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Abstract: Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease 
and ensuring the healthy development of the grape industry.  The objective of this research was to propose a simple and 
efficient approach to improve grape leaf disease identification accuracy with limited computing resources and scale of training 
image dataset based on deep transfer learning and an improved MobileNetV3 model (GLD-DTL).  A pre-training model was 
obtained by training MobileNetV3 using the ImageNet dataset to extract common features of the grape leaves.  And the last 
convolution layer of the pre-training model was modified by adding a batch normalization function.  A dropout layer followed 
by a fully connected layer was used to improve the generalization ability of the pre-training model and realize a weight matrix 
to quantify the scores of six diseases, according to which the Softmax method was added as the top layer of the modified 
networks to give probability distribution of six diseases.  Finally, the grape leaf diseases dataset, which was constructed by 
processing the image with data augmentation and image annotation technologies, was input into the modified networks to 
retrain the networks to obtain the grape leaf diseases recognition (GLDR) model.  Results showed that the proposed 
GLD-DTL approach had better performance than some recent approaches.  The identification accuracy was as high as 99.84% 
while the model size was as small as 30 MB. 
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1  Introduction  

Grape is one of the most popular fruits as well as a source of 
red wine around the world.  However, grape leaf diseases 
significantly decrease the yield and quality of the grape.  It is 
urgent for farmers to investigate grape leaf diseases efficiently by 
taking various measures throughout the growth time[1]. 

Different grape leaf diseases show in the phenotype with 
different image symptoms. Based on this, researchers make 
automatic diagnoses using image data and identification algorithms 
to realize large-scale investigation in a more efficient way. 
Compared with traditional manual identification methods, 
automatic identification has higher accuracy and is more efficient.  
Machine learning (ML) has attracted more and more attention from 
researchers to apply it to do automatic disease identification of 
grapes and other crops.  Some remarkable research and 
development results have been published[2-5].  Zhang et al.[2] 
proposed a K-means-based clustering technology to identify 
cucumber leaf diseases.  Zhang et al.[3] proposed an apple leaf 
disease recognition method that is based on image processing and 
pattern recognition.  Ramcharan et al.[4] applied transfer learning 
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to train convolutional neural networks (CNNs) to identify three 
different leaf diseases and two types of pest damage.  Lu et al.[5] 
proposed a novel rice diseases identification method based on deep 
CNNs.  These research results are developed by traditional ML or 
deep learning (DL) methods in ML. 

Since the 1980’s, different ML approaches, such as database, 
decision support systems, rule-based systems, fuzzy logic, support 
vector machine (SVM)[6], discriminant analysis, and K-means[2] 

have been applied to solve disease recognition problems in 
agriculture.  Due to the variety of agricultural diseases and 
subjective perception, it was difficult to identify leaf diseases at the 
very early stage to give warnings to avoid disease outbreak using 
these traditional ML methods.  To overcome this problem, image 
pattern recognition with DL algorithms developed rapidly in leaf 
disease recognition. For example, a citrus leaf image system[7] was 
developed based on a scalable vocabulary tree approach. This 
approach was used to identify healthy, typical Huanglongbing 
(HLB), alleviated HLB, yellowed, and zinc deficiency. Average 
identification accuracy achieved as high as 95%.   

In the past decades, image processing technology also made a 
breakthrough in the field of crop leaf disease recognition[8-12].  
Rather than manually selecting features to feed traditional ML 
classification methods, DL[13-15] methods provided end-to-end 
pipelines to automatically extract advanced robust features and thus 
significantly improved the usability of agricultural disease 
identification. This improvement has greatly improved the 
automatic process of leaf disease identification with sufficient 
training images and powerful computing resources. However, it 
was difficult to collect large-scale target disease image data to 
support DL to establish a classification model.  Thus, insufficient 
training images and limited computing resources were the main 
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factors that blocked the further improvement in the identification 
accuracy of crop leaf diseases. Besides that, the independent 
identically distribution of the training data and the test data is also 
required, which is also difficult to obtain from practice data.  To 
overcome these shortages, transfer learning (TL)[16-20] is proposed. 

TL methods make use of the knowledge learned from the big 
data to help small-scale datasets to build the target domain model.  
This method greatly reduced the requirement of dataset scale in the 
target domain.  That was why TL is developed rapidly in many 
research and engineering fields, especially in the field of crop leaf 
disease recognition.  Researchers have carried out relevant 
research work[21-24] using the disease images data of some existing 
datasets with large-scale to assist in establishing the target disease 
images identification model with small sample data.  Long et al.[21] 
used the deep learning network of TL to conduct image 
identification research on four kinds of camellia diseases.  Arnal 
et al.[22] studied how the size and variety of the dataset impact the 
effectiveness of DL techniques applied to plant pathology.  
Lumini et al.[23] proposed an automatic plankton identification 
system based on the fusion of different DL methods.  In the year 
2020, Chen et al.[24] studied TL of the deep CNNs to identify plant 
leaf diseases.  They also used the pre-training model learned from 
the typical massive dataset, and then transferred it to the specific 
task trained by their own data. 

Among these studies, TL methods have been used extensively 
in the field of crop disease identification with satisfactory results.  
However, object identification has not been applied to the real-time 
monitoring of grape leaf diseases, which has high practical value in 
the field of agriculture.  Another drawback is that the 
identification methods used to evaluate the quality of the dataset 
and to reduce computational resources are rarely improved.  To 
overcome these weaknesses of the existed algorithms, a novel 
grape leaf disease recognition algorithm was proposed in this 
study.to evaluate the quality of the dataset and to reduce computing 
resources. 

The objective of this research was to incorporate 
MobileNetV3[25] network model and deep TL (DTL)[26,27] to 
enhance the learning ability of small sample grape leaf diseases 
model with decreasing the computational complexity.  It provided 
a sufficient and effective model for grape leaf diseases image with 
the grape leaf diseases dataset collected by the internet.  The 
proposed algorithm also integrated the image definition detection 
method to eliminate the fuzzy images, improve the robustness of 
the CNNs model, and avoid the influence of the image definition 
on the training accuracy.  After that, the image data 
augmentation[28,29] was also implemented in the proposed algorithm 
to process the diseased grape images and to generate enough 
training images to avoid over fitting problems caused by 
unbalanced sample distribution.  In addition, four different 
processing steps were proposed to improve the learning ability of 
tiny lesion symptoms alone while decreasing the computational 
complexity. The processing steps were summarized as follows.  

1) A pre-training model[30] was obtained by training 
MobileNetV3 using the ImageNet dataset to extract common 
features of the grape leaves.  And the last convolution layer of the 
pre-training model was modified by adding a batch normalization 
function; 

2) The convolution layer was added followed by the dropout 
layer, which was used to mitigate the occurrence of over fitting, 
and followed by the fully connected layer, which was used to fuse 
the output features of the convolution layer for feature 

classification; 
3) The fully connected Softmax layer was added as the top 

layer of the modified networks to give probability distribution of 
six diseases; 

4) The grape leaf diseases dataset was sent to the modified 
networks for retraining, and the GLDR model was obtained. 

Experiment results demonstrated that the proposed approach 
achieved excellent performance with a mean average identification 
accuracy of 99.84%, while the model size was merely 30 MB 
which was only a small fraction of most existing TL models.  In 
addition, the proposed GLDR model also exhibited higher 
robustness than state-of-the-art TL methods. 

2  Dataset preparation and the proposed algorithm  

2.1  Data acquisition 
A total of 4344 images of original grape leaf diseases (O-GLD) 

were obtained, including Black rot, Esca measles, Leaf spot, 
Downey mildew, Phylloxera, and Healthy.  Six different kinds of 
grape leaf conditions were selected since they are visually 
identified from leaves while they are responsible for substantial 
yield reductions in the grape industry.  Figure 1 gives 
representative images of the grape leaves in the dataset. 

 
Figure 1  Six different kinds of grape leaf conditions 

 

Diversity among six grape leaves is easily observed in Figure 1.  
Healthy leaves are supposed to be light green.  Leaves of Leaf 
spot are composed of rust-yellow spots with brown pinhead-sized 
points in the center.  Leaves of Phylloxera are composed of 
rhombic or bird head nodules.  Downey mildew leaves are 
composed of polygonal yellowish-brown spots.  Leaves of Black 
rot are composed of relatively small and brown spots.  Leaves of 
Esca measles are composed of dark red spots. 
2.2  Image quality filter 

To avoid wasting training effort on the original dataset, a filter 
was introduced to remove low-quality images.  The filter was 
based on the detection of image clarity.  Seven different clarity 
detection algorithms were introduced here. 

Grape Brenner gradient (G-BG) function is the simplest 
gradient evaluation function. It simply calculates a square of gray 
difference between two adjacent pixels.  The clearer the image is, 
the larger the output value of the Brenner gradient function is.  
The equation is defined as follows: 

2
G-BG | ( 2, ) ( , ) |

y x

f yD x f x y+ −= ∑∑        (1) 

where, x and y are ordinates of pixel points, respectively; f(x, y) is a 
gray value of pixel (x, y) corresponding to the image f.   

Image sharpness is evaluated by calculating values of 
multiplying two gray differences in each pixel field and then 
accumulating them one by one.  Generally, the larger the value is, 
the clearer the image is.  The equation of grape gray variance 
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product (G-GVP) is defined as follows: 

G-GVP | ( , ) ( 1, ) | | ( , ) ( , 1) |
y x

f x y f x y x xD f y f y− + ⋅ − += ∑∑  (2) 

where, f(x, y) is a gray value of pixel (x, y) corresponding to the 
image f. 

Image sharpness is evaluated by values of horizontal and 
vertical gradients, which are calculated by a Laplacian gradient 
grape (LG-G) function.  The equation is defined as follows: 

LG-G | ( , ) | ( ( , ) )
y x

G x y GD x y T= >∑∑          (3) 

where, G(x, y) is a convolution of the Laplacian operator at pixel (x, 
y) while T is a given threshold of edge detection; DLG-G is a final 
output value.  The higher the value of DLG-G is, the higher the 
definition of the image. 

Because a clear focus image has a greater gray difference than 
a blurred image, Grape variance (G-VA) function can be used as an 
evaluation function.  The formula is defined as shown in Equation 
(4). 

2
G-VA | ( , ) |

y x

f xD y u= −∑∑             (4) 

where, u is the average gray value of the whole image; DG-VA is the 
average gray value of the whole image.  Similarly, the higher the 
value of DG-VA is, the higher the definition of the image. 

Grape energy gradient (G-EG) function evaluates image 
sharpness by calculating gradient values of all pixels, where the 
gradient value is calculated by a sum of squares of the gray value 
of adjacent pixels in x  and y  directions.  The calculation 
process can be expressed by Equation (5). 

2 2
G-EG [| ( 1, ) ( , ) | | ( , 1) ( , ) | ]

y x

f x y f x y f x y f x yD + − + + −= ∑∑  (5) 

where, f(x, y) is a gray value of the pixel (x, y) corresponding to the 
image f. 

The function of grape vollath (G-V) is defined as shown in 
Equation (6). 

2
G-V [ ( , ) ( 1, ) ]

y x

f x fD y x y M N u⋅ + − ⋅ ⋅= ∑∑       (6) 

where, u is an average gray value of the whole image; M and N are 
the width and height of the image, respectively. 

Grape entropy (G-E) function is based on the entropy function 
of statistical features to measure the richness of image information 
and further test the clarity of the image.  According to information 
theory, the clarity of the image is evaluated by calculating the 
information entropy of the image.  And the calculation formula of 
information entropy is shown in Equation (7). 

0
G-E

1

ln( )
L

i i
i

D p p
−

=

= ∑                 (7) 

where, pi is the probability of pixels with gray value i; L is the total 
number of gray levels.  According to Shannon's information 
theory, the maximum value of entropy means the most information.  
Applying this principle to the focusing process, the higher the value 
of DG-E is, the clearer the image is. 

To make use of this feature of the images, a python program 
was implemented with a certain threshold to select the images to 
achieve the requirements.  The threshold for each function was 
obtained by experiments. 

Take Esca measles-infected leaves as an example.  The image 
shown in Figure 2 is used as input for the detector.  Parameters 
and thresholds of the detector are listed in Table 1.  When any one 
of the return values of differential equations was lower than the 

threshold, the image was automatically removed. 
 

 
Figure 2  Image example of Esca measles-infected leaf 

 

Table 1  Detection value and threshold of the O-GLD dataset 
definition detection for different functions 

Function Detection value Threshold 

DG-BG 58 273 342 20 000 000 
DG-GVP 26 701 242 1 000 000 
DLG-G 5409 2000 
DG-VA 222 593 147 50 000 000 
DG-EG 81 879 921 30 000 000 
DG-V 192 571 933 10 000 000 
DG-E 5  3  

 

2.3  Data augmentation 
After selecting and sorting by the proposed detector, the 

number of grape leaf images set was reduced from 4344 to 2277.  
Among those 2277 images, there were 500 images with Black rot 
disease, 500 Esca measles images, 500 Leaf spot images, 104 
Phylloxera images, 173 Downey mildew images, and 500 healthy 
leaf images.  Details of the dataset are presented in Table 2. 

 

Table 2  Proportion of grape leaf images with different diseases 
 

Label Class Number Proportion/% 

0 Phylloxera 104 4.57 
1 Black rot 500 21.96 
2 Esca measles 500 21.96 
3 Leaf spot 500 21.96 
4 Downey mildew 173 7.59 
5 Healthy 500 21.96 

 

From Table 2, it was easy to see that the dataset had 
unbalanced sample distribution, which made it difficult to extract 
the classification features with a small sample size because of 
overfitting and reduced accuracy and robustness of the model. 

The problems of the unbalanced distribution of samples in the 
training stage of CNNs can be overcome by data augmentation.  
For data augmentation, several algorithms were implemented, 
including disturbances of contrast, sharpness, brightness, rotation 
transformations, and flip.  Inverse filtering noise processing 
operation was also applied.  Besides that, online data 
augmentation was also adopted in this step to improve the 
computational efficiency of data augmentation.  After the above 
operations, six new images were generated from each image, as 
shown in Figure 3. 
2.4  The proposed approach 

Inspired by the MobileNetV3 and DTL, a novel grape leaf 
diseases recognition approach GLD-DTL was proposed. The 
proposed approach was composed of two parts as shown in Figure 
4.  The first part was the pre-training module, which was used as a 
basic feature extractor, and the second part was a classifier that made 
use of feature maps for detection.  The lightweight MobileNetV3 
with complementary search technology was incorporated into the 
proposed approach to make the whole system as light as possible.  
The pre-training model was obtained by distillation training of 
MobileNetV3 model on the ImageNet dataset.  Then, the last 
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convolution layer of the pre-training model was modified by adding 
a batch normalization function.  A dropout layer followed by a 
fully connected layer was used to improve the generalization ability 
of the pre-training model and to realize a weight matrix to quantify 

the scores of six diseases. After that, the Softmax method was 
added as the top layer of the modified networks to give the 
probability distribution of six diseases.  The detailed descriptions 
of the proposed approach are illustrated as follows. 

 

Original image 

  

Center crop 

  

Random crop 

  

Rotate 

  

Resize 

  

Image denoising 

  

Flip 

  
 a. Black rot b. Esca measles c. Downey mildew d. Leaf spot e. Phylloxera f. Healthy 

 

Figure 3  Data augmentation of grape leaf diseases images 
 

 
Figure 4  Overall structure of GLD-DTL approach 
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2.5  MobileNetV3 network model 
MobileNetV3 is a lightweight convolutional neural network 

model with fewer network parameters, high accuracy, fast 
recognition, and training speed.  Therefore, the lightweight 
MobileNetV3 with complementary search technology was selected 
as the basic model in the proposed approach. 
2.6  Knowledge distillation 

Knowledge distillation[31] is a model compression method 
based on the training of “teacher-student network thought”.  
Because of its simplicity and efficiency, it is widely used in 
industrial applications.  The Knowledge distillation technology 
was also adopted in this study to compress the pre-training model 
to reduce computational complexity.  Semi-supervised label 
knowledge distillation (SSLD) algorithm was also used in the 
proposed approach, which used prediction information of 
ResNeXt101[32] as a label to supervise the learning of 
MobileNetV3 model.  The specific process is shown in Figure 4.  
Firstly, the ImageNet dataset was input into ResNeXt101 model 
and MobileNetV3 model, respectively.  Then, the output of 
ResNeXt101 model was taken as the real value to measure the loss 
between the output of MobileNetV3 model and itself.  Finally, the 
weight of the MobileNetV3 model was updated by gradient descent, 
which made the output of the MobileNetV3 model closer to the 
ResNeXt101 model, to achieve the effect of using a small model to 
fit a large model.  The pre-training model of compressed 
MobileNetV3 was obtained in this way. 
2.7  Model transfer 

By the above operations, MobileNetV3 was determined to be a 
basic network in the proposed approach.  And the pre-training 
model was obtained by training the MobileNetV3 with the 
ImageNet dataset and the knowledge distillation method.  
Common features of grape leaves were extracted by this 
pre-training model. Based on this, the pre-training model needed to 
be used to allocate network weights in this stage.  After that, the 
bottom layer of the pre-training model was modified to establish a 
new network structure.  Finally, the new neural network was 
trained using grape leaf diseases dataset to get the final recognition 
model of grape leaf diseases.  Details are described as follows. 

Considering that the first several layers of MobileNetV3 
pre-training model usually extracted color and corner features, 
which are common to grape leaf diseases dataset and ImageNet 
dataset.  Therefore, all convolution layers of the pre-training 
model were preserved, and the last layer of the pre-training model 
was replaced with an extended convolution layer of 576 1 1× ×  in 
which hard-Swish was used as the activation function instead of the 
ReLU.  The hard-Swish activation function was followed by a 
dropout layer, which was used to alleviate the occurrence of 
overfitting in the process of over model training.  The fully 
connected layer was added after the dropout layer and followed by 
a Softmax classifier.  Figure 5 depicts the network structure added 
by the proposed approach.  A new network model was obtained in 
this way. 

Reasons for this research adding each layer in Figure 5 to our 
new network model are described below.  In the new network 
model, the convolution layer was added to the global average 
pooling layer for smaller feature maps at a faster speed.  The 
hard-Swish activation function was added to the convolution layer 
to improve the numerical stability and speed up the calculation.  
The dropout function was added to the extended structure to avoid 
over fitting during model training.  The matrix multiplication and 
the matrix addition were carried out in the fully connected layer 

with weight (Cls_out_w) of [1280×6] and bias (Cls_out_b) [6×1] to 
obtain the feature classification results.  The Softmax classifier 
was added to the fully connected layer to calculate the final 
classification results. 

 
Figure 5  New extended network architecture 

 

2.8  TL steps 
Since the convolution blocks before the added TL module 

serving as backbone image feature extractor was pre-trained from 
ImageNet while the added TL module was initialized with random 
weights, a direct fine-tune of the whole network on the grape 
dataset in this study will probably impose a negative effect on 
backbone when TL module learns from random weights.  In view 
of this, a three-stage training strategy of the proposed TL was used: 

1) Freezed the backbone module so that the gradients in the 
image feature extractor was not backward propagated.  Perform 
backward propagation on the TL module with a normal learning 
rate, and train the network until convergence. 

2) Unlock the backbone convolution blocks and perform 1/10 
of the normal learning rate on the whole network including 
backbone module and the TL module, and train the network until 
convergence.  

3) Train the whole network with a normal learning rate until 
convergence. 

3  Results and discussion 
3.1  Experimental setup 

This experiment was conducted on Windows server with an 
Intel (R) Core (TM) 7-9750H CPU @ 2.60GHz that was 
accelerated by an NVIDIA RTX2060 GPU (6 GB memory).  In 
addition, the PaddlePaddle DL framework was used to implement 
the proposed model.  Additional configuration parameters and 
training hyper parameters are listed in Table 3. 

 

Table 3  Software and hardware environment for experiment 
Configuration item Description 

CPU Intel® Core (TM) i7-9750H 
GPU NVIDIA RTX2060 6 GB 
Hard disk 1TB 
Operating system Windows10 
Python 3.7.8 
Batch size 8 
Optimizer Adam 
Learning rate 0.0002 

 

3.2  Dataset 
In this phase, the method proposed in Section 2.2 was used to 

automatically delete the blurred images in the O-GLD dataset to 
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ensure the quality of the dataset.  In addition, at least 500 images 
of each category were ensured by the data augmentation technique 
in Section 2.3.  The images of grape leaf diseases were uniformly 
resized to the fixed-dimension of 224 224×  pixels to fit the 
model, and 500 pre-processed images of each type were selected to 
construct the final grape leaf diseases (F-GLD) dataset.  To 
perform the experiments, 80% of the F-GLD dataset was used for 
training and the other 20% was used for testing. 
3.3  Evaluation metrics 

In order to better evaluate the performance of the model of this 
study, accuracy, recall, false positive rate (FPR), true positive rate 
(TPR), precision, and the harmonic mean (F1) were taken as the 
evaluation metrics. Definitions of these metrics are shown as 
follows: 

TP TNAccuracy
TP + TN + FP + FN

+
=            (8) 

TR Pec
T N

all
P + F

=                 (9) 

FPFPR
FP + TN

=                (10) 

TPTPR
TP + FN

=                (11) 

Precision TP
TP + FP

=              (12) 

2Precision RecallF1
Precision Recall

⋅
=

+
            (13)  

where, True positive (TP) is the number of instances that belongs to 
the class and are correctly identified by the classifier, False 
negative (FN) is on the contrary, which is the number of instances 
that belong to the class but are incorrectly classified.  False 
positive (FP) is the number of instances that do not belong to the 
class but are mistakenly identified as this classification.  True 
negative (TN) is the number of instances that are not in the class, 
and they are correctly identified. 
3.4  Evaluation of image definition detection  

To evaluate the proposed filter based on image definition 
detection, the dataset was divided into the F-GLD dataset after 
image definition detection and the O-GLD dataset without image 
definition detection.  The proposed network model was used to 
train and test the two datasets.  The experimental results showed 
that under the same training conditions, the recognition accuracy of 
the model trained with the F-GLD dataset was 99.84%, and the 
recognition accuracy of the model trained with the O-GLD dataset 
was 73.20%.  Details of the experimental results are illustrated as 
follows. 

It could be seen from the curve shown in Figure 6 that the 
accuracy of the model trained by the F-GLD dataset rose rapidly in 
the test process.  The curve also had little fluctuation, and the 
curve tended to be stable after about 250 iterations.  In contrast, 
the accuracy of the model trained by the O-GLD dataset rose 
relatively slowly.  The fluctuation of the curve was larger than the 
former one, and it did not reach a stable state as shown in Figure 6.  

 
Figure 6  Effects of F-GLD and O-GLD datasets model recognition accuracy 

 

In addition, it could be seen from Table 4 that the model size 
of the F-GLD dataset after training was 30 MB, and the training 
time of the model was 1.15 min.  While the model size of the 
O-GLD dataset after training was 55 MB, and the training time of 
the model was 3.13 min.  Obviously, the size of the model trained 
with the F-GLD dataset was smaller, while the training time of the 
model was also shorter. 

 

Table 4  Performance of two datasets 

Dataset 
Parameter 

F-GLD O-GLD 

Picture number 2277 4344 

Training time/min 1.15 3.13 

Identification accuracy/% 99.84 73.20 

Model size/MB 30 55 
 

Overall, the proposed model training with the F-GLD dataset 
constructed by an image sharpness detector had higher accuracy, 
smaller model size, and shorter training time than the model 
training with the O-GLD dataset.  Therefore, the proposed filter 
based on image definition detection could effectively improve the 
performance of the model. 

3.5  Evaluation of data augmentation  
To solve the problems caused by the uneven distribution of 

samples and to prevent the occurrence of overfitting, a variety of 
digital image processing technologies, such as rotation 
transformations and flip, were proposed to simulate the real 
acquisition environment, and increase the diversity, and quantity of 
grape leaf training images.  In addition, the inverse filtering noise 
processing operation was also applied to improve image clarity. 

To analyze the performance of the image augmentation 
strategy proposed in Section 2.4, 80% of standard datasets were 
used for the non-data augmentation test, data augmentation test, 
and inverse filtering noise processing data augmentation test, 
respectively.  20% of standard datasets were used for verification. 
Experiment results are shown in Figure 7. 

From Figure 7, it could be seen that the model without data 
augmentation had high training cost and test loss, and low training 
and recognition accuracy. The final training accuracy was 91.32% 
and the final testing accuracy was 90.15%.  By data augmentation, 
the loss of model training and testing was reduced, while the 
accuracy of training and recognition was improved.  The final 
training accuracy was as high as 99.12% and the final testing 
accuracy was 97.33%.  Compared with the previous two 
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experiments, the loss of model training and testing was 
significantly reduced after adding the data augmentation of inverse 
filtering noise processing.  The accuracy of training and 
recognition was also greatly improved, while the final training 
accuracy was as high as 99.84%, which was 8.42% higher than the 
training accuracy without data augmentation, and the final testing 
accuracy was as high as 98.78%, which was 8.63% higher than the 
testing accuracy without data augmentation.  The experimental 

results showed that under the condition of ensuring the image 
quality, the scale of the training dataset had an impact on the 
accuracy of the model.  The model would accumulate noise in the 
learning process when the accumulation reached a certain level.  
This accumulated noise would have a significant impact on the 
recognition results.  The data augmentation strategy proposed in 
this study not only expanded the scale of the dataset, but also 
reduced the noise of the dataset. 

 
a. Training accuracy 

 
b. Testing accuracy 

 
c. Training loss 

 
d. Testing loss 

Figure 7  Effects without data augmentation, with data augmentation and data augmentation combined with inverse filtering noise 
processing on the accuracy and loss in the training and testing model 

 

3.6  Evaluation of GLD-DTL approach 
For comparison, several deep convolution networks including  

Xception65, Xception71[33], SE_ResNeXt50, ResNet50, VGG13, 
VGG16, VGG19, and MobileNetV3 were trained and tested.  In 
the training process, stochastic gradient descent (SGD) strategy 
was used to calculate weights and bias sets of the neural network to 
minimize the loss function.  To solve the problem of high variance 
parameter updating and unstable convergence when SGD strategy 
directly adopts single sample training, the batch size was set to 8 
and the learning rate was set to 0.002.  All convolution layers used 
a batch normalization layer.  To determine how the converge 
speed of the SGD strategy, the momentum, which serves as an 

additional factor, was set to 0.9. 
Performances of various models are summarized in Table 5.  

The model sizes of MobileNetV3, Xception71, Xception65, 
SE_ResNeXt50, and ResNet50 were much smaller than VGG13, 
VGG16, and VGG19.  At the same time, the model with a high 
recognition accuracy of the traditional neural network model on the 
F-GLD dataset was not the ResNet50 model with a multi-level 
network, but the VGG19.  Although the VGG model had higher 
test precision than other traditional neural network models, it had a 
large size, which directly increased the computational cost.  
Compared with the VGG19, the accuracy of the GLDR model was 
1.26% higher, and the size of the model was 700 MB less.  It was 
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indicated that the GLDR model in the GLD-DTL approach 
achieved the best performance in terms of final accuracy and model 
size in this comparative experiment, which was higher than the 
accuracy of the existing model based on TL. 

Gradient-weighted class activation mapping (Grad-CAM) can 
provide a good visual basis for the classification results of the 
model.  To further analyze the reasons for the difference in 
recognition accuracy, this study extracted the Grad-CAM of some 
test images in the comparative experiment of each network module.  
The test results are shown in Figure 8. 

Table 5  Performance of nine models using the F-GLD dataset  
Models Identification accuracy/% Model size/MB 

Xception71 92.51 377.0 
Xception65 87.52 384.0 
SE_ResNeXt50 95.43 105.0 
ResNet50 96.55 98.2 
VGG13 94.32 616.0 
VGG16 98.43 697.0 
VGG19 98.58 778.0 
MobileNetV3 98.49 34.2 
GLDR (GLD-DTL) 99.84 30.0 

 

Original 

 

Xception71 

 

Xception65 

 

SE_ResNeXt50 

 

ResNet50 

 

VGG13 

 

VGG16 

 

VGG19 

 

MobileNetV3 

 

GLDR 

 
 a. Black rot b. Esca measles c. Healthy d. Leaf spot e. Phylloxera f. Downey mildew 

 

Figure 8  Grad-CAM comparison for nine models 
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It could be observed from Figure 8 that the GLDR model 
performed better to locate and select the pest area of leaves than 
other models. It also had a judgment effect on correct classification. 
3.7  Confusion matrix 

The performance of classifiers is crucial to the final 
classification effect of the model.  However, when facing multiple 
similar shape classes, classifiers may be confused.  Moreover, the 
images of infected grape leaves in different periods and different 
backgrounds may also lead to the high complexity of the patterns 
displayed in the same class.  Meanwhile, the performance of the 
classifier will be degraded.  To further evaluate the performance 
of the classifier to determine the accuracy of classification, a 
confusion matrix was introduced. 

The confusion matrix is shown in Figure 9.  The deeper the 
color in the visualization results, the higher the prediction accuracy 
of the model in the corresponding class.  All correct predictions 
were on the diagonal and all incorrect predictions are off the 
diagonal.  Hence, the confusion matrix shown in Figure 9a can be 
used to intuitively observe and evaluate the performance of the 
model in various categories.  In addition, according to the 
evaluation metrics in Section 3.3, the accuracy rate and recall rate 
of each category corresponding to the model could be calculated 
using the values in Figure 9b.  The detailed description of this 
experiment is illustrated as follows. 

 
a. Accuracy of prediction 

 
b. The number of correct and wrong predictions 

Figure 9  Confusion matrix of the GLDR model identification 
results 

 

According to the confusion matrix in Figure 9a and the 
analysis of six samples in Section 2.1, the features of Phylloxera 
and Downey mildew diseases and Healthy differed substantially 
from those of other diseases and reached recognition rates of 100%.  
Moreover, compared with other classes, the identification was more 
prone to confusion in distinguishing Black rot from Phylloxera and 
Healthy, and in distinguishing Esca measles from Black rot and 

Phylloxera.  Among the tested 138 images with Black dots, only 
two images were wrongly identified. One was wrongly identified as 
Phylloxera and the other one was wrongly identified as Healthy.  
Among the tested 138 images with Esca measles, also two images 
were wrongly identified.  One was wrongly identified as Black rot 
while the other one was wrongly identified as Phylloxera.  Among 
the 138 Leaf spot images, only one image was wrongly identified 
as Esca measles.  The reason caused this phenomenon was that the 
geometric characteristics of the diseases were very similar to each 
other.  Except for these two, the remaining classes were well 
differentiated. 

Although the confusion matrix provided an explanation for the 
low recognition accuracy of several types of experiments, the 
statistics in the confusion matrix is the number, which could not 
directly measure the advantages and disadvantages of the model.  
For further analysis of the performance of the GLDR model, four 
indexes in Table 6 and Figure 10 are added according to the 
statistical results of the confusion matrix shown in Figure 9b. 
 

Table 6  Four metrics of the GLDR model identification results 
 

Metrics 
Label Class 

Precision/% Recall/% F1/% Accuracy/%

0 Phylloxera 99.0 100.0 99.0
1 Black rot 99.0 99.0 99.0
2 Esca measles 99.0 99.0 99.0
3 Leaf spot 100.0 99.0 100.0
4 Downey mildew 100.0 100.0 100.0
5 Healthy 99.0 100.0 100.0

99.4 

 

Accuracy is an evaluation of the overall accuracy of the 
classifier summarized in Table 6.  Precision is an evaluation of the 
accuracy of the classifier’s prediction for a certain category.  The 
proportions of the samples that are positive in all the samples are 
predicted to be positive.  A recall is an evaluation of the 
proportion that is predicted to be positive in all samples that are 
positive.  F1 is a harmonic mean of precision and recall. 

From results of precision and recall, Downey mildew had the 
best recognition effect, with the precision and recall values 
reaching 100%, followed by Leaf spot.  In addition, it could be 
seen from Table 6 that the accuracy, recall, precision, and F1 of the 
six samples were extremely high.  While the difference among them 
was small.  The above results showed that the proposed GLDR 
model has good performance and high classification accuracy. 

Considering the problem that the distribution of training 
samples was balanced but the distribution of test samples was 
unbalanced, the experiments of receiver operating characteristic 
(ROC) curve and area under ROC curve (AUC) were added to 
further evaluate the performance of the model, to avoid 
misjudgment of the experimental results caused by this problem. 

As shown in Figure 10, the abscissa of ROC curve is FPR, and 
the ordinate is TPR.  The curve is based on the confusion matrix, 
which is used to measure the overall performance of the 
classification algorithm under any distribution or any error cost.  
In the case of unbalanced samples, the ROC curve can still evaluate 
the performance of the classifier better.  AUC is the area under the 
ROC curve, and the area under the curve is used as the evaluation 
index of the model.  Generally, the larger the AUC value, the 
better the performance of the classifier. 

From Figure 10, it was easy to see that the distance between 
each disease sample and the upper left corner was very close, and 
its value range was 0.98-1, which proved that the GLDR model had 
high accuracy and strong generalization performance. 
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a. Phylloxera b. Black rot c. Esca measles 

 

d. Leaf spot e. Downey mildew f. Healthy 
 

Note: TPR: True positive rate; FPR: False positive rate; ROC: Receiver operating characteristic; AUC: Area under the ROC curve. 
Figure 10  AUC of the GLDR model identification results 

 

4  Conclusions  

In this study, an approach to grape leaf disease recognition 
based on DTL, namely, GLD-DTL, was proposed by introducing 
MobileNetV3 initial structure.  This approach could automatically 
extract the discriminative features of the diseased grape leaf images 
and detect the six common types of grape leaf diseases with high 
accuracy.  To ensure good generalization performance of the 
proposed model and a sufficient grape leaf disease images dataset, 
4344 images of grape leaf diseases with uniform and complex 
background were collected in the network to form the O-GLD 
dataset.  Then, the O-GLD dataset was processed by an image 
sharpness detector to eliminate the unqualified images automatically.  
Finally, the O-GLD dataset was further processed by data 
augmentation technology to solve the problem of uneven distribution 
of samples in the dataset and generate the F-GLD dataset. 

In addition, the pre-training model was trained by training 
MobileNetV3 using the ImageNet dataset and the SSLD algorithm 
to extract common features of the grape leaves.  And the last 
convolution layer of the pre-training model was modified by 
adding a batch normalization function.  A dropout layer followed 
by a fully connected layer was used to improve the generalization 
ability of the pre-training model and realize a weight matrix to 
quantify the scores of six diseases, according to which the Softmax 
method was used to give probability distribution of six diseases.  
Finally, the F-GLD dataset was input into the improved network 
for retraining, and the GLDR model was obtained. 

Results showed that the proposed GLD-DTL approach provided 
a solution with an accuracy of 99.84% using the GLDR model for 
the diagnosis of grape leaf diseases at an early time.  And 
compared with the VGG19 model, the accuracy of GLDR model 
was improved by 1.26%.  Meanwhile, the size of the model was 
as small as 30 MB.  Hence, the proposed approach was fully 
capable of identifying grape leaf diseases.  The results 
demonstrate that the proposed GLDR model could recognize the 
six common types of grape leaf diseases with high accuracy and 

provides a feasible solution for the rapid identification of grape leaf 
diseases. 
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