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Abstract: Accurate fault prediction is essential to ensure the safety and reliability of combine harvester operation.  In this 

study, a combine harvester fault prediction method based on a combination of stacked denoising autoencoders (SDAE) and 

multi-classification support vector machines (SVM) is proposed to predict combine harvester faults by extracting operational 

features of key combine components.  In general, SDAE contains autoencoders and uses a deep network architecture to learn 

complex non-linear input-output relationships in a hierarchical manner.  Selected features are fed into the SDAE network, 

deep-level features of the input parameters are extracted by SDAE, and an SVM classifier is then added to its top layer to 

achieve combine harvester fault prediction.  The experimental results show that the method can achieve accurate and efficient 

combine harvester fault prediction.  In particular, the experiments used Gaussian noise with a distribution center of 0.05 to 

corrupt the test data samples obtained by random sampling of the whole population, and the results showed that the prediction 

accuracy of the method was 95.31%, which has better robustness and generalization ability compared to SVM (77.03%), BP 

(74.61%), and SAE (90.86%). 
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1  Introduction

 

At present, agricultural machinery and equipment are 

constantly developing in the direction of large-scale, intelligent and 

high-speed.  Combine harvesters have been widely used as the 

main agricultural machinery harvesting equipment.  Owing to 

unavoidable malfunction and downtime of the combine in the 

process of operation, fault diagnosis is of great significance to the 

reliability and safety of the combine harvester[1-3]. 

In general, fault diagnosis methods are divided into the 

followings, signal-based threshold judgement, algorithmic 

model-based methods and composite methods[4].  Conventional 

combine harvester fault monitoring relies on the operator and a 

sensor-based threshold judgement method.  This method has 

problems with high operator skill requirements and delayed alarms 

causing damage to the combine.  The health of combine harvester 

during operation has a direct impact on harvest yield and service life, 

which is the reason why many experts have conducted in-depth 

research into methods for monitoring and diagnosing faults in 
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agricultural machinery[5-7]. For example, Zhang et al.[8] proposed a 

new intelligent defect detection framework based on time-frequency 

transformation, which can be effectively applied to agricultural 

equipment fault detection by adaptively mining available fault 

features.  Zheng et al.[9] optimized the video monitoring technology 

of agricultural machinery based on the artificial neural network 

algorithm.  The method realized the scientificity and transparency 

of the agricultural machinery fault identification data, ensured the 

scientificity of agricultural machinery fault identification and 

improved the efficiency of agricultural machinery management by 

establishing an online monitoring and visualization detection 

platform for agricultural machinery faults without real-time 

monitoring records.  Gupta et al.[10] propose an on-board 

multi-signal classification algorithm  and pseudo-spectral analysis 

for the analysis of hydraulic system faults in agricultural machinery 

on mobile equipment.  Wattanajitsiri et al.[11] used FMEA 

techniques to perform a risk assessment of key components of 

combine harvester, indicating the causes and effects of faults.  The 

risk priority number was rated and preventive maintenance 

strategies were proposed. 

In recent years, fault monitoring and diagnosis systems based on 

principles such as deep learning and neural networks have been 

widely used in the field of machinery fault diagnosis.  The 

algorithms trained by multivariate balanced data sources can make 

combine harvester faults more accurate and generalized.  Janotta et 

al.[12] used the temperature as the monitoring object and proposed to 

build a mechatronic system to monitor the bearing temperature of 

combine harvester and warn of exceeding the temperature threshold.  

Xiao et al.[13] proposed a multi-group co-evolutionary particle 

swarm optimization BP neural network-based fault diagnosis 

method for diesel engines of agricultural machinery.  A 

Mohammed et al.[14] used FBG sensors for monitoring the condition 

of bearings in motor operation, using the time and frequency domain 
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fault characteristics of the bearings to enable fault diagnosis and 

trend prediction.  Shi et al.[15] proposed an improved Hilbert-Huang 

transform (IHHT) combined with convolutional neural network 

(CNN) for the diagnosis of rolling bearing composite faults in 

agricultural machinery and equipment, and realized the intelligent 

diagnosis of bearing composite faults under different working 

conditions.  Trinh et al.[16] proposed a new framework based on a 

collection of genetic algorithms (GA) that can be used to 

automatically optimize the optimal parameter values for each 

submodule by combining them with specific machine learning 

algorithms, which can be used for the classification of failure types 

in mechanical systems and for the prediction of the remaining life of 

machinery.  Chang et al.[17] developed a fault diagnosis 

methodology using the signals from a motor servo driver.  Based on 

the servo driver signals, the demagnetization fault diagnosis of 

permanent magnet synchronous motors (PMSMs) was implemented 

by using an autoencoder and K-means algorithm.  Liu et al.[18] 

proposed an intelligent fault diagnosis method combining local 

mean decomposition (LMD) and stacked noise reduction 

self-encoder (SDAE).  The Fault Diagnosis Method for 

Reciprocating Compressors was implemented.  The SDAE 

model-based approach has also been successfully applied to a 

number of areas such as remote sensing image detection, lithium 

battery monitoring, bearing fault diagnosis and power and energy 

system fault detection[19-22]. 

To improve the accuracy of combine harvester fault prediction, 

this paper proposes a combine harvester fault prediction model, 

which combines a stack denoising autoencoder (SDAE)[23,24] with a 

multiclassification SVM classifier, using multiple denoising 

autoencoders with SDAE stacks to extract deep-level features of the 

data and establish a nonlinear between various fault data and the 

fault type of the combine mapping.  To enhance the robustness of 

the model, balanced sample data and Gaussian noise were used in 

the model training to enhance the generalization ability of the model 

and to get rid of the reliance on manual prediction experience. 

2  Data and models  

2.1  Study Subjects 

The Xinjiang-7 combine harvester (Luoyang Zhongshou 

Machinery Equipment Co., Ltd, China) was selected as the object of 

study for the experiment, by collecting data on the speed and 

temperature of the combine's components during the wheat 

harvesting process as a combine fault prediction feature.  Based on 

the combine's drive roadmap and combine fault conditions, it was 

determined that excessive speed, excessive feed and lack of power 

due to belt slippage were the main causes of combine fault.  The 

sensor assembly is shown in Figure 1.  

 
1. Cutter  2. Feeding auger  3. IPC  4. Threshing cylinder  5. Secondary 

Stirring  6. Rethresher  7. Vibrating Sieve  8. Conveyor chain harrow 

Figure 1  Diagram of the sensor installation position 

To provide a more comprehensive and accurate picture of the 

combine’s working conditions, speed sensors are installed to detect 

threshing cylinder speed, conveyor chain harrow speed, feed auger 

speed, secondary Stirring speed, rethresher speed and cutter 

reciprocation frequency, and temperature sensors are installed to 

detect threshing cylinder and rethresher shaft temperature.  The 

speed sensor uses the Aotoro TRD18-7DN with short-circuit 

protection, reverse polarity protection and IP67 protection and 

operates at DC10-30 V.  The temperature sensor uses the SMD 

Amsik WZP-PT100 with IP68 protection.  The data acquisition 

module transmits the sensor data to the on-board embedded IPC.  

The controller adopts Delta DVP40R2 PLC controller with rated 

voltage AC100-240V.  The maximum output pulse string can reach 

100 kHz with Delta's high-performance expansion unit, which can 

meet the sensor input point requirements.  The combine harvester 

information processing adopts 8-inch touch multifunctional 

traveling computer with i5-6200U processor, 4GB memory, 128GB 

storage and RS485/232 communication interface.  The 

communication between the upper computer and PLC adopts 

Modbus communication protocol, which can meet the needs of data 

transmission and processing. 

2.2  Test protocol and methodology 

In order to test the performance of the model in a real 

operating environment, a wheat harvesting test of the combine 

harvester was conducted at the Matun test field, Mengjin County, 

Luoyang City in June 2020.  It was found that the combine 

harvester was not prone to failure at normal harvesting speed, so 

the combine harvester was tested for characteristic failure 

phenomena by human intervention with the fault settings as shown 

in Table 1. Through the above test protocol, the speed and 

temperature information of the corresponding components of the 

combine harvester were obtained when different faults occurred.  

Among them, Threshing cylinder fault can be divided into slight 

blockage and severe blockage.  Slight blockage refers to the 

situation that the speed of threshing cylinder is obviously 

decreasing and less than 20%, which can be solved by artificially 

reducing the driving speed or decreasing the feeding volume.  

Severe blockage refers to the situation that the speed is reduced by 

20%, the temperature of the drive shaft is rapidly increased, and 

continuous operation may lead to threshing cylinder damage.  In 

addition to threshing cylinder, a 20% reduction in speed of the 

components is considered as a fault. 
 

Table 1  Fault setting of the combine harvester test 

Fault position Manual fault setting Fault phenomenons 

Rethresher 

1. Place grain debris in the rethresher. 

2. Reduce the rubbing plate of the 

rethresher. 

The speed of the rethresher 

drops and not working 

Cutter 

1. Reduce stubble height. 

2. Increase the gap between moving 

blade and fixed blade. 

The speed of the Cutter 

drops and not working 

Secondary 

Stirring 

1. Increasing the feeding amount. 

2. Put in crop stems. 

The speed of the Secondary 

stirring reduced 

Feeding 

auger 

1. Reduced cutting table height. 

2. Increase the speed of combine 

harvester. 

Paddy stalk build-up and 

reduced feeding auger 

speed 

Conveyor 

chain harrow 

1. Increasing the feeding amount  

or driving speed. 

The speed of the Conveyor 

chain harrow reduced 

Vibrating 

Sieve 

1. Adjusting nut of loose vibrating 

screen. 

2. Placing excess debris in the 

vibrating screen. 

Vibrating Sieve speed 

reduced or not working 

Threshing 

cylinder 

1. Reduce the speed of the plate 

tooth roller 

2. Engine running at low throttle  

to increase driving speed 

The speed of the threshing 

drum drop and the belt 

heats up 
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In order to avoid irreversible damage to the combine caused by 

artificially set faults, different fault data collection times were set 

for different parts during fault sample data collection.  For the test, 

the data collection frequency was set to 5 Hz.  To ensure the 

stability and generalization ability of the algorithm, the ratio of the 

number of healthy and faulty states in the sample was artificially 

controlled to be close to or at 1:1, and a five-day period was set as 

the test period to ensure the scale of the data 

2.3  The proposed method 

2.3.1  Overview of the method 

Figure 2 shows the architecture of the proposed method, which 

incorporates combine fault-feature selection and fault prediction.  

In this work, knowledge-based methods are used to select effective 

fault features for fault prediction, while an SDAE network is 

constructed to predict Combine harvester fault by using selected 

features as its input. 

 
Figure 2  Architecture of the proposed method 

 

2.3.2  SDAE model 

The SDAE is based on a denoising auto-encoder (DAE) and 

improves the robustness of the auto-encoder (AE) by mixing the 

training data with noise.  After normalizing the sample input data, 

the corrupted data x  is obtained by adding noise ND.  The 

corrupted data is encoded by the encoder fθ to obtain the deep 

feature M.  The deep feature M is then decoded by the decoder hθ 

to obtain the reconstruction result y of the data sample x.  The 

DAE model is obtained by minimizing the error R(x, y) between the 

data sample x and the reconstruction result y using the stochastic 

gradient descent (SGD) algorithm, where the DAE model is shown 

in Figure 3.  The SDAE is then obtained by stacking multiple 

DAE models. 

The SDAE model consists of three parts: the input layer, the 

hidden layer and the output layer.  

Input layer: For a combine dataset, X={Xm}(1≤m≤S) with S 

features for combine.  The data X is corrupted by adding a 

Gaussian noise 0( | , )DN x X   given an initial Gaussian noise 

distribution centred on μ0 to the original input data x to obtain the 

corrupted data x , thus connected to the first hidden layer.  

Hidden layer: Applied to extract features and reconstruct the 

original input from the unlabeled samples.  There are multiple 

DAE units superimposed on it.  

 
Note: x is the working parts’ rotational speed of combine harvester, r/min; x  is 

x after adding noise, r/min; y represents the reconstructed data, r/min; R(x, y) is 

the mean square error between x and y, r/min; M is the deep feature; fθ represents 

encoder; hθ represent decoder; ND is the add noise. 

Figure 3  Basic structure of DAE 
 

Output layer: After initial training of SDAE, the test dataset is 

used as input to SDAE and the deep features extracted after 

training are connected to the SVM classifier for fault prediction. 

3  Experiments 

3.1  SDAE model data pre-processing and initial training 

The Combine harvester fault prediction process is divided into 

two parts: data preprocessing, and the use of SDAE for fault 

prediction. 

Data preprocessing: The combine harvester data acquisition 

system is affected by the sensor's own drift and the environmental 

impact of data acquisition, and the raw data collected has 0 values, 

outliers and missing values, so it is necessary to pre-process the 

experimental data.  If all values in a set of samples are 0, the 

sample will be deleted and any outlier that exceeds the maximum 

speed of the corresponding component will be replaced by linear 

interpolation according to the normal operating parameter range of 

the combine. 

The 12 800 combine harvester data samples obtained from the 

pre-processing were divided in the ratio of 3:2 into a training set 

containing 7680 data samples and a test set of 5120 data samples.  

The data set was normalized to the input data using the 

maximum-minimum normalization method, which was calculated 

using the following Equation (1) 

min

max min

m
m

x x
x

x x





                 (1) 

where, xmax and xmin are denoted as the maximum and minimum 

values of x, respectively.  After normalisation, the numerical 

ranges of different combine fault features to [0, 1]. 

Fault prediction is divided into SDAE pre-training and fault 

prediction. 

Given an initial Gaussian noise distribution center on , the 

Gaussian noise 0( | , )DN x X   with variance σ=1 corrupts the 

original input data x to obtain the corrupted data x , which is thus 

connected to the first hidden layer, where 0( | , )Dx N x X  . 

The noise-laden x  is encoded by Equation (2) and mapped to 

the nonlinear space M=Mm to obtain the deep feature encoding 

1 ( )M f x . 

1 1 1( ) ( )fM f x s W x b                (2) 

where, W1 and b1 denote the connection weight matrix and bias 

term between the original data X and the hidden features M, θ is the 

set of parameters of the coded network and θ={W,b}, sf is the 

nonlinear activation function and the sigmoid function δ=1/1+e-x .  

In addition, the ReLU function Y=X performs a linear mapping of 

data, while the input data has non-linear characteristics.  
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Therefore, comprehensively considered, we chose the sigmoid 

function as the activation function for data mapping.   

Decoding from M1 by Equation (3) and mapping it to nonlinear 

output space Y, the reconstructed output of original input data is 

obtained. 

1 1 1 1ˆ ( ) ( )hx h M s W M b                  (3) 

where, 1W   is the decoder weight matrix; 1b  is the decoder bias 

vector; θ′ is the set of parameters of the decoding network; x̂  is 

the reconstructed output and sh is the non-linear activation function. 

Initial training of the denoising self-encoder is completed by 

using the gradient descent algorithm (SGD) to reduce 

reconstruction errors.   

2

1

1 1
( , ) ( )

2

L

l
J W b Y X

N 
             (4) 

where, L is the total number of hidden layers.  The parameter (W,b) 

is iteratively updated at lth hidden layer using Equations (5) and (6), 

respectively: 

1 1l l lW W J
W

 


 


               (5) 

1 1l l lb b J
b

 


 


                 (6) 

where, η is the learning rate.  Now, 1lJ
W






 and 1lJ

b
 




 are 

the partial derivatives of W and b in the SGD algorithm at the 

(l–1)th hidden layer. 

When the reconstruction error of DAE1 model is small, the 

initial optimal weight W1 and the optimal bias b1 are obtained, and 

the initial deep feature M1 of the original input data is obtained.  

Similarly, the initial deep feature M1 is used to train DAE2, and its 

initial optimal weight W2, optimal bias value b2 and feature M2 are 

obtained. 

After the initial training of SDAE, label information from the 

input data was used to supervise the fine-tuning training of SDAE 

models.  Supervised fine-tuning is to adjust the parameters of each 

layer obtained during the initial training process.  The result of 

supervised fine-tuning will make each parameter of the model 

closer to the global optimal solution, thus enhancing the intra-class 

aggregation and inter-class differentiability of the features and 

improving the classification ability of the model. 

3.2  Determination of network parameters 

In this step, the 8 selected features are input to the SDAE 

network, and a multi-class classifier SVM was used to classify 

them for combine harvester fault prediction.  In the SDAE data 

processing, the number of features of the input samples determines 

the input size of the input layer, e.g. if each input sample contains 8 

selected features, the input size of the input layer is 8.  For the 

structural setting of the SDAE network, references [25,26] show 

that the network structure with multiple hidden layers has a better 

representation of the data due to its ability to learn patterns from 

the raw data and represent the data more abstractly through 

layer-by-layer feature extraction, thus improving the accuracy of 

the classification.  

While the accuracy increases as the number of hidden layers 

increases, it may decrease when the number of hidden layers is too 

large, so the network structure with four hidden layers {10, 8, 6, 4} 

was chosen to make a stable triangular structure.  Compared with 

the hidden layers with the same number of nodes in each layer, the 

triangular structure network with a gradually decreasing number of 

nodes in the hidden layers had a higher accuracy rate. 

Taking the selected 8 features as an example, the number of  

neural nodes in the input layer is 8.  Therefore, the number of 

neural nodes for input X and output Y in the first DAE unit is 8, 

and the neural node dimension for the extracted feature M in the 1st 

DAE unit is 10.  Therefore, the structure of the 1st DAE unit is {8, 

10, 8}, and then the 10 features extracted from the 1st DAE unit are 

selected as input to the 2nd DAE unit, setting the number of 

features extracted to 8.  Therefore, the structure of the 2nd DAE 

unit is {10, 8, 10}, and in addition the rest of the structures of the 

2nd DAE unit are {8, 6, 8}, {6, 4, 6}, {8 10, 8}, {4, 2, 4}. 

The determination of key hyperparameters of the SDAE 

network, such as the number of iterations, learning rate, denoising 

rate and batch size, can have a significant impact on the predictive 

performance of the model.  In the process of hyperparameter 

determination, the batch size should be selected first before tuning 

the other hyperparameters.  The batch size refers to the number of 

samples fed into the model at each training session.  In the process 

of model optimization, a small batch size means that the number of 

samples fed into the model at a time is too small, the statistics are 

not represented, and the noise increases accordingly, making it 

difficult for the model to converge; a large batch size affects the 

generalization ability of the model and reduces accuracy.  The 

batch size is 128 as the dividing line, and the test results are 

compared after training by scaling, and the final batch size is 64 

after considering the hardware conditions and network training 

time. 

The experiment used a single-factor test to analyze the effect 

of changes in learning rate, denoising rate, and number of iterations 

on the accuracy of the network to determine the optimal 

hyperparameters.  When the other hyperparameters are the same, 

the number of iterations varies as [100, 500, 800, 1000, 2000, 3000, 

4000, 5000, 6000, 7000, 8000, 9000, 10 000].  When the 

difference between the test error rate and the training error rate is 

small, the current number of iterations is considered appropriate; 

when the test error rate becomes smaller and then larger, the 

number of iterations is too large and needs to be reduced, otherwise, 

overfitting is likely to occur.  By considering the prediction 

accuracy and time consumption, we set the number of iterations to 

4000.  

The learning rate, another important factor in the predictive 

performance of the network, can greatly reduce the speed of 

convergence and increase the time cost if it is too small; if it is too 

large, it may cause the parameters to oscillate on either side of the 

optimal solution.  Setting the learning rate to vary as [0.001, 0.003, 

0.005, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 

0.2, 0.3], by considering the prediction accuracy, the learning rate 

was set to 0.02.  Similarly, setting the range of denoising rate as 

[0.01, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1], 

comparing the magnitude of the prediction accuracy of the analysis 

network, it was found that the effect of denoising rate was not 

significant, so the denoising rate was set as 0.05.  Finally, the 

detailed structure information about the SDAE model is listed in 

Table 2. 

Table 2  Parameter configuration for SDAE model 

Parameters Values 

Active function Sigmoid 

Total number of hidden layers 4 

Structure of hidden layers [10, 8, 6, 4] 

Learning rate 0.02 

Maximum iteration number 4000 

Denoising rate 0.05 

Batch size 64 
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3.3  Performance evaluation 

The confusion matrix shown in Table 3 was established, and 

the accuracy of classification results is obtained by comparing the 

position and classification of each measured pixel with the 

corresponding position and classification in the classification image, 

so as to evaluate the fault prediction performance of combine. 
 

Table 3  Confusion matrix 

Confusion Matrix 
True Value 

Positive Negative 

Predicted value 
Positive TP FP 

Negative FN TN 
 

Each column in the graph represents the predicted category and 

the number of data in each column indicates the number of data 

predicted to be in that category.  Each row represents the true 

category to which the data belongs and the number of data in each 

row indicates the number of instances of data in that category.  

The value in each column indicates the number of instances of real 

data predicted to be in that category.  TP, TN, FP and FN in the 

table are the first level base indicators of the confusion matrix and 

the concepts are as follows: 

True Positive, TP: The true category of the sample is a positive 

example and the model predicts a positive example.  True 

Negative, TN: The sample’s true category is negative example and 

the model predicts it as negative example.  False Positive, FP: The 

true category of the sample is negative example, but the model 

predicts it to be positive example.  False Negative, FN: The 

sample's true category is positive example, but the model predicts it 

as negative example. 

In order to accurately judge the strengths and weaknesses of 

the model, the model is measured more accurately by comparing 

the four secondary indicators extended from the primary indicators 

and the tertiary indicators extended from the secondary indicators.  

The specific meaning and formulae are listed in Table 4. 
 

Table 4   Equations and significance of confusion matrix 

Abbreviation Formula Implication 

ACC 
TP TN

Accuracy
TP TN FP FN




  
 

The proportion of all correct 

results in the total observed 
values in the classification model. 

PPV 
TP

Precision
TP FP




 

The weight of the model 
prediction pair in all results for 

which the model prediction is 

Positive. 

TPR 
TP

Recall
TP FN




 

The weight of model prediction 

pairs among all results for which 

the true value is Positive. 

TNR 
TN

Specificity
TN FP




 

The weight of model prediction 

pairs among all results for which 

the true value is Negative. 

F1 score 1

2 Precision Recall
 score

Precision Recall
F

 



 
The reconciled average of the 

model's accuracy and recall. 
 

3.4  Results and analysis 

Table 5 shows the confusion matrix for fault classification and 

identification by SDAE method, which totally contains nine 

categories: normal, re-thresher blocked, cutter fault, secondary 

stirring blockage, feeding auger blocked, threshing cylinder serious 

blocked, threshing cylinder slightly blocked, conveyor chain rakes 

blocked, vibrating sieve fault denoted as normal, F1, F2, F3, F4, F5, 

F6, F7, and F8 respectively.  The horizontal axis of the confusion 

matrix represents the true categories and the vertical axis represents 

the predicted categories.  The values on diagonal line represent 

the number of samples correctly classified by SDAE network in 

each category of the test samples, and the values at off-diagonal 

positions represent the number of samples incorrectly classified by 

the network in each category.  A total of 5120 samples were taken, 

and the ratio of normal samples to error samples was 1:1, which 

satisfied the requirements of balanced sampling, made the model 

more general and eliminated the influence of chance of the 

experiment to the greatest extent. 
 

Table 5  Confusion matrix of SDAE model 

Category Normal F1 F2 F3 F4 F5 F6 F7 F8 

Normal 2536 3 0 2 9 0 6 4 0 

F1 13 213 0 3 0 0 7 0 0 

F2 3 0 187 0 0 0 0 0 0 

F3 7 0 0 225 4 0 11 2 0 

F4 5 0 0 5 400 0 10 6 0 

F5 0 0 0 0 0 497 5 0 0 

F6 7 0 0 6 0 8 281 4 0 

F7 2 0 0 0 14 5 19 369 0 

F8 1 0 0 0 0 0 0 0 241 
 

When the actual category is normal, the number of samples 

misclassified to F1 is 3, and the number of samples misclassified to 

F3, F4, F6 and F7 are 2, 9, 6 and 4, respectively.  When the actual 

category is F1, the number of samples misclassified to be normal is 

13, and the number of samples misclassified as F3 and F7 is 3 and 7 

respectively.  When the actual category is F2, the number of 

samples misclassified to be normal is 3.  When the actual category 

is F3, the number of samples misclassified to be normal is 7, and 

the number of samples misclassified as F4, F6 and F7 is 4, 11 and 

12 respectively.  When the actual category is F4, the number of 

samples misclassified to be normal is 5, and the number of samples 

misclassified as F3, F6 and F7 are 5, 10 and 6 respectively.  When 

the actual category is F5, the number of samples misclassified to be 

normal is 0, and the number of samples misclassified as F6 is 5.  

When the actual category is F6, the number of samples 

misclassified to be normal is 7, and the number of samples 

misclassified as F3, F5 and F7 When the actual category is F7, the 

number of samples misclassified to be normal is 2, and the number 

of samples misclassified as F4, F5 and F6 is 14, 5 and 19 

respectively.  When the actual category is F1, the number of 

samples misclassified to be normal is 1, and the number of samples 

misclassified as other is 0. 

Where the correct classification rates for normal, rethresher 

blocked, cutter fault, secondary stirring blockage, feeding auger 

blocked, threshing cylinder serious blocked, threshing cylinder 

slightly blocked, conveyor chain rakes blocked and vibrating sieve 

fault were 99.10%, 90.25%, 98.42%, 90.36%, 93.90%, 99.00%, 

91.83%, 90.22%, and 99.59%, respectively, and the overall fault 

recognition accuracy was also as high as 96.66%.  

Figure 4 shows the results of the fault sample identification.  

The experimental results show that the prediction accuracy of the 

model for faulty samples is significantly lower than the prediction 

accuracy for normal samples.  

Among them, the misjudgment of slight blockage of threshing 

cylinder is one of the main reasons for the low prediction accuracy 

of faulty samples.  There is no significant difference in the 

transition data from slight blockage to severe blockage of threshing 

cylinder, which leads to a decrease in the prediction accuracy.  

The cutter and vibrating sieve are located at the head and tail ends 

of the combine harvester drive structurer, where failure is evident 

and therefore the prediction rate for cutter fault and vibrating sieve 

failure is high.  The main reason is that when the threshing 

cylinder is severely blocked, the conveyor chain rakes located in 
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front of the threshing cylinder and connected with it are directly 

affected by the blockage, which results in the prediction error.  

The secondary stirring is misclassified as slightly blocked threshing 

cylinder, mainly because the threshing cylinder is slightly blocked, 

while the secondary stirring directly connected to the threshing 

cylinder receives more debris.  The secondary stirring receives 

more debris, which is easy to block.  The feeding auger is blocked 

due to overfeeding and the corresponding conveyor chain rakes are 

blocked due to its influence, so some data of the blocking of the 

feeding auger blocked is incorrectly judged as the blocking of 

conveyor chain rakes blocked.  For rethresher blockage, there are 

also misjudgments.  Most of them are being slightly blocked by 

the threshing cylinder and few are misjudged as being blocked by 

secondary stirring.  The main reason is that secondary stirring 

blockage is a major cause of the blockage of the threshing cylinder, 

and a slight blockage of the threshing cylinder will affect the 

normal operation of the rethresher. 

 
Figure 4  Fault sample prediction results 

4  Comparison analysis and discussion  

To verify the effectiveness of SDAE, we adopted various 

models to predict the fault of combine harvester, including Support 

SVM, Back Propagation Neural Network (BP), Sparse Auto 

Encode (SAE) and SDAE.  The hyperparameters of these models 

are summarized in Table 6. 
 

Table 6   Hyperparameters of various models 

Models Parameters 

SVM 

1. Penalty parameter c: 2.8633 

2. Kernel parameter g: 4.5423 

3. Kernel function: radial basis function 

BP 

1. Input size: 8 

2. Output size:8 

3. Number of neural nodes at hidden layer: 12 

4. Learning rate: 0.02 

SAE 

1. Input size: 8 

2. Active function: sigmoid 

3. Total number of hidden layers: 4 

4. Structure of hidden layer: [10 8 6 4] 

5. Learning rate: 0.02 

6. Maximum iteration number: 4000 

7. Output size: 8 

SDAE 

1. Input size: 8 

2. Active function: sigmoid 

3. Total number of hidden layers: 4 

4. Structure of hidden layer: [10 8 6 4] 

5. Learning rate: 0.02 

6. Maximum iteration number: 4000 

7. Denoising rate: 0.05 

8. Output size: 8 

The SDAE model in this paper is compared with SAE 

networks, BP neural networks and SVM for analysis.  To ensure 

the accuracy of the experimental results, the same 5120 data 

samples as the SDAE model experiments were selected for the 

experiments.  The prediction accuracies of the four models are 

shown in Table 7.  
 

Table7  Identification results of different models 

Model Accuracy/% 
Normal sample 

accuracy/% 

Fault sample 

accuracy/% 

SVM 84.04 87.78 80.31 

BP 80.12 87.50 72.73 

SAE 90.20 94.53 85.86 

SDAE 96.66 99.10 94.26 
 

The experimental results show that the prediction accuracy of 

SDAE with triangular hidden layer structure is 6.46% higher than 

that of SAE model with the same number of hidden layers., and 

16.54% and 12.62% higher than that of BP and SVM models 

respectively.  During normal operation of the combine harvester, 

the speed and temperature information corresponding to the 

components changes steadily and feature extraction is easier.  In 

view of the transmission structure of the combine harvester, in the 

event of a combine harvester fault, the components will interact 

with each other, leading to difficulties in fault feature extraction, so 

the SDAE model is significantly more accurate in identifying fault 

samples than the rest of the models. 

The harsh operating environment and complex working 

process of combine harvesters lead to abnormalities in their data 

collection and transmission processes, as well as the influence of 

factors such as the drift of the sensors themselves, all of which will 

make the fault characteristics of the system random, fuzzy and 

uncertain, deep data mining is needed to achieve effective fault 

identification.  The quality and size of the dataset largely 

determine the performance of deep learning fault diagnosis 

methods.  The SDAE model in this paper takes a noise-additive 

approach to the original dataset and tests the denoising ability of 

the algorithm using a Gaussian noise contaminated signal.  The 

performance of the SDAE model for combine harvester fault 

prediction was verified by introducing Gaussian noise with a 

distribution center μ0 of 0.05 during testing as shown in Table 8, 

compare the recall, specificity, F1 score and average recognition 

accuracy of different models for samples. 
 

Table 8  Recall rate, specificity, F1 score and noise addition 

accuracy results of different models 

Model Recall/% Specificity/% F1 Score 
Noise addition 

accuracy/% 

SVM 64.84 93.13 0.704 77.03 

BP 62.34 91.88 0.679 74.61 

SAE 87.03 96.88 0.889 90.86 

SDAE 92.50 100.31 0.939 95.31 
 

After adding the noise treatment, the recognition accuracy of 

all four models decreased by different magnitudes, with the SDAE 

model in this paper only decreasing by 0.09%, while the other 

models decreased significantly.  The SDAE model outperformed 

the SVM, BP and SAE models by 27.66%, 30.16% and 5.47% 

respectively in predicting the accuracy of faulty samples.  In terms 

of Specificity, the SDAE model is 100.31%, indicating that the 

model has a high prediction accuracy for non-faulty samples and 

there is a phenomenon that the prediction of faulty samples is 

misjudged as normal operation.  F1 Score, as the four secondary 

indicators extended from the primary indicators and the tertiary 
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indicators extended from the secondary indicators, the size of the 

score can more accurately measure the goodness of the model, and 

the results show that The F1 Score of the SDAE model is 0.939, 

which is a significant performance improvement compared to SVM 

(0.704), BP (0.679) and SAE (0.889).  

 
Figure 5  Identification results of different models 

 

Figure 5 shows the distribution of the number of errors 

predicted by the different models.  In particular, the BP and SVM 

models are much higher than the SAE and SDAE models in terms 

of the number of fault errors.  However, there is no significant 

deterioration in the normal misclassification as faults compared to 

the situation before the inclusion of noise.  The experimental 

results show that the SDAE model outperforms the other models in 

terms of the number of fault misses and fault false positives.  The 

reasons for the large gap between the four models are mainly three: 

(1) Different from the “shallow” network model, the model is 

trained to integrate fault feature extraction and classification 

models; (2) The model is a multi-hidden layer network, which can 

avoid the limitations of “dimensional disaster” and insufficient 

prediction capability; (3) The model can learn the global 

coarse-grained features and local fine-grained features of the 

operating condition data set of the combine harvester, and has 

strong robustness.  The experimental results show that the model 

effectively reduces the influence of load and noise factors on the 

accuracy of the combine harvester in actual operation, thus 

improving the accuracy of combine harvester fault prediction. 

5  Conclusions 

In this paper, a fault prediction model of combine harvester 

based on a deep SDAE neural network was proposed.  By 

extracting the operational characteristics of key combine harvester 

components in SDAE network and inputting a multi-class SVM 

classifier to classify and identify the fault of combine harvester, a 

deep-level representation of the fault state features of combine 

harvester was learned.  The fault prediction method proposed in 

this study had significant advantages in terms of data processing 

and classification accuracy.  The main conclusions are as follows. 

(1) By comparing the model recognition accuracy and training 

time under different model structures and hyperparameters, the 

optimal connection weight matrix, bias term, number of nodes in 

the hidden layer, hidden layer structure, number of iterations, 

learning rate, denoising rate and batch size were selected.  For a 

specific problem of combine harvester fault diagnosis, a feature 

extraction based on deep learning was proposed.  Combining 

SDAE network with multi-class SVM, a model based on SDAE 

feature extraction and SVM classification was established, which 

provided a new method for combine harvester operation fault 

prediction.  

(2) The SDAE model was trained to ensure the accuracy of the 

test accuracy by ensuring the scale and quality of the data during 

sample data collection.  Ensure the integrity, comprehensiveness, 

legality and uniqueness of the data during sample data cleaning; 

and ensure a balanced sampling during sample selection.  The 

experimental results showed that the prediction accuracy of the 

model is 96.66%, which proved that the model had a good effect in 

the application of combine harvester fault prediction. 

(3) Adding Gaussian noise with distribution center of 0.05 to 

the test sample data of whole group random sampling, the 

recognition accuracy of SDAE model was 95.31%, which was 

20.7%, 18.28% and 4.45% higher than that of BP neural network, 

SVM and SAE models respectively.  F1 scores were 0.26, 0.235 

and 0.05 respectively.  The experiments showed that the model 

can effectively reduce the influence of load and environmental 

noise on the model accuracy during the actual operation of the 

combine harvester, thus improving the fault prediction accuracy 

and extending the operating environment of the combine harvester. 
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