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Identification of soybean in Argentina using Sentinel-2 composite images
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Abstract: Soybean is one of the most important oil crops, and Argentina is the third-largest soybean producer in the world,
accounting for 17% of the global soybean yield. Timely and accurate information on soybean spatial distribution is critical for
ensuring global food security. Sentinel-2 multispectral data and machine learning classification models are used to investigate
the potential of soybean identification in the early stage of the growing season in Argentina, with the help of Google Earth
Engine (GEE). The earliest time window and optimal feature set for soybean identification are explored. Results are as follows:
1) the random forest (RF) classification model demonstrated the highest level of classification accuracy compared to the
backpropagation neural network (BPNN), support vector machine (SVM), and naive Bayes (NB) models; 2) Soybean can be
accurately identified as early as the end of February (filling stage), which is approximately one month before harvest; 3) The
optimal feature-subset can reduce the amount of input data by 80% while maintaining high classification accuracy. The overall
accuracy (OA) of the RF classification model is 85.87%, and the relative error between the estimated soybean planting area and
the agricultural statistics is 3.45%. This study provided a high-precision method for early-season identification of soybeans over
large scales. The results can provide a data support for early futures trading and agricultural insurance, as well as a reference for

policy-making to ensure global soybean food security.
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1 Introduction

Soybean is an important oil crop, which can provide high-
quality protein. As a nitrogen-fixing plant, soybeans can reduce the
use of fertilizers in fields!. In the next 20 years, soybean demand
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will increase to 1.5 times the current global yield®. Since the 21st
century, Argentina has rapidly expanded its soybean planting area
and has become the third largest soybean producer in the world,
accounting for 17% of the global soybean yield”. Some scholars
predict that by 2030, Argentina will surpass the United States and
Brazil to become the largest soybean producer®. Argentina is also
the third largest soybean exporter in the world and is the main
supplier of soybean products including protein derivatives, soybean
meal, soybean oil, and biodiesel in the European market".
Accurately obtaining soybean spatial distribution is the basis of
water resource management,

yield estimation, and disaster

assessment®. Meanwhile, obtaining soybean planting area
information prior to harvest can not only provide data support for
early futures trading and agricultural insurance but also global food
security and agricultural policy.

Satellite remote sensing technology can provide dynamic
observations with wider coverage and higher efficiency than
traditional statistical reports or field surveys. At present, the two
major strategies for soybean identification based on remote sensing
are: 1) selecting a single-date image within the key phenological

period of soybean”, and 2) using time-series images during one or
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multiple growing seasons of soybean!*'*. The first strategy is time-
efficient and user-friendly. However, in many places, the clouds
may prevent or delay the acquisition of images, leading to low
interannual transferability of the single-date image method™. In
addition, the classification results of the single-data image are
inaccurate for areas with complex planting structures and high
spectral similarities'"”. The second strategy mainly uses time-series
images to capture the dynamic information of soybeans at different
growth stages'®'*'l. This approach has been widely studied in the
large-scale identification of soybeans. In the early 21st century,
much of the research relied on low spatial resolution data, such as
MODIS and AVHRR!"?). Picoli et al.””! used a support vector
machine model, combined with MODIS time series to map nine
land cover categories in the state of Mato Grosso, Brazil. However,
the accuracy of soybean planting area extraction using medium to
low spatial resolution time series data was hampered by the problem
of mixed pixels due to the relatively low spatial resolution. In recent
years, the launch of high-resolution and high-frequency satellites
has improved soybean identification technology**. Paludo et al.>
used Landsat-8, Sentinel-2, and SRTM data, combined with a
simple non-iterative clustering segmentation method and a naive
Bayes classifier to identify soybean and maize planting areas in the
state of Parana, Brazil. However, most studies are based on remote
sensing images of the entire growth cycle of soybean, and the
spatial distribution information of soybean can only be obtained
after soybean harvest or even several months after harvest®”". For
example, the cropland data layer (CDL) of the United States
Department of Agriculture (USDA) is not released until the
beginning of the next calendar year. To some extent, this approach
restricts production management and decision-making of soybeans
in early or in-season of land lease, water and fertilizer management,
crop insurance, harvest, and transportation coordination. Therefore,
studying the precise identification of soybeans in the early growing
season over large scales is urgent.

Several recent signs of progress make it possible for us to
identify soybeans within the growing season over large scales.
Sentinel-2 series of satellites with 5 d revisit cycles and 10 or 20 m
spatial resolution can provide abundant temporal and spectral
features™**, which are widely used in soybean classification®*. In
addition, Google Earth Engine (GEE), as a cloud data platform, has
powerful computing capabilities, which can not only conveniently
call, analyze, and process various satellite images and geospatial
datasets, but also provide various classification algorithm inter-
faces™ !, Abundant satellite data and powerful computing platforms
provide strong support for large-scale soybean identification.

However, challenges will inevitably emerge when identifying
soybeans in the early stage of the growing season in Argentina.
1) The uncertainty of effective observation frequency in time and
space can affect the classification results due to the different
satellite orbits and location of cloud contamination®”’; 2) Fewer
satellite observations can be utilized in the early season soybean
identification than in the post-season soybean identification;
3) Numerous features are used to identify soybeans, such as
vegetation index and texture**Y. Nevertheless, these high-
dimensional input features increase the complexity of
classification®”. This study attempted to solve these challenges by
using the following methods: 1) To obtain a homogeneous time
series, the equal temporal interval composite method was used to
build regular interval time-series images on a large scale®’***1; 2) To
fully dig out the spectral information in the early stage of the
growing season, the incremental time window method was used to

study the relationship between identification accuracy and seasonal
variation! to explore the earliest time window of soybean
identification; 3) To evaluate the potential of using only Sentinel-2
multispectral bands for early-season identification of soybean in
Argentina, while avoiding the Hughes effect, the importance of each
Sentinel-2 multispectral band for soybean identification in early-
season was evaluated. Then, feature selection was used to decrease
redundant information®**' to find the optimal feature subset for
early-season identification of soybeans.

The main purpose of this study is to accurately identify
soybeans in the early stage of the growing season in Argentina. The
GEE platform was used to construct composite images of the
Sentinel-2 multispectral bands in the soybean growing season
2019/2020 in Argentina’s main agricultural areas. Subsequently, the
machine learning classification models were used to explore the
ecarliest time window for soybean identification, and the optimal
feature subset was selected by assessing the importance of all
spectral and temporal features during the time window. Finally, the
spatial distribution of soybeans in Argentina was mapped.

2 Materials and methods

2.1 Study area

Argentina is located in the southeast of South America, facing
the Atlantic Ocean in the east, Antarctica across the sea in the south,
Chile in the west, and on the border with Bolivia and Paraguay in
the north. With an area of 2.78 million km’, it is the second-largest
country in Latin America and eighth in the world. As shown in
Figure la, the study area covers the main agricultural areas of
Argentina according to the Buenos Aires Grain Exchange (2019)
zonation*, containing the main agricultural areas of 15 provinces.
The geographical range is 22°0'S-41°21'S, 56°42W-67°23'W, with
a total area of approximately 1.3 million km’, mainly located in
temperate and subtropical climates with fertile soil and abundant
rain. It is suitable for agricultural development. In addition to
soybean, the main crops include maize and wheat. Soybean is
mainly sown at the beginning of November and harvested at the
beginning of April of the following year. The soybean planting area
of the study area accounts for 99.8% of that in the whole extent of

Argentina*’l.
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Figure 1 Distribution and number of samples in Argentina’s main

agricultural areas
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2.2 Data

Sentinel-2 satellite series are composed of two identical
satellites, A and B, with a temporal resolution of 5 d and 13
multispectral bands with a spatial resolution of 10, 20, and 60 m.
This research selected November 1, 2019, to April 30, 2020, as the
study period, considering the growth period of soybeans. Sentinel-2
top-of-atmosphere (TOA) reflectance data were used instead of
surface reflectance (SR) due to the limited temporal availability of
SR imagery in the GEE platform for the study area. The reliability
of TOA reflectance data for image classification has been proven in
previous studies**), and lots of recent efforts have used S2 TOA
reflectance data to identify crops?***#>****321 The quality assessment
(QA60) band was used to limit the cloud cover percentage to less
than 10%“#. All the band values were divided by 10 000 to obtain
the band reflectance value. All 10 and 20 m spatial resolution bands
of Sentinel-2 were selected, including blue, green, red, red-edge 1
(RE1), red-edge 2 (RE2), red-edge 3 (RE3), near-infrared (NIR),
narrow infrared (Narrow NIR), shortwave infrared 1 (SWIR 1), and
shortwave infrared 2 (SWIR2), a total of 10 bands were obtained.
The cropland data were from GlobeLand30 products®, which are
used to mask non-farmland areas.

Ground reference data were obtained from the national crop
map published by the National Institute of Agricultural Technology
of Argentina®. Three categories of sample types were selected
including soybean, maize, and others, considering that the
phenological periods of maize and soybean are close. The other
types mainly consist of sunflower, peanut, cotton, sugarcane, and
sorghum. The following steps are performed to determine the
sample data. First, larger sample plots (greater than 25 hm*) which
are the same crops in growing seasons 2018/2019 and 2019/2020
were selected as the sampling area for each sample type. Second,
evident error points were visually removed from the high-resolution
Google Earth image. The distribution and number of samples are
shown in Figure 1. A total of 70% of the samples are randomly
selected as training samples and the remaining 30% as validation
samples.

The agricultural statistical data include the national and
provincial soybean planting area data of Argentina, which are from
the Ministry of Agriculture, Livestock and Fisheries!’.

2.3 Classifier setting

To evaluate different machine learning classification models for
soybean identification in Argentina, four widely used models in
crop remote sensing identification were selected in this study. The
performance of each model was compared by calculating the overall
accuracy (OA) and Kappa coefficient. Due to the large scale of the
study area (approximately 1.3 million km?®), some classifiers require
downloading images for local processing, which requires significant
computational time and storage Consequently, the
comparison experiment of classifiers was conducted in the top three
soybean-producing provinces (Buenos Aires, Cordoba, and Santa

space.

Fe), which account for 75% of the total soybean planting area.
Additionally, to ensure accurate identification, this study selected
the median composite image™*! of Sentinel-2 in February
201971311 during the filling stage of soybean, as the input image.
The classification models and parameter settings are described as
follows:

Back-propagation Neural Network (BPNN) is a multi-layer
feedforward neural network training based on the error
backpropagation algorithm®’. Support Vector Machine (SVM) is a
binary classification algorithm that aims to find the optimal
separating hyperplane in a high-dimensional space, maximizing the

distance between samples on both sides of the hyperplane to divide
different classes®™. Naive Bayes (NB) classification algorithm is
based on the Bayes theorem and the assumption of feature
independence®. Random Forest (RF) is a classification algorithm
based on multiple decision trees, using a random and put-back
sampling method when selecting a subset of training samples. Each
tree is constructed from approximately two-thirds of the training
samples, with the remaining third used for test classification, which
are known as out-of-bag (OOB) samples. Through the OOB
samples, the classification performance of each tree can be
evaluated to determine the final performance of the classifier®”. RF
can quantify the importance of variables, which makes it useful for
feature ranking or selection'””. The importance of features was
evaluated based on the mean decrease Gini (MDG)" %),

In this study, the BPNN algorithm (Neural Net Classification)
in ENVI 5.3 software was used, with the number of iterations
increasing from 500 to 2000 in increments of 500 to balance
computational complexity and classification accuracy. The final
number of iterations was set to 1000, while other parameters
remained at their default values. The SVM algorithm
(ee.Classifier.libsvm) in GEE was used, with the radial basis
function (RBF) selected, and the cost parameter increased from 50
to 300 in increments of 50 to balance computational time and
classification accuracy. The final cost parameter was set to 100,
while other parameters were kept at their default values. The NB
algorithm (ee.Classifier.smileNaiveBayes) was called in GEE, with
only one parameter requiring adjustment, which was kept at its
default setting. The RF algorithm (ee.Classifier.smileRandomForest)
was called in GEE, with the number of trees increased from 100 to
500 in increments of 100 to balance computational complexity and
classification accuracy. The final number of trees was set to 200,
while other parameters were kept at their default values!“>*’l.

2.4 Time interval of composite images setting

The equal temporal interval median composite method was
used to build regular interval time-series images in the study
areal® > First, during the study period, the median value of
observations in the temporal intervals of 5, 15, and 30 d was
obtained to build composite images in each temporal interval which
were called single-period images (for example, November 1, 2019,
to November 5, 2019, is the first single-period image of a 5-day
temporal interval). Then, the percentage of pixels that have at least
one effective observation within each temporal interval was counted
to illustrate the coverage of Sentinel-2 images in the study area. To
capture more detailed spectral information in the early stage of the
growing season, the temporal interval of single-period images
should be sufficiently narrow. However, an extremely narrow
temporal interval may not be sufficient to fill in the gaps. Although
the method of data interpolation can be used to fill in the gap, it is
generally time-consuming and the results have some uncertainty for
the data missing over a long time and a large range®"*>*". Therefore,
the narrower interval and the smaller degree of data missing were
used to determine the time interval of composite images.

2.5 Time window of soybean identification selection

The incremental time window method was used to explore the
earliest identifiable time of soybean”**l. Starting from November 1,
2019, the time interval determined in Section 2.4 is gradually
extended to 28 April 2020 to form equal temporal interval time-
series images with different lengths. The influence of these time-
series images on classification accuracies was assessed to determine
the earliest time window of soybean identification. The main steps
are the follows: 1) Gap filling is performed on the missing part of
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each single-period image using the average value of the two images
before and after”; 2) The overall accuracy (OA) and kappa
coefficient (KC) of RF classification of each single-period image
are calculated; 3) Starting from the first single-period image and
sequentially adding the subsequent single-period image, the
different lengths of equal temporal interval time-series images are
formed; 4) The OA and KC of equal temporal interval time-series
images with different lengths were calculated, and the soybean
planting area was estimated at the same time; 5) The classification
accuracy reaches the stable level or no longer significantly increases
to determine the time window. The earlier time window is more
valuable to the decision-making activities.

2.6 Optimal feature-subset construction

Feature selection was used to decrease the number of features
and calculation runtime'™!. Sequential forward selection (SFS) is
used to determine the dimension of the optimal feature subset for
soybean identification”. SFS is a greedy algorithm for finding the
optimal subset of features. The feature subset starts from an empty
set, and then a new feature is added each time. The final feature
subset is determined according to the optimal feature function. The
main steps are as follows: 1) All the features in the time window
determined in Section 2.5 were input into the RF classifier to obtain
the importance score of each feature, then, the Min-Max Scaling
was used to map the score to the range of®*; 2) The importance of
all features was arranged in descending order; 3) The feature subset
starts from the empty set. According to the feature sequence in step
2, one new feature was added to the feature subset each time, then
the OA of the current feature subset was calculated, and the soybean
planting area was estimated at the same time; 4) The OA trend after
each new feature was added was observed until the OA reached a
stable level, or it no longer increased significantly. This condition
indicated that relatively high accuracy can be obtained with fewer
features and that the amount of input data and the calculation cost
are significantly reduced.

In this study, two methods were mainly used to evaluate the
accuracy of soybean identification, 1) by validation samples, a
confusion matrix was generated to evaluate the accuracy of
classification, and 2) by using a soybean distribution map, soybean
planting area at national and provincial level is estimated, and then
the accuracy of area extraction is evaluated by comparing with
agricultural statistical data. The accuracy indexes used were the OA,
KC, relative error, and coefficient of determination (R?).

3 Result analysis and discussion

3.1 Classifier selection

Figure 2 shows the classification accuracy of different models,
and it is evident that the RF classifier outperformed the other three
models, achieving the highest OA and Kappa of 80.20% and 0.70,
respectively. The BPNN classifier had a relatively high OA of
79.39%, while its Kappa was close to SVM. On the other hand, the
NB classifier exhibited the lowest OA and Kappa among all
classifiers, indicating its poor performance in classification.
Moreover, the RF classifier is convenient to operate in the GEE
platform, and the importance of each feature can be calculated using
the explain function, which facilitates feature selection. Previous
studies have extensively employed the RF classifier for soybean
remote sensing identification!"****'*¢4*l " Based on these findings,
the RF classifier was selected for further research in this study.
3.2 Determination of time interval of composite images

Figure 3 shows that during the study period, the percentage of
pixels which has at least one effective observation within each

temporal interval in the study area, including 5, 15, and 30 d. A
large degree of missing data was observed in multiple consecutive
periods in the 5 d temporal interval, especially in the early stage of
the growing season. For example, in the period within 20-24 d of
the year (DOY) in 2020, only 43.45% of the pixels obtained at least
one effective observation. This indicates that 56.55% of the pixels
have encountered missing data. Thus, the 5 d temporal interval is
ruled out. With increasing composite temporal interval, more pixels
can satisfy the requirement for at least one effective observation in
every period. In addition, during the 15 d temporal interval, slight
data loss is observed in several periods (the maximum percentage of
missing pixel data is 4.86%). In the 30 d temporal interval, every
period at approximately 100% of the pixels obtain at least one
effective observation, that is, almost no data is missing. Compared
with the 30 d temporal interval, the 15 d temporal interval can
capture more detailed image information. Therefore, to explore a
shorter time window for soybean identification, the 15 d temporal
interval was finally selected as the time interval for composite
images.

100% mOverall accuracy mKappa coefficient
0,
80% | 79-39% 76.77% 80.20%
0.66 0.70
: 0.64 60.88%

60%

40% I 0.40

20%

BPNN SVM NB RF

Figure 2 Overall accuracy and Kappa coefficient of classification

results from different models
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Note: DOY in this figure represents the deadline of each period in the 5 d
temporal interval (DOY of —57 represents the period of —61 to =57 d of 2020), it
is displayed once every 15 d, same below. The date on the horizontal axis takes
January 1, 2020 as 1, forward 2020 as positive and backward to 2019 as negative.
Figure 3 Percentage of pixels with effective observations in the
study area (5, 15, 30 d temporal intervals)

3.3 Determination of time window of soybean identification
The OA and KC of RF classification of each 15 d single-period
image and 15 d time-series images of different lengths are shown in
Figure 4. From the single-period images, the OA and KC initially
increase and then decrease. Among them, the classification
accuracy of single-period images with DOY of 45 to 59 is the
highest (OA: 77.61%, KC: 0.66). Moreover, the OA and KC of
different lengths of time-series images indicate that with the
addition of more images, the classification accuracy continuously
improves and finally tends to be stable. Subsequently, compared
with single-period images (the maximum OA is 77.61%), the
classification accuracy of time-series images is higher (the
maximum OA is 88.43%), consistent with the previous research
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results®l. This means that time-series images can provide richer
dynamic information, which enables the classifier to easily capture
the changes between different categories, thus improving the
classification accuracy. However, it eventually tends to be saturated,
with the increase in data. Specifically, when the time-series images
with DOY of —61 to 59 are used for classification (the first black
frame from the left in Figure 4), acceptable classification accuracy
is obtained (OA: 85.90%, KC: 0.79). After adding more images, the
classification accuracy fluctuates in a small range. Among them, the
classification accuracy of the time-series images with DOY of —61
to 104 is the highest (the second black frame from the left in
Figure 4), but the improvement is limited compared with the
classification accuracy with DOY of —61 to 59 (the OA and KC are
increased by 2.54% and 0.04, respectively), and the time window is
extended by 45 d. The estimated soybean planting area is calculated
from the two time-series images. According to Figure 5a, the R* of
the two is 0.99. Thus, the time-series images with DOY of —61 to
59 can achieve the approximate effect of using the maximum OA of
the full season. Therefore, to identify the soybean as early as
possible, the DOY of —61 to 59 (November 1, 2019, to February 28,

2020) is selected as the time window, during which soybean is from
the sowing stage to the filling stages, approximately one month
carlier than the soybean harvest, which is close to the previous
research results!'**?.
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Note: DOY indicates the deadline for each single-period image and from
November 1, 2019 to the current deadline of the time-series images (DOY —47
represents the period —61 to —47 d of 2020). KC: Kappa coefficient.

Figure 4 OA and KC of RF classification of 15 d single-period

images and 15 d time-series images with different lengths
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Note: The time window and full season refer to the period in the DOY of —61 to 59 and DOY of —61 to 104, respectively.

Figure 5 Regression of estimated soybean area at provincial level between full season map with time window map and between time
window map with the optimal feature-subset map

3.4 Determination of optimal feature subset of soybean
identification

All the features within the time window are input into the RF
classifier, and the importance of each feature was obtained, as
shown in Figure 6, where the rightmost column (mean) refers to the
mean of each spectral band in the horizontal axis direction. This
column indicates that the shortwave infrared and red-edge bands are
more important to the classification than the near-infrared and
visible  bands, with  the research
conclusions™’*’l. Among them, the important mean values are
shortwave infrared 2 (45.35%)>shortwave infrared 1 (41.19%)>red-
edge 1 (40.25%)>red-edge 3 (39.69%)>red-edge 2 (35.93%).
Compared with individual features, the spectral bands with DOY of
45 to 59 (in late February) are highly important, during the period
soybean is in filling stages. Therefore, the images at the peak of the
crop growth period are crucial in crop identification'”.

According to the SFS, the features in descending order of
importance are added to the RF classifier in turn, then the

consistent previous

relationship between the number of classification features and the
OA is observed, as shown in Figure 7. First, the red-edge 2 with
DOY of 45 to 59 is added, the OA is 48.01%. Subsequently, the red-
edge 3 with the DOY of 45 to 59 is added, the OA reaches 63.96%.
When the ninth feature (shortwave infrared 2 with DOY of —61 to
—47) is added, the OA reaches a local maximum of 83.87%, then it
continues to fluctuate in a small range. When the 16th feature
(shortwave infrared 1 with DOY of 30 to 44) is added, the OA
reaches 85.87%, which is close to the OA of classification using 80
features. When the 36th feature (red-edge 3 with DOY of —31 to
—17) is added, the local maximum OA reaches 87.48%, which is
slightly higher than the accuracy when 80 features are input, thereby
verifying the existence of the Hughes effect, that is, using all data
into the classifier not only wastes calculation time, but also reduces
classification accuracy!®*l,

The OA is relatively high (83.87%, 85.87%, and 87.48%) when
the first nine, 16, and 36 features are added. The relative errors
between the estimated soybean planting area and agricultural
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statistical data are 9.03%, 3.45%, and —6.87%. Therefore, after
weighing the amount of input data and the classification effect, the
feature subset consisting of 16 features is finally selected. The
soybean planting area estimated by the optimal feature subset is
compared with that estimated by all features in the time window.
According to Figure 5b, the R* is 0.99. This shows that the optimal
feature subset can represent all the features in the time window
while reducing the amount of calculated data by 80% (the number
of features decreased from 80 to 16). The detailed data are
compared, as shown in Table 1. The table lists that when the
number of input features is large, similar results can be obtained
with fewer inputs through feature selection while reducing
computational complexity and time cost. In addition, the optimal
feature subset mainly includes the following 16 features: shortwave
infrared 1 and shortwave infrared 2 with DOY of —61 to —47, red
with DOY of —16 to —2, red-edge 1 with DOY of 15 to 29,
shortwave infrared 1 and red-edge 2 with DOY of 30 to 44, and all
10 and 20 m resolution bands of Sentinel-2 with DOY of 45 to 59.
Among them, DOY of 45 to 59 (in late February), accounting for 10
features, fully illustrates the importance of bands in late February
for classification. At the same time, shortwave infrared 1 appears
three times, and shortwave infrared 2, red-edge 1, and red-edge 2
appear two times, verifying that shortwave infrared and red-edge
bands contribute significantly to soybean identification.
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Note: The rightmost column (mean) refers to the mean of the horizontal axis
direction of each spectral band. The color change from green to red shows the
increasing trend of variable importance. The horizontal axis date refers to the
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names.

Figure 6 Importance of all features in the time window
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Figure 7 Relationship between the number of participated features
in the RF classifier and the OA of classification

Table1 OA and KC of classification and the relative error of
estimated soybean planting area for different images

Images Full Time Nine  Optimal feature- 36
season window features subset features
Number of features 110 80 9 16 36
OA/% 88.43 85.90 83.87 85.87 87.48
Kappa coefficient ~ 0.83 0.79 0.76 0.79 0.81
Relative error/% —5.14  -6.77 9.03 345 —6.87

Note: full season refers to the period from 1 November 2019 to 13 April 2020 (DOY
of =61 to 104).

3.5 Soybean identification and accuracy evaluation

The spatial distribution map of soybeans in the study area in the
growing season 2019/2020 is drawn using the optimal feature subset
determined in Section 3.4, as shown in Figure 8. The OA is 85.87%
and KC is 0.79. The estimated soybean planting area is
17.49 million hm? and the relative error is 3.45% compared with
agricultural statistics. It was clear that the total soybean planting
area is almost equal to the statistics. In order to further verify the
mapping quality, the soybean planting area was calculated at the
provincial level and compared with the statistics. The result is
shown in Figure 9, the slope of linear fit is 1.04 and the R* is 0.99.
Obviously, the remarkable correlation between the two was
confirmed by the slope values and R?, which are relatively close to
1. What’s more, comparing soybean mapping with Sentinel 2
composite images also showed high consistency (Figure 10).
Therefore, this method can extract soybeans effectively, rapidly,
and accurately.
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Figure 8 Spatial distribution map of soybeans in the study area in
the growing season of 2019/2020

The soybean planting area in Argentina in the growing season
2018/2019 and 2020/2021 are estimated using the same policy to
verify the robustness of this method. The results show that the
estimated soybean planting area in the growing season 2018/2019
and 2020/2021 are 15.38 and 16.93 million hm?’, respectively, with a
relative error of —9.59% and 1.70% compared with the agricultural
statistical data. According to Figure 9, the R* of the provincial
estimated soybean area and agricultural statistics area are 0.98 and
0.99, respectively. Therefore, this method has good robustness.
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Figure 10 Comparisons between soybean mapping and Sentinel 2
imagery which is red-green-blue (R-G-B) composites of RE3,
RE2, and RE1

scale, soybean sowing times and growth states can be varied
(intraclass variability)® and lead to misclassification of classifiers.
Second, the use of cropland data, Sentinel-2 TOA reflectance data,
and image cloud removal processing methods may have a certain
impact on soybean identification. In addition, the estimated soybean
planting area has a certain error due to classification errors and the
existence of mixed pixels'’.. In the future, when the ground survey
work is relatively easy to carry out, the distribution map can be
considered an auxiliary variable, and then the survey estimate can
be used as a dependent variable for regression analysis to obtain
more reliable soybean distribution and area information!”. At the
same time, the object-based approach can reduce the influence of
pixel heterogeneity to a certain extent and improve the accuracy of
soybean identification!".

4 Conclusions

With the help of the Google Earth Engine (GEE) platform,
Sentinel-2 multispectral data and machine learning classification
model were used, the earliest time window and optimal feature-
subset of soybean identification in Argentina were determined, and
then the spatial distribution of soybean in the growing season 2019/
2020 was mapped. The main conclusions of this study are as follows:

1) Among the four machine learning models, the random forest
(RF) classifier demonstrated the highest level of classification
accuracy, followed by the backpropagation neural network (BPNN)
and support vector machine (SVM) classifiers, while the naive
Bayes (NB) classifier exhibited poor performance;

2) Soybean can be accurately identified during the filling stage,
which occurs approximately one month before harvest;

3) A vital temporal period for soybean identification in
Argentina is in late February. Shortwave infrared and red-edge
bands play a significant role in soybean identification. The input
data can be reduced by 80% (from 80 to 16 features) by using the
optimal feature subset after feature selection while maintaining high
classification accuracy, the OA is 85.87% and the relative error of
the estimated soybean planting area is 3.45%.

4) In addition, the soybean planting area in the growing season
2018/2019 and 2020/2021 are estimated using the same policy,
these areas are in good agreement with the agricultural statistics
(relative error<10%), thereby verifying the robustness of the method.

In general, this study found that Sentinel-2 composite images
can be used to rapidly identify soybeans by using the optimal
feature subset approximately 1 month prior to soybean harvest in
Argentina. The research results provide a scientific reference for the
production management and decision-making of large-scale crops in
the early season or during the season. In the future, guided by these
research conclusions, larger-scale crop identification and regional
crop suitability evaluations can be carried out.
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