the maximum and average
temperatures of the sow vulva, the FD-YOLOVSs model detection,
and manual extraction showed essentially the same trend.
Moreover, the MAE of the maximum and average temperature of
the vulva was 0.03 and 0.14, and the MAPE was 0.1% and 0.42%,
respectively, indicating that the proposed FD-YOLOVSs algorithm
extracted the maximum and average vulva temperatures with a high
accuracy rate.

Linear regression was also performed between manual
extraction and automatic detection, as shown in Figure 13. Using
the proposed FD-YOLOVS5s detection model, the R? found by
Pearson correlation was 0.995 and 0.993 for vulvar maximum and
average temperatures, respectively, indicating a close correlation
between the two measures.

Furthermore, 94% and 99% of the test files had errors within
0.1°C and 0.3°C for vulvar maximum and average temperatures,
respectively, as shown in Figure 14. Therefore, the proposed FD-
YOLOVS5s algorithm can replace the manual extraction of vulvar
maximum and average temperatures in the infrared thermal images
of sows, showing the feasibility of applying the algorithm to
automatically extract vulva temperature based on the infrared
thermal images of sows.

The detection and temperature extraction results of the FD-
YOLOVS5s detector have been visualized in Figure 15. According to
Figures 15a-15c, it can be seen that the FD-YOLOVS5s detector can
detect the vulva in various states very well. In addition, as shown in
Figure 15d, the detector can determine whether the sow’s buttocks
are tilted to filter inaccurate vulvar skin temperatures and improve
the reliability of vulvar skin temperature extraction.

3.3 Evaluation of sow estrus detection results

To further verify the practicality of the proposed algorithm, the
results of manual estrus detection were used as the validation set.
Among the 30 sows monitored, estrus was detected in 28 sows. The
results of the estrus recognition algorithm are listed in Table 12.
The algorithm used maximum and average temperature fragments
for estrus detection with sensitivities of 89.3% and 85.7%,
specificities of 94.5% and 95.9%, and error rates of 5.8% and 4.7%,
respectively. The results showed that the sensitivity of the
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maximum vulva temperature was higher compared with the average
vulva temperature, and the maximum vulva temperature was less
influenced by environmental factors in actual production, so the
maximum vulva temperature was used for sow estrus detection with
better results. Moreover, applying the maximum temperature of the
vulva for estrus detection, the number of manual estrus detections
could be reduced by more than 90%, accepting that 1.1% of sows
were not detected during estrus (1.1% false negatives). Therefore,
monitoring the maximum vulvar temperature may be more suitable
for sow estrus detection.

d. Leftward sloping buttocks.

c. Swollen vulva

Figure 15 Visual detection and temperature extraction results of
the proposed FD-YOLOVS5s detector

Table 12 Results of sow estrus detection

T tu Total Total Total Total Error  Specificity/ Sensitivity/
cmperalife “pp pp TN FN  rate/% % %
Maximum 25 24 416 3 5.8 94.5 89.3
Average 24 18 420 4 4.7 95.9 85.7
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3.4 Discussion

To date, many studies have been published on methods for
detecting estrus in sows based on infrared thermography, thus
providing a good research foundation. However, most studies on the
extraction of sow skin temperature and the analysis of sow estrus
are still based on manual manipulation. In this study, we described a
new method for sow estrus detection. The key novelty of this
method is the combination of deep learning and infrared
thermography, which solves the problems of time consuming and
unstable when extracting temperature manually, and achieves
automatic detection of sow estrus by judging the trend of vulva
temperature change in sows within 48 h.

From the example results of the estrus test (see Figure 9), it can
be seen that the sow’s vulvar skin temperature increases and then
decreases during estrus, which is consistent with the conclusions
drawn from previous studies®?!. The difference is that we collected
thermal infrared images of sows in their natural state, without
additional cleaning and wiping of stains on their vulva before the
shooting, which may also be one of the reasons why the sensitivity
of the average vulva temperature in the estrus detection results (see
Table 12) is lower than the maximum vulva temperature, but this
approach is closer to the actual production scenario. In addition,
when performing estrus detection on sows, estrus was judged by
analyzing the trend of sow vulva temperature segments over a fixed
period of time, instead of using only temperature increments” or
temperature thresholds®, which can not only solve the problem of
significant differences between the vulva temperatures of sows and
gilts®™ but also greatly avoid the interference brought by
environmental factors such as geography and season, so the method
has a certain degree of universality.

The proposed FD-YOLOVS5s network reached 99.1% detection
mAP for positioning the key parts of the sow and the detection
speed was 156.25 FPS, which was better than YOLO-VS5 (see Table
9) and other mainstream object detection models (see Table 11). In
addition, the algorithm test results in Section 3.2 showed that the
error of the automatically extracted vulva temperature based on FD-
YOLOVS5s was within 0.4°C from the manual extraction, especially
the highest temperature error of 94% of the test files was only
0.1°C, as shown in Figure 14. This means that the detection
algorithm used in this study can extract the maximum vulvar
temperature of the sow quickly and accurately. More importantly,
the sensitivity of using the maximum temperature to detect estrus in
sows reached 89.3%. Moreover, the model size of 3.86 MB is more
convenient and can be applied to low-cost devices, reflecting a
better application value. Therefore, the detection method proposed
in this paper can successfully apply deep learning and infrared
thermography to automate sow estrus detection. However, there are
still some limitations to this study that need to be further addressed
through follow-up work. First, the animal experiments in this study
were completed within a month of the sow farm when only
multiparous empty-pregnant sows were about to enter estrus, which
limited the richness of the data set to the extent that was unable to
verify the performance of the proposed estrus detection model on
weaned sows and gilts. This urgently needs to be perfected in the
future. Secondly, from the results of sow estrus detection, the error
rate was high when judging sows in estrus based on the trend of the
temperature curve obtained by the simple inflection point detection
algorithm. Therefore, using machine learning methods to extract
finer-grained change features from temperature segments to further
improve the accuracy of estrus detection is the focus of our later
work.

4 Conclusions

In this study, a real-time and lightweight object detection
algorithm, FD-YOLOVSs, was proposed for the first time for the
automatic extraction of sow vulva temperature from thermal images
to achieve automatic detection of sow estrus. Experimental results
showed that FD-YOLOVS5s achieved 99.1% mAP on the test set,
with detection speeds of 156.25 FPS on GPU and 18.93 FPS on
CPU, respectively, and mi odel size of only 3.86 MB. In addition,
compared to commonly-used deep learning-based target detection
network models, the FD-YOLOVS5s detection algorithm was much
faster while maintaining high accuracy. On the other hand, the
maximum error in vulvar maximum and average temperatures was
0.1°C and 0.3°C for 94% and 99% of the 100 test images,
respectively. The coefficients of determination for FD-YOLOVS5s
automatic detection and manual extraction of vulvar maximum and
average temperatures were 99.5% and 99.3%, MAE were 0.03 and
0.14, and MAPE were 0.1% and 0.42%, respectively. Thus, the FD-
YOLOVSs algorithm is a practical method for sow vulva and
buttocks detection, providing accurate, real-time information on the
vulva temperature of the sow and filtering inaccurate vulva
temperature for monitoring the temperature changes of the sow
during estrus. The estrus detection algorithm had a sensitivity,
specificity, and error rate of 89.3%, 94.5%, and 5.8%, respectively,
which can greatly reduce the number of manual estrus detection. In
all, the method can quickly and effectively extract the vulva
temperature and automatically detect estrus in sows. However, the
detection accuracy of the sow estrus detection algorithm based on
simple temperature trend changes is not ideal. In future work, we
plan to monitor more sows, increase the sample size of estrus
detection, and explore machine learning-based estrus recognition
algorithms to extract more fine-grained temperature change features
to improve the accuracy of sow estrus detection and make it more
practical.

Acknowledgements

This work was financially supported by the Tianjin Key
Research and Development Program Science and Technology
Support Key Project (Grant No. 20YFZCSN00220), the Central
Government Leading Local Science and Technology Development
Special Project (Grant No. 21ZYCGSNO00590), and the Inner
Mongolia Autonomous Region Science and Technology
Department Project (Grant No. 2020GG0068).

[References]

[17 LeeJH,Lee DH, Yun W,Oh HJ, AnJ S, Kim Y G, et al. Quantifiable
and feasible estrus detection using the ultrasonic sensor array and digital
infrared thermography. Journal of Animal Science and Technology, 2019;
61(3): 163-169.

[2] Johnson J S, Shade K A. Characterizing body temperature and activity
changes at the onset of estrus in replacement gilts. Livestock Science,
2017; 199: 22-24.

[3] Weng R C. Variations in the body surface temperature of sows during the
post weaning period and its relation to subsequent reproductive
performance. Asian-Australas Journal of Animimal Sciences (AJAS),
2020; 33(7): 1138-1147.

[4] Knox R V. Artificial insemination in pigs today. Theriogenology, 2016;
85(1): 83-93.

[5] Sandu M, Mantea §, Ipate I, Kruzslicika M, Chiritescu V. Study upon the
moment of ovulation in sows to establish the optimum moment for semen
inoculation. Anim Sci Biotechnol, 2012; 45: 346-348.

[6] Cassar G, Kirkwood R N, Poljak Z, Bennett-Steward K, Friendship R M.
Effect of single or double insemination on fertility of sows bred at an
induced estrus and ovulation. J Swine Health Prod, 2005; 13(5): 254-258.


https://doi.org/10.5187/jast.2019.61.3.163
https://doi.org/10.1016/j.livsci.2017.03.004
https://doi.org/10.5713/ajas.19.0576
https://doi.org/10.1016/j.theriogenology.2015.07.009

206

May, 2023 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 16 No. 3

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Kemp B, Soede N M. Consequences of variation in interval from
insemination to ovulation on fertilization in pigs. Journal of Reproduction
and Fertility Supplement, 1997; 52(Supp.): 79-89.

Knox R V, Esparza-Harris K C, Johnston M E, Webel S K. Effect of
numbers of sperm and timing of a single, post-cervical insemination on the
fertility of weaned sows treated with OvuGel®. Theriogenology, 2017; 92:
197-203.

Terqui M, Guillouet P, Maurel M C, Martinat-Bott¢ F. Relationship
between peri-oestrus progesterone levels and time of ovulation by
echography in pigs and influence of the interval between ovulation and
artificial insemination (AI) on litter size. Reproduction Nutrition
Development, 2000; 40(4): 393-404.

Soede N M, Langendijk P, Kemp B. Reproductive cycles in pigs. Animal
Reproduction Science, 2011; 124(3-4): 251-258.

Ostersen T, Cornou C, Kristensen A R. Detecting oestrus by monitoring
sows’ visits to a boar. Computers and Electronics in Agriculture, 2010;
74(1): 51-58.

Lei K D, Zong C, Du X D, Teng G H, Feng F Q. Oestrus analysis of sows
based on bionic boars and machine vision technology. Animals, 2021;
11(6): 1485.

Langendijk P, Soede N M, Bouwman E G, Kemp B. Responsiveness to
boar stimuli and change in vulvar reddening in relation to ovulation in
weaned sows. Journal of Animal Science, 2000; 78(12): 3019-3026.
Pedersen L J. Sexual behaviour in female pigs. Hormones and Behavior,
2007; 52(1): 64-69.

Pedersen L J, Rojkittikhun T, Einarsson S, Edqvist L E. Postweaning
grouped sows: Effects of aggression on hormonal patterns and oestrous
behaviour. Applied Animal Behaviour Science, 1993; 38(1): 25-39.
Kauffold J, Rautenberg T, Richter A, Waehner M, Sobiraj A.
Ultrasonographic characterization of the ovaries and the uterus in
prepubertal and pubertal gilts. Theriogenology, 2004; 61(9): 1635-1648.
Rezac P, Vasickova D, Poschl M. Changes of electrical impedance in
vaginal vestibule in cyclic sows. Animal Reproduction Science, 2003; 79(1-
2): 111-119.

Luiio V, Gil L, Jerez R A, Malo C, Gonzilez N, Grandia J, et al.
Determination of ovulation time in sows based on skin temperature and
genital electrical resistance changes. Veterinary Record, 2013; 172(22):
579.

Soede N M, Hazeleger W, Kemp B. Follicle size and the process of
ovulation in sows as studied with ultrasound. Reproduction in Domestic
Animals, 1998; 33(3-4): 239-244.

Cornou C. Automated oestrus detection methods in group housed sows:
Review of the current methods and perspectives for development.
Livestock Science, 2006; 105(1-3): 1-11.

Hidalgo D M, Cassar G, Manjarin R, Dominguez J C, Friendship R M,
Kirkwood R N. Relationship between vaginal mucus conductivity and time
of ovulation in weaned sows. Canadian Journal of Veterinary Research,
2015; 79(2): 151-154.

Sykes D J, Couvillion J S, Cromiak A, Bowers S, Schenck E, Crenshaw M,
et al. The use of digital infrared thermal imaging to detect estrus in gilts.
Theriogenology, 2012; 78(1): 147-152.

Scolari S C, Clark S G, Knox R V, Tamassia M A. Vulvar skin temperature
changes significantly during estrus in swine as determined by digital
infrared thermography. Journal of Swine Health and Production, 2011;
19(3): 151-155.

Simdes V G, Lyazrhi F, Picard-Hagen N, Gayrard V, Martineau G P,
Waret-Szkuta A. Variations in the vulvar temperature of sows during
proestrus and estrus as determined by infrared thermography and its
relation to ovulation. Theriogenology, 2014; 82(8): 1080—1085.

Weng R C, Ndwandwe S B. Application of modern estrus detection
protocols in small scale Hybrid Black pig production systems. Journal of
Agricultural and Crop Research, 2020; 8(6): 120-131.

Lufio V, Gil L, Olaciregui M, Grandia J, Ansé T, De Blas I. Fertilisation
rate obtained with frozen-thawed boar semen supplemented with
rosmarinic acid using a single insemination timed according to vulvar skin
temperature changes. Acta Veterinaria Hungarica, 2015; 63(1): 100-109.
Lu M, He J, Chen C, Okinda, C, Shen M, Liu L, et al. An automatic ear
base temperature extraction method for top view piglet thermal image.
Comput Electron Agric, 2018; 155: 339-347.

Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017; 39(6): 1137-1149.

[29]

[30]

311

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[43]

[46]

[47]

[48]

[49]

[50]

Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified,
real-time object detection. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016;
pp.779-788. doi: 10.1109/CVPR.2016.91.

Zhou C, Lin K, Xu D M, Liu J T, Zhang S, Sun C H, et al. Method for
segmentation of overlapping fish images in aquaculture. Int J Agric & Biol
Eng, 2019; 12(6): 135-142.

Yang Q M, Xiao D Q, Cai J H. Pig mounting behaviour recognition based
on video spatial-temporal features. Biosystems Engineering, 2021; 206:
55-66.

Li G X, Liu X L, Ma Y F, Wang B B, Zheng L H, Wang M J. Body size
measurement and live body weight estimation for pigs based on back
surface point clouds. Biosysems Engineering, 2022; 218: 10-22.

Zhang X D, Kang X, Feng N N, Liu G. Automatic recognition of dairy cow
mastitis from thermal images by a deep learning detector. Computers and
Electronics in Agriculture, 2020; 178: 105754.

Zhang Y, Cai J, Xiao D, Li Z, Xiong B. Real-time sow behavior detection
based on deep learning. Computers and Electronics in Agriculture, 2019;
163: 104884.

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD:
Single Shot Multibox Detector. In: Proceedings of the European
Cofference on Computer Vision (2016ECCV), Amsterdam: Springer,
Cham, 2016; pp.21-37. doi: 10.1007/978-3-319-46448-0_2.

Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv
preprint, 2018. arXiv: 1804.02767. doi: 10.48550/arXiv.1804.02767.
Jocher G, Stoken A, Borovec J, NanoCode012, Chaurasia A, TaoXie, et al.
Ultralytics/yolov5: v5.0 - YOLOvVS-P6 1280 models, AWS, Supervisely
and YouTube integrations (v5.0). Zenodo, 2021. Available:https://zenodo.
org/record/4679653. Accessed on [2021-6-18].

Ma N, Zhang X, Zheng H T, Sun J. Shufflenet v2: Practical guidelines for
efficient CNN architecture design. In: Proceedings of the European
Confference on Computer Vision (2018ECCV), Munich, Germany:
Springer, 2018; pp.122—-138. doi: 10.1007/978-3-030-01264-9_8.

Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
Mobilenets: Efficient convolutional neural networks for mobile vision
app.ications. arXiv preprint, 2017. arXiv: 1704.04861. doi: 10.48550/arXiv.
1704.04861.

Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions.
arXiv preprint, 2015. arXiv: 1511.07122. doi: 10.48550/arXiv.1511.07122.
Siewert C, Dénicke S, Kersten S, Brosig B, Rohweder D, Beyerbach M, et
al. Difference method for analysing infrared images in pigs with elevated
body temperatures. Zeitschrift fiir Medizinische Physik, 2014; 24(1): 6-15.
Liu H, Shen H, Ci W B, Qi Z, Zhou C, Yao J X, et al. Effects of the
distance and test angle on the precision of infrared temperature
measurement. In:IOP Conference Series:Earth and Environmental Science,
Bristol:IOP Publishing, 2022; 983(1): 012025.

Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and
accuracy of object detection. arXiv: 2004.10934, 2020. doi: 10.48550/arXiv.
2004.10934.

Lin T-Y, Dollar P, Girshick R, He K M, Hariharan B, Belongie S. Feature
pyramid networks for object detection. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA:
IEEE, 2017; pp.936-944. doi: 10.1109/CVPR.2017.106.

Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for
instance segmentation. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA: IEEE, 2018;
pp-8759-8768. doi: 10.1109/CVPR.2018.00913.

Lu Z, Bai Y, Chen Y, Su C, Lu C, Zhan T, et al. The classification of
gliomas based on a pyramid dilated convolution resnet model. Pattern
Recogn Letters, 2020; 133: 173-179.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the
inception architecture for computer vision. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA:
IEEE, 2016; pp.2818-2826. doi: 10.1109/CVPR.2016.308.

Zheng Z H, Wang P, Liu W, LiJ Z, Ye R G, Ren D W. Distance-IoU loss:
Faster and better learning for bounding box regression. In:Proceedings of
the AAAI Conference on Artificial Intelligence, Palo Alto, California,
USA:AAAI Press, 2020; 34(7): 12993—13000.

Almeida F R, Novak S, Foxcroft G R. The time of ovulation in relation to
estrus duration in gilts. Theriogenology, 2000; 53(7): 1389-1396.

Satopaa V, Albrecht J, Irwin D, Raghavan B. Finding a" kneedle" in a
haystack: Detecting knee points in system behavior. In: 2011 31st


https://doi.org/10.1016/j.theriogenology.2017.01.033
https://doi.org/10.1051/rnd:2000107
https://doi.org/10.1051/rnd:2000107
https://doi.org/10.1016/j.anireprosci.2011.02.025
https://doi.org/10.1016/j.anireprosci.2011.02.025
https://doi.org/10.1016/j.compag.2010.06.003
https://doi.org/10.3390/ani11061485
https://doi.org/10.2527/2000.78123019x
https://doi.org/10.1016/j.yhbeh.2007.03.019
https://doi.org/10.1016/0168-1591(93)90039-R
https://doi.org/10.1016/j.theriogenology.2003.09.012
https://doi.org/10.1016/s0378-4320(03)00101-5
https://doi.org/10.1136/vr.101221
https://doi.org/10.1111/j.1439-0531.1998.tb01350.x
https://doi.org/10.1111/j.1439-0531.1998.tb01350.x
https://doi.org/10.1016/j.livsci.2006.05.023
https://doi.org/10.1016/j.theriogenology.2012.01.030
https://doi.org/10.1016/j.theriogenology.2014.07.017
https://doi.org/10.33495/jacr_v8i6.20.154
https://doi.org/10.33495/jacr_v8i6.20.154
https://doi.org/10.1556/AVet.2015.008
https://doi.org/10.1016/j.compag.2018.10.030
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.25165/j.ijabe.20191206.3217
https://doi.org/10.25165/j.ijabe.20191206.3217
https://doi.org/10.1016/j.biosystemseng.2021.03.011
https://doi.org/10.1016/j.biosystemseng.2022.03.014
https://doi.org/10.1016/j.compag.2020.105754
https://doi.org/10.1016/j.compag.2020.105754
https://doi.org/10.1016/j.compag.2019.104884
https://doi.org/10.1016/j.zemedi.2013.11.001
https://doi.org/10.1088/1755-1315/983/1/012025
https://doi.org/10.1088/1755-1315/983/1/012025
https://doi.org/10.1016/j.patrec.2020.03.007
https://doi.org/10.1016/j.patrec.2020.03.007
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1016/S0093-691X(00)00281-8

May, 2023

Zheng H B, et al.

Automatic detection of sow estrus using a lightweight real-time detector and thermal images

Vol. 16 No.3 207

[51]

[52]

international conference on distributed computing systems workshops,
Minneapolis, MN, USA: IEEE, 2011; pp.166—-171. doi: 10.1109/ICDCSW.
2011.20.

Simonyan K, Zisserman A. Very deep convolutional networks for large-
scale image recognition. arXiv preprint, 2014. arXiv: 1409.1556. doi:
10.48550/arXiv.1409.1556.

Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. Mobilenetv2:
Inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT,
USA: IEEE, 2018; pp.4510-4520. doi: 10.1109/CVPR.2018.00474.

[53]

[54]

[53]

He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016; pp.770-778. doi:
10.1109/CVPR.2016.90.

Lin T Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020; 42(2): 318-327.

Ge Z, Liu S, Wang F, Li Z, Sun J. YOLOX: Exceeding YOLO series in
2021. arXiv preprint, 2021. arXiv: 2107.08430. doi: 10.48550/arXiv.2107.
08430.


https://doi.org/10.1109/TPAMI.2018.2858826

	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.1.1 Sows and thermal image data collection
	2.1.2 Dataset construction

	2.2 Overall technical route
	2.3 FD-YOLOV5s
	2.3.1 Lightweight backbone network
	2.3.2 Improvement of the neck network
	2.3.3 Detection head

	2.4 Temperature extraction
	2.5 Estrus detection
	2.6 Evaluation metrics
	2.6.1 Evaluation of the model performance
	2.6.2 Evaluation of temperature extraction and estrus detection


	3 Results and discussion
	3.1 Vulva and buttocks detection
	3.1.1 Training result analysis
	3.1.2 Effects of S5 and DSC modules
	3.1.3 Effects of MDC module and feature map discarding
	3.1.4 Comparison of different models of YOLO-V5 detector
	3.1.5 Comparison of detection methods

	3.2 Performance of temperature extraction
	3.3 Evaluation of sow estrus detection results
	3.4 Discussion

	4 Conclusions
	Acknowledgements
	References

