
16   July, 2022                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                            Vol. 15 No. 4    

 

Adaptive spraying decision system for plant protection unmanned aerial 

vehicle based on reinforcement learning 

 
Ziyuan Hao1

, Xinze Li1, Chao Meng1
, Wei Yang1,2*

, Minzan Li1,2 
(1. Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing 100083, China; 

2. Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural 

University, Beijing 100083, China) 

 

Abstract: To solve the problem of lacking scientific guidance in aerial pesticide application, this study introduced an adaptive 

spraying decision system (ASDS) for Unmanned Aerial Vehicle (UAV) spraying to guide the operators of plant protection 

UAVs to set reasonable spraying parameters under complicated environment.  The minimum applied volume rate, proper 

spraying velocity, spraying height, and initial droplet size were recommended by the ASDS.  The key factor of the decision 

system is the decision model of reinforcement learning based on the actor-critic neural network.  In specific, the field 

experimental data were used to train the critic and actor networks, which made the model adaptive to optimize the output of 

spraying parameters.  Compared with the conventional spraying parameters, the spraying parameters recommended by the 

ASDS had a positive impact on wheat parcels.  The decision results of the ASDS showed that the spraying volume rate was 

lower in the blocks with a small leaf area index.  In addition, the spraying volume rate for the whole parcel was reduced by 

14%.  After UAV spraying, the uniformity of the droplet deposition in the ASDS parcel was better than that in the 

conventional parcel.  Moreover, the penetrability of the droplets and the control efficacy for the brown wheat mite Petrobia 

latens (Muller) were similar in the two parcels.  The ASDS can recommend the optimal spraying parameters to minimize 

pesticide application. 
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1  Introduction

 

Pesticide application is an essential part of crop production in 

the field, and the biological effects of pesticides are affected by the 

droplet deposition (the volume of droplets deposited per unit area, 

μL/cm2) after spraying on the canopy.  Spraying pesticides to 

control diseases and insect pests is a complex process, and the 

effect of spraying pesticides is closely related to the spraying 

technology used[1].  Currently, the plant protection machines used 

to prevent and control crop pests and diseases include plant 

protection unmanned aerial vehicles (UAVs), ground mechanical 

sprayers, and manual knapsack sprayers[2].  In recent years, small- 

and medium-sized farms are the main body of field crop production 

in China; meanwhile, the labor shortage has intensified[3].  The 

use of manual knapsack sprayers is labor-intensive and 

time-consuming, and the ground mechanical sprayers inevitably 

damage ground plants.  The high spraying efficiency and good 

mobility of UAVs make them suitable for the current agricultural 

production in China and have become the main means 
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of plant protection[4]. 

While UAVs are widely used, a series of related problems have 

also emerged.  Currently, scientific guidance for the settings of 

UAV spraying parameters is lacking, and most UAV operators 

have strong subjectivity in setting parameters.  Therefore, the 

droplets of pesticides may not be accurately deposited on the crop 

canopy, which could affect the control efficacy of pesticides and 

cause pesticide waste[5].  In view of this situation, relevant studies 

have been carried out.  Qin et al.[6] studied the effects of UAV 

spraying height and spraying velocity on the droplet deposited in 

rice canopy and found that the best droplet deposition effect was 

achieved when the height was 1.5 m and the velocity was 5 m/s.  

Meanwhile, the control efficacy of UAVs against paddy rice plant 

hopper has significant advantages.  Chen et al.[7] studied the 

effects of different droplet sizes of UAV nozzle (i.e., 95.21 μm, 

121.43 μm, 147.28 μm, and 185.09 μm, respectively) on droplet 

distribution and found that large droplets have good penetration 

effects[7].  After spraying wheat with different volumes (i.e.,   

9.0 L/hm2, 16.8 L/hm2, and 28.1 L/hm2), Wang et al.[8] found that 

UAV spraying at a high volume with coarse nozzles has the same 

control efficacy against wheat aphid and powdery mildew as the 

electric air-pressure knapsack sprayer.  At present, the studies 

give suitable UAV spraying parameters in specific scenarios that 

are mature.  However, the droplet deposition effect and the control 

efficacy of pesticides are affected not only by UAV parameters but 

also by environmental factors.  The deposition position of droplets, 

the retention of droplets on the leaves, and the evaporation speed of 

droplets are affected by the wind speed, humidity, and temperature 

in the environment[9,10].  In view of the changing field 

environment, dynamic parameter setting suggestions must be 
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provided to guide UAV operators in spraying pesticides.  

Therefore, a UAV decision-making system is necessary to realize 

the adaptive adjustment of spraying parameters. 

At present, the decision system for the ground mechanical 

sprayers is mature.  A decision support system for the ground 

mechanical sprayers was developed by Gil et al.[11] to determine the 

optimal volume rates based on the leaf wall area of vineyards.  

Meanwhile, other working parameters were recommended.  

Tackenberg et al.[12] studied a variable-rate fungicide application 

technology based on a camera sensor and found that it can provide 

a reasonable spraying volume of the field boom sprayer according 

to the leaf area index (LAI) and biomass of wheat to minimize 

pesticide application.  Pesticide reduction is a worldwide 

concern[13].  Most existing decision-making systems try to reduce 

the use of pesticides according to the growth of crops while 

ensuring the control effect.  In addition, some diseases will be 

prevented in advance[14] when the diseases have not occurred, and 

it is difficult for UAVs to spray pesticides according to the degree 

of the diseases.  In this case, the growth of crops needs to be 

mainly considered in the decision-making process, and the LAI is 

an important index[15].  To reduce pesticide use and guide UAV 

spraying scientifically, the decision system in this study will 

recommend the minimum applied volume rate and reasonable other 

spraying parameters (i.e., initial droplet size, UAV spraying speed, 

and UAV spraying height) according to the LAI of the crop and the 

environmental impact creatively.  The decision-making process 

can be simplified as a dynamic programming model.  The optimal 

decision results in this study need to change with the complex and 

changeable environment, and the traditional dynamic programming 

model cannot flexibly adjust the decision results.  In recent years, 

reinforcement learning (RL), as a new artificial intelligence 

algorithm, has been widely used in decision-making and attracted 

attention in the field of agriculture[16].  The RL algorithm is a 

learning algorithm that uses agents to map from the input to the 

output of the model.  The RL algorithm can learn continuously 

during interaction with the environment to optimize the 

performance index function and the decision strategy.  The RL 

algorithm based on the actor-critic network structure is commonly 

used and has great advantages in approaching the optimal strategy; 

therefore, it is recognized and applied widely[17]. 

In this study, wheat was applied as the research subject.  A 

spraying decision model was designed based on field data and the 

decision model of RL based on the actor-critic neural network, and 

then an adaptive spraying decision system (ASDS) was developed 

by applying an Android smart device and a micro-computer 

Raspberry Pi.  Finally, the ASDS was evaluated from the 

perspectives of the deposited droplets effect and the control 

efficacy of Petrobia latens in wheat field. 

2  Materials and methods 

2.1  Experimental plots 

Experiments were carried out in a commercial wheat plantation 

zone in Tai’an City, Shandong Province, China (36°15'38.70324"N 

and 116°36'35.8884"E), which was located in North China.  Two 

experimental tasks were performed on the same farm that had the 

same cropping pattern for wheat in different years.  A database for 

the decision model was established in experimental task 1.  Five 

parcels (Figure 1) containing five wheat varieties were selected: 

Zhongmai 9 (field size was 70×88 m2), Luyuan 502 (field size was 

64×86 m2), Hanmai 19 (field size was 76×85 m2), Shannong 27 

(field size was 70×47 m2), and Jimai 22 (field size was 88×93 m2).  

The agronomic traits of different wheat varieties were different, 

and the LAI values of the same growth stage had differences.  In 

experimental task 2, the pesticide was sprayed according to the 

application recommendations of the ASDS, and the effect of 

spraying was evaluated.  The experiment was carried out in three 

parcels, namely, the ASDS parcel (field size was 188×100 m2), the 

conventional parcel (field size was 160×96 m2), and the blank 

parcel (field size was 32×55 m2) (Figure 2), in which the wheat 

varieties were all Luyuan 502. 
 

 
Note: A, B, C, D, E, and F in the figure represent the experimental blocks in each 

experimental parcel. 

Figure 1  Sketch map of the parcels in experimental task 1 

 
Figure 2  Sketch map of the parcels in experimental task 2 

 

2.2  Experimental treatments 

The wheat growth characteristics of different wheat ridges in 

the experimental parcels were different, and the growth of the same 

ridge was similar.  In experimental task 1, each of the five 

experimental parcels was divided into six equal-area blocks (Figure 

1).  Therefore, the UAVs sprayed a row of wheat in each block 

according to the direction of the ridge.  The isolation areas 10 m 

wide were set up between different blocks to prevent the UAV 

spray experiments in different blocks from interfering with each 

other.  The experimental period was from March 2020 to June 

2020.  Experiments were conducted in four growth stages of 

wheat that were 32, 39, 45, and 59 according to the Biologische 

Bundesanstalt, Bundessortenamt, and Chemical industry 

(BBCH)-scale[18].  Six different applied volume rates were applied 
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to six different blocks in each parcel (Table 1).  In addition, the 

initial droplet size, UAV spraying velocity, and UAV spraying 

height must be considered because the different combinations of 

these operating parameters affect the droplet deposition 

effect[10,19,20].  The XAG P20 plant protection UAVs with 

high-speed atomizing nozzles (XAIRCRAFT, China) were used for 

spraying, and the value levels of some spraying parameters are 

listed in Table 2.  The number of tests needed for a 

comprehensive experiment was too many.  Therefore,
 
an L32(6354) 

orthogonal table was designed based on the Pairwise Independent 

Combinatorial Testing (PICT) tool (Microsoft, USA) and 

parameters in Table 2 to obtain 32 experimental combinations and 

was applied in experimental task 1.  Finally, 32 spraying tests 

were carried out in each block of each parcel. 
 

Table 1  Treatments of applied volume rates in different 

blocks 

Experimental blocks Applied volume rate/L∙hm
−2

 

A 6.0 

B 9.0 

C 12.0 

D 15.0 

E 18.0 

F 21.0 
 

Table 2  Value levels of UAV spraying parameters 

Parameters 

Levels 

1 2 3 4 5 6 

Initial droplet size d/μm 105 120 135 150 165 -- 

UAV spraying velocity v/m∙s
−1

 2 3 4 5 6 7 

UAV spraying height h/m 1 2 3 4 5 -- 
 

The winter wheat region of North China where the experiment 

was located was an endemic area of the brown wheat mite P. latens 

(Muller)[21].  Experimental task 2 was carried out on April 2, 2021.  

In this year, the diseases of wheat were not serious, and only 

Luyuan 502 was found infected with P. latens.  The average 

number of P. latens per wheat plant in the three parcels was more 

than 6, and 5% avermectin was sprayed to control P. latens.  The 

ASDS parcel was divided into 63 blocks according to the direction 

of the ridge to achieve variable spraying on the basis of the LAI; in 

addition, the width of each block was 3 m because the UAV 

spraying width was set at 3 m in the experiments (Figure 2).  This 

block was also convenient to operate the UAVs to spray according 

to the parameters guidance of the ASDS.  Meanwhile, the 

conventional parcel was divided into 53 equal 3-meter-wide blocks 

according to the direction of the ridge, and a single parameter 

combination (UAV spraying height was 2 m, UAV spraying 

velocity was 7 m/s, initial droplet size was 110 μm, and applied 

volume rate was 15.0 L/hm2) was used to spray pesticide in the 

conventional parcel according to the habits of UAV operation 

professionals[22].  In addition, the blank parcel did not have any 

treatment and played a contrasting role.  Before spraying and on 

the 1st, 3rd, and 7th days after control, the pest situation of the 

three parcels was investigated.  The diagonal 5-point sampling 

method was used, and 20 wheat plants were selected at each point 

to investigate the number of P. latens that was used to calculate the 

reduced rate of P. latens population (Equation (1)) and control 

efficacy (Equation (2))[23]. 

0 1

0

100%
P P

R
P


                  (1) 

where, R is the reduced rate of P. latens population, %; P0 is the  

number of P. latens before spraying and P1 is the number of P. 

latens after spraying. 

PT CK
100%

100 CK
C


 


               (2)  

where, C is the control efficacy, %; PT is the reduced rate of P. 

latens population in the spraying parcel; CK is the reduced rate of 

P. latens population in the blank parcel. 

2.3  Environmental information monitoring 

Environmental information was the important data that need to 

be obtained in the experiments.  In the UAV spraying, the droplet 

deposition effect would be affected by environmental factors, such 

as temperature[24], humidity[25], and wind speed[26].  Therefore, 

dynamic environmental factors need to be input into the decision 

model.  The SHT35 temperature and humidity sensor (Sensirion, 

Switzerland) was used to monitor temperature and humidity 

information.  Its temperature measurement range was from 

−40.0°C to 125.0°C, and the humidity measurement range was 

from 0% RH to 100% RH.  Moreover, the temperature 

measurement accuracy was (±0.2)°C, and the humidity 

measurement accuracy was (±1.5)% RH.  The wind speed sensor 

(Openjumper, China) in the measurement range from 0 to 55.6 m/s 

was used to monitor wind speed information in the experimental 

parcels, and the measurement accuracy was (±0.2) m/s.  In 

experimental task 1, sensors were installed in the center of each 

block in the five parcels.  In experimental task 2, sensors were 

installed in the center of the ASDS parcel. 

2.4  Crop information monitoring 

In experimental task 1, the canopy coverage pictures of the 

crops need to be taken to analyze the LAI, which is a key parameter 

for the decision model.  The measurement system of winter wheat 

LAI based on the Android mobile platform[27] that was developed 

by the Key Laboratory of Modern Precision Agriculture System 

Integration Research was used to analyze the LAI of each block in 

the five parcels.  When taking canopy coverage pictures, an 

auxiliary viewfinder frame with a size of 50 cm×50 cm was used to 

determine the photo area, and a whiteboard with a size of 5 cm×  

5 cm was placed in the photo area as a reference.  Five sampling 

points under the UAV route were selected randomly in each block 

to take photos and the LAI values of five sampling points were 

averaged as LAI of this block to reduce the random errors.  In 

experimental task 2, five pictures were taken at random locations of 

each block in the ASDS and conventional parcels to calculate the 

average LAI of this block by the measurement system of winter 

wheat LAI based on the Android mobile platform.  In addition, 

the growth days of wheat were recorded in each experiment. 

2.5  Droplets collection and analysis 

In the two experimental tasks, the deposition of droplets after 

spraying was analyzed.  A stalk of wheat was chosen in each 

photo area, and the water-sensitive papers (WSPs) (Syngenta, 

Switzerland) were fixed on the upper, middle, and lower layers of 

the wheat canopy and the ground below the wheat (Figure 3).  The 

WSPs were cut into 1 cm×8 cm to fix the WSPs on the wheat 

leaves conveniently.  Two pieces of WSP were fixed on each 

layer to determine the droplet deposition on both sides of the leaves.  

After spraying, the WSPs were collected and analyzed using a 

high-resolution scanner (Epson, Japan) and Deposit Scan software 

(Application Technology Research Unit, USA) to obtain droplet 

deposition data.  In experimental task 1, all the droplet deposition 

data (5 sampling points×6 positions of a wheat plant) on the wheat 

canopy of each block were averaged as the average droplet 

deposition of this block.  In experimental task 2, to evaluate fully 
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the droplet deposition effect of the decision results of the ASDS, 

the average droplet deposition was calculated, and the deviation 

between the average and theoretical droplet depositions was 

determined according to the root-mean-square error (RMSE, 

Equation (3)).  The uniformity of the deposited droplets and the 

penetrability of the droplets also need to be evaluated.  The 

coefficient of variance (CV, Equation (4)) can be used to measure 

the uniformity of the deposited droplets in the same layer at 

different sampling points in the horizontal space and the 

penetrability of the droplets at different layers at the same sampling 

point in vertical space[28].  The smaller the value of CV is, the 

better the uniformity of the deposited droplets and the penetrability 

of the droplets. 
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CV 100%
S

X
 

                (4) 

2

1

1
( )

1

n

i

i

S X X
n 
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
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where, n is the number of blocks; Xi is the average droplet 

deposition of a block; XT is the theoretical average droplet 

deposition of the parcel; S is the standard deviation of the droplet 

deposition; X  is the average value of the average droplet 

deposition of all blocks. 

 
Figure 3  Deployment sketches of collecting droplet deposition 

3  Modeling and design of the system 

3.1  Evaluation criteria for the decision model according to the 

optimal coverage method 

The premise of decision-making is to ensure the control 

efficacy of pesticides, which is influenced by canopy pesticide 

depositions.  Therefore, effective pesticide droplet deposition on 

the canopy needs to be determined for the target crop, which is 

used as the evaluation criteria for the decision model in the 

ASDS[29].  The optimal coverage method that was described by 

Gil et al.[30] showed the calculation of the theoretical spraying 

volume rate based on LAI and droplet deposition on the target[30].  

On the basis of the optimal coverage method, an equation that is 

used to calculate the effective theoretical droplet deposition is 

obtained as follows: 

2×10
2 LAI

T
D

V
V E 

                
(6) 

where, VD is the theoretical average droplet deposition on the target, 

μL/cm2; VT is the conventional volume rate to be applied, L/hm2; 

LAI is the leaf area index of the parcel, m2/m2; E is the application 

efficiency.   

The pesticide was effectively applied as droplets were 

deposited on the target.  The application efficiency in Equation (6) 

is the proportion of total droplet volume on the target to the 

spraying volume of the pesticide, which is influenced by spraying 

losses, such as airborne spraying drift and soil deposition of the 

pesticide[31].  The control efficacy of the pesticide was weakened 

by spraying losses, and additional pesticide liquid needed to be 

sprayed[32].  Given that the ASDS needs to make sufficient droplet 

deposition on the crop canopy to ensure control efficacy, all 

pesticide droplets were assumed to deposit on the target 

theoretically, and E was set to 1. 

The decision-making is based on the theoretical droplet 

deposition calculated by the optimal coverage method, and the 

UAV spraying parameters are deduced.  Droplet deposition is 

affected by many factors, including UAV spraying parameters, 

crop information, and environmental information, and a droplet 

deposition prediction model was designed.  According to the 

current environment and crop conditions, combined with the 

droplet deposition prediction model, the spraying decision model 

provides the optimal UAV spraying parameters to make the 

predicted droplet deposition as close as possible to the theoretical 

droplet deposition (Figure 4). 

 
Figure 4  Block diagram of decision making 

 

3.2  Architecture of the spraying decision model based on the 

RL algorithm  

The RL algorithm based on the actor-critic network structure 

was used to design the spraying decision model.  The algorithm 

combines the advantages of policy gradient and function 

approximation.  The actor-network is based on the probability to 

select model outputs.  The critic network judges the score based 

on the behavior of the actor-network, and the actor-network 

modifies the probability of the outputs based on the score of the 

critic network.  The actor-critic network structure can be updated 

in a single step and achieve fast convergence[33]. 

A performance index function must be established in designing 

the spraying decision model to evaluate the gap between the 

predicted droplet deposition and the theoretical droplet deposition 

calculated from the optimal coverage method and whether or not 

the model output is optimal.  The performance index function is 
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approximated through the critic network, which is used as the 

standard for obtaining the optimal UAV spraying parameters.  The 

actor-network is used to fit the correspondence between crop and 

environmental information and UAV spraying parameters, and the 

critic network is used to replace the traditional output error to 

update the weight of the actor-network.  This procedure ensures 

that the final output meets the target of the spraying decision 

model. 

In this study, 3840 sets of field data (i.e., 4 growth stages ×   

5 wheat varieties × 6 applied volume rates × 32 orthogonal 

combinations of other spraying parameters) were used for modeling.  

The input of the spraying decision model is id = [L, N, T, H, W]T, 

where L is the leaf area index; N is the growth days of wheat, d; T  

is the initial value of temperature, °C; H is the initial value of 

humidity, %RH; W is the wind speed, m/s.  The output of the 

model is od = [q, d, v, h]T, where q is the applied volume rate, L/hm2; 

d is the initial droplet size, μm; v
 
is the spraying velocity, m/s; h is 

the spraying height, m. 

3.2.1  Design process of the droplet deposition prediction model 

A droplet deposition prediction model was designed based on 

the three-layer back propagation (BP) neural network to predict the 

average droplet deposition of the canopy according to the current 

input and output.  The input of the droplet deposition prediction 

model is ip = [L, N, T, H, W, q, d, v, h]T, and the output is the 

average droplet deposition of the canopy.  The field data set for 

the spraying decision model was also used to train the BP neural 

network.  The data set was divided into 3000 groups as the 

training set and 840 groups as the test set.  The number of neurons 

in the input layer was 25, the number of neurons in the hidden layer 

was 10, the number of neurons in the output layer was 1, the 

activation function was the rectified linear unit, and the learning 

rate of the neural network was 0.1.  The droplet deposition 

prediction model participated in training the critic network of the 

spraying decision model. 

3.2.2  Design process of the critic network 

To establish the optimal performance index function, the critic 

network was designed[34].  Before establishing the performance 

index function, the error function e is defined as follows: 

e = XT – X
                    

(7) 

where, X is the predicted average droplet deposition of the canopy 

from the droplet deposition prediction model; XT is the theoretical 

droplet deposition. 

The performance index function J(e) is defined as follows: 

( ) ( ( ), ( ))dd
t

J e r e s o s s


                (8) 

where, 
2

1 2( , ) T
d d dr e o e Q o Q o   is the utility function, Q1  is 

a positive constant, and Q2
4 4  is a diagonal constant matrix.   

On the basis of the definition of the performance index 

function J(e), the Hamiltonian function H(e, od) is defined as 

follows: 

( , ) ( , ) T
d dH e o r e o J e 

              
(9) 

where, 
( )J e

J
e


  


 is the gradient of the performance index 

function J. 

When the error function e is minimum, the optimal 

performance index function J*(e) can be obtained: 

*( ) min ( ( ), ( ))dd
t

J e r e s o s s


             
(10)

 

The optimal performance index function J*(e) also satisfies the 

Hamilton-Jacobi-Bellman equation as follows: 

T( , *) ( , *) * 0d dH e o r e o J e     
        

(11) 

where, 
*( )

*
J e

J
e


  


 is the gradient of the optimal 

performance index function J and od* is the optimal output of the 

model. 

The target of the spraying decision model is to obtain the 

optimal output od* through the RL algorithm based on the 

actor-critic network structure when the input id is known. 

The optimal performance index function J*(e) can be 

approximated by the following neural network: 

           
T*( ) ( ) ( )c c cJ e e e   

     
     

    
(12) 

where, 
Nc

c   is the ideal weight matrix of the neural network; 

( ) Nc
c   ; ( )c    are the activation function and the 

approximation error of the neural network, respectively; Nc is the 

number of neurons of the neural network.  The activation function 

φc(∙) is selected as the hyperbolic tangent function tanh(∙). 

The differential form of the optimal performance index 

function J*(e) is obtained as  
T* ( ) ( )c c cJ e e           

        
(13)

 

where, 
c Nc

c
e





  


, 

c
c

e





  


.  The approximation 

of the optimal performance index function ˆ( )J e  based on the 

critic network is designed as follows: 

                
ˆ( ) ( )T

c cJ e e 
                 

(14) 

where, ˆ ( )cω t  is the estimation matrix of the ideal weight matrix 

ωc of the neural network.  

The matrix ˆ ( )c t
 

is chosen to minimize the objective 

function 21

2
c cE e

 

and ec(∙) is the approximation of the Hamilton 

function, which can be expressed as 
2

1 2 ˆT T
c d d c ce e Q o Q o e    

   
     

   
(15) 

The updating law for the critic network can be obtained as 

2
1 2ˆ ˆ( + )T T

c c c c c d da e Q o Q o       
         

(16)
 

where, ac  is the learning rate of the critic neural network, and 

the auxiliary function σc is defined as 
1

Nc
c T




 
 


 with 

Nc
ce    .  

3.2.3  Design process of the actor-network 

The performance index function from the critic network was 

input into the actor-network for updating weight, and the decision 

output was given by the actor network[35].  The output od(id) of the 

model can be approximated by the following neural network 

( ) ( ) ( )T
d d a a d a do i i i             

     
(17) 

where, 
Na

a   is the ideal weight matrix of the neural network, 

and 
4( ) Na

a
  , and 

4( )a    are the activation function and 

the approximation error of the neural network, respectively.  Na is 

the number of neurons in the neural network.  The activation 

function φa(∙) was selected as the hyperbolic tangent function 

tanh(∙). 

The approximation of model output od(id) based on the 

actor-network is designed as follows: 

             
ˆˆ ( ) ( )T

d d a a do i i      
           

(18) 

where, ˆ ( )a t  is the estimation matrix of the ideal weight matrix 

ωa of the neural network. 

The error estimation function ea(∙)
 
can be expressed as 

ˆˆ ( ) ( )T
a a a d ce i k J e     

            
(19) 
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where, 
ˆ

ˆ J
J

e


  


 is the estimated gradient value of the 

performance index function Ĵ  generated by the critic network 

and ck   is a positive constant to be designed for the effect of 

the critic network on the actor-network. 

The matrix ˆ ( )a t  is chosen to minimize the auxiliary error 

estimation function 
1

2

T
a a aE e e , and the updating law for the 

actor-network can be obtained as 

ˆ ˆ ˆ( )T T T
a a a a a c c ca k           

         
(20) 

where, aa   is the learning rate of the actor neural network. 

After the above modeling process, the spraying decision model 

based on the RL algorithm based on the actor-critic network 

structure was established.  The architecture of the model consisted 

of the droplet deposition prediction model, the critic network, and 

the actor-network (Figure 5).  The input id of the spraying decision 

model is the input of the actor-network, and the output od of the 

model is the output of the actor-network.  In this model, the critic 

and actor networks were not independent, and the output of the 

critic network would participate in the weight updating process of 

the actor-network, which showed that the value of the performance 

index function related to the droplet deposition would affect the 

final weight convergence of the actor-network. The actor-network 

of the spaying decision model was embedded into the ASDS, and 

the spraying parameters were recommended for the ASDS parcel of 

experimental task 2. 

 
Note: The solid line with an arrow represents the forward broadcast process and the dotted line with arrow represents the back propagation process. 

Figure 5  Architecture of the designed spraying decision model 
 

3.3  ASDS design 

The ASDS was divided into hardware and software parts 

(Figure 6).  The hardware part was composed of sensors and 

communication nodes, and it was used to obtain real-time 

environmental information.  In specific, Raspberry PI 4B was 

connected with the SIM7600CE 4G expansion board through a 

40-pin GPIO interface as the communication node of the ASDS.  

The SHT35 temperature and humidity sensor and the wind speed 

sensor were connected to the communication node through I2C, and 

a 1 kΩ electric resistance was paralleled between the analog port 

and the grounding terminal of the communication node, which was 

used to guide the reference level of the grounding terminal to the 

measurement port.  This setup was established to avoid the 

interference of the port suspension on the measurement accuracy.  

Two sensors were fixed on the metal stick, which was inserted in 

the parcel to collect the temperature, humidity, and wind speed 

information in the environment.   

The software part consisted of a type of Android mobile client 

software and a cloud server.  The functions of the software 

included obtaining data on the LAI, the number of growth days, 

and environmental parameters and providing decision suggestions 

(Figure 7).  In this study, the measurement system of winter wheat 

LAI based on the Android mobile platform mentioned in Section 

2.4 was added to the ASDS to obtain the LAI data.  The 

environmental information obtained from the hardware part of the 

ASDS was sent to the MySQL database of the Tencent cloud server 

through a 4G network.  The Android mobile client software with 

the MySQL connector Java package can access the MySQL 

database.  When the experimental group was added to the client 

software, it can obtain the current time of the mobile phone 

automatically and parse it into the standard data format to calculate 

the crop growth days.  Meanwhile, the Mobile TensorFlow SDK 

was added to the Android project to realize the spraying decision 

model based on the RL algorithm running on the mobile phones. 

 
Figure 6  Design structure of ASDS 
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Figure 7  Application flow chart of software part 

4  Results and discussion 

4.1  Decision results from ASDS  

The wheat LAIs of the ASDS parcel in experimental task 2 are 

shown in Figure 8, which were within the value range of 1.4-5.0, 

and the average LAI in the whole ASDS parcel was 3.237.  Figure 

8 shows that the LAIs in different wheat ridges had obvious 

differences in the same parcel, which may be caused by multiple 

factors.  For example, such factors may include the differences of 

soil-based fertilizer[36], moisture distribution caused by 

geographical relief[37], and seed depth influenced by soil texture[38].  

In this study, the theoretical droplet deposition under an LAI of 

3.237 was used as the evaluation criteria for decision-making. 

The ASDS was used to make the decision on the spraying 

parameters, and recommended decision results according to the 

LAI in each block were given distinctly in the ASDS parcel (Figure 

9).  As shown in Figure 8 and Figure 9a, the spraying volume rate 

was lower in the blocks with higher LAI.  In the same parcel, the 

minimum spraying volume rate was 8.0 L/hm2.  As for the blocks 

with higher LAI, the spraying volume rate was higher, and the 

highest reached 19.0 L/hm2, which was more than the traditional 

spraying volume rate.  The overall spraying volume was 26.493 L 

in the whole ASDS parcel, and the average spraying volume rate 

 
Note: LAI: Leaf area index; ASDS: Adaptive spraying decision system.  The 

same as below. 

Figure 8  Distribution map of the LAI in the ASDS parcel 

 
a. Spraying volume rates 

 
b. Spraying heights 

 
c. Spraying velocities 

 
d. Initial droplet sizes 

Figure 9  Distribution map of the decision results in the ASDS 

parcel, where the recommended spraying parameters of 63 blocks 

were given 
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was 12.9 L/hm2.  Compared with the conventional spraying 

volume rate of 15.0 L/hm2, the decision results of ASDS could 

reduce the spraying volume rate of the pesticide by 14% in 

experimental task 2.  As shown in Figure 9b, the recommended 

spraying height given by the ASDS was within 1-3 m, with a quite 

lower height.  This result indicated that the lower spraying height 

can realize a better spraying effect while UAV spraying.  Zhang et 

al.[28] also showed that the droplets of the pesticide were more 

likely to drift at a higher spraying height and the droplets could 

hardly reach the targeted crop.  In experimental task 2, the 

spraying velocity given by ASDS was 2-4 m/s at a medium level 

(Figure 9c).  Kharim et al.[10] showed that at a flight velocity of 

2-6 m/s, the faster the flight velocity of the UAV, the less the 

droplet deposition.  However, Chen et al. explained that at a 

slower spraying velocity, the UAV spraying would present poor 

droplet deposition effect on the targeted crop under the influence of 

strong downwash airflow[39].  Therefore, the UAV spraying 

velocity must be set in a reasonable range to improve droplet 

deposition.  As shown in Figure 9d, no obvious regular pattern 

was observed in setting the initial droplet size.  Moreover, Zhang 

et al. reported that the ideal range of setting droplet size for 

improving droplet deposition is 50-300 μm[4].  High-speed 

atomizing nozzles were installed on the UAV used in this study; 

therefore, the setting value of the initial droplet size was small[40].  

The initial droplet size given by the ASDS was within 105-165 μm, 

which was in the ideal range.  Although it showed no obvious 

regular pattern, the initial droplet size also contributed to obtaining 

theoretical droplet deposition. 

4.2  Droplet deposition in the crop canopy 

The droplet deposition effect was analyzed after UAV spraying 

in the ASDS and conventional parcels.  In specific, the average 

droplet deposition was calculated on all sampling points of the 

wheat canopy in each block, the back side of the leaves, and the 

upper, middle, and lower layers of the canopy.  Afterward, the 

droplet deposition effect was visualized (Figure 10).  The 

theoretical droplet deposition was calculated as 0.020 μL/cm2 based 

on the average LAI value of 3.237 of the ASDS parcel.  The 

average droplet deposition in each block of the ASDS parcel was 

within the range of 0.016-0.023 μL/cm2, and fluctuations possibly 

occurred at the level of 0.020 μL/cm2.  However, as shown in 

Figure 10a, over 70% of average droplet deposition on all sampling 

points of the wheat canopy was within the error range of 10% of 

the theoretical droplet deposition.  Thus, the application of ASDS 

for UAV spraying can make the droplet deposition closer to the 

theoretical droplet deposition to a great extent, which could 

guarantee the UAV spraying effect while reducing spraying volume.  

Figure 10b shows the distribution of droplet deposition at the back 

side of the leaves.  On the basis of the overall values, the average 

droplet deposition at the back side of the leaves was lower than the 

average droplet deposition on all sampling points of the wheat 

canopy.  Although the downwash airflow of the UAVs might turn 

over the leaf and make the droplet deposition at the back side of the 

leaf reach the average level of the wheat canopy in some blocks, 

the droplet deposition effect at the back side of the leaf was 

generally poor.  Figure 10c shows the droplet deposition 

distribution on the upper, middle, and lower layers of the wheat 

canopy and the ground.  Within the ASDS parcel, the upper layer 

had the highest droplet deposition, whereas the middle and lower 

layers had less droplet deposition.  However, no distinct 

difference in droplet deposition was found between the middle and 

lower layers.  In addition, droplets were deposited on the WSPs 

that were placed on the ground.  This result indicated that UAV 

spraying cannot avoid ground losses and might influence the 

application efficiency of pesticides in general.  This problem will 

be considered in further research, and the spraying decision model 

will be optimized to minimize UAV spraying losses as much as 

possible.  

 
a. Average droplet deposition on all sampling points of wheat canopy 

 
b. Average droplet deposition at the back side of the leaves 

 
c. Average droplet deposition on the upper, middle, and lower layers of the 

canopy and the ground 

Figure 10  Distribution map of the droplet deposition in the ASDS 

parcel 
 

Figure 11 shows the LAI distribution in the conventional block.  

Figure 12 displays the average droplet deposition on all sampling 

points of the wheat canopy in each block, the back side of the 

leaves, and the upper, middle, and lower layers of the canopy and 

the ground.  As shown in Figures 11 and 12, obvious relativity 

was found between the droplet deposition and the LAI when a 

single parameter combination was used for UAV spraying.  The 

higher the LAI is, the lower the droplet deposition.  Such a result 

was consistent with the result of Zhang[26].  In this study, the 

droplet depositions of the ASDS and conventional parcels were 

compared in Table 3.  Although the average droplet depositions of 

the two parcels on all sampling points of the wheat canopy 

presented no great difference, the RMSEs of the average and 
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theoretical droplet depositions in these two parcels showed that the 

deviation value of the ASDS parcel was smaller.  Meanwhile, the 

ground losses in the ASDS parcel were reduced.  Table 4 shows 

that the droplet deposition on the wheat leaves in the ASDS parcel 

had better uniformity than that in the conventional blocks.  In 

particular, the average droplet deposition on all sampling points of 

the wheat canopy had the best result, with the smallest CV and best 

uniformity.  The reason was that the average droplet deposition on 

all sampling points of the wheat canopy was used to close to the 

theoretical droplet deposition while establishing the decision model.  

In addition, the droplet deposition effect after UAV spraying in the 

OSDS parcel was greatly influenced by the spraying decision 

model.  However, differences in droplet distribution were found in 

the different canopy layers.  As a result, such a problem will be 

taken into consideration for further improvement of the model.  In 

general, UAV spraying according to the recommended parameters 

of the ASDS can save the spraying volume rate, improve droplet 

deposition, and reduce ground losses.  

 
Figure 11  Distribution map of the LAI in the conventional  

parcel 
 

 
a. Average droplet deposition on all sampling points of wheat canopy b. Average droplet deposition at the back side of the leaves 

 
c. Average droplet deposition on the upper, middle, and lower layers of the canopy and the ground 

Figure 12  Distribution map of the droplet deposition in the conventional parcel 
 

Table 3  Average droplet depositions and the RMSEs in the ASDS and conventional parcels 

Parcels 
Average droplet deposition/μL·cm

−2
 

RMSEs* 
Total layers Upper layer Middle layer Lower layer Back side of the leaf Ground below the wheat 

ASDS parcel 0.019 0.027 0.016 0.014 0.012 0.006 0.002 

Conventional parcel 0.022 0.030 0.015 0.021 0.012 0.009 0.009 

Note: *RMSEs between the true and theoretical average droplet depositions. 
 

Table 4  Uniformity of the deposited droplets and the penetrability of the droplets in the ASDS and conventional parcels 

Parcels 
Uniformity of the deposited droplets/% Penetrability of the 

droplets/% Average Upper layer Middle layer Lower layer Back side of the leaf Ground below the wheat 

ASDS parcel 8.8 29.8 34.9 41.1 38.3 54.4 29.6 

Conventional parcel 40.9 42.1 39.2 43.6 52.6 52.5 28.4 
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4.3  Evaluation of control efficacy 

The results in Sections 4.1 and 4.2 showed that the ASDS 

helped reduce the spraying volume and improve droplet deposition.  

As the main purpose of UAV spraying was for pest control, this 

section explored whether or not the application of recommended 

spraying parameters given by the ASDS will influence the control 

efficacy of UAV spraying.  As shown in Table 5, P. latens were 

still of great amount on the seventh day in the blank parcel with no 

spraying.  Thus, the number of P. latens cannot reduce 

spontaneously without spraying for prevention during the 

experiment.  After UAV spraying in the ASDS and conventional 

parcels, the population of P. latens was controlled.  On the 

seventh day after UAV spraying, the reduced rate of P. latens 

population and the control efficacy reached the highest level and 

the control efficacy in the two parcels exceeded 98%.  The results 

of the investigations revealed no great differences in control 

efficacy between the ASDS and conventional parcels.  Therefore, 

following the spraying parameters recommended by the ASDS will 

not influence the control efficacy of the pesticides.  As a result, 

the use of the ASDS to guide UAV spraying can help reduce the 

spraying volume rate of the pesticides by 14% in experimental task 

2 while ensuring the control efficacy of pesticides, suggesting that 

this system is valuable for further research.  At present, the ASDS 

can ensure that the control efficacy of the pesticide is similar to that 

under conventional spraying parameters.  In the future, this study 

will focus on adjusting UAV spraying parameters to improve the 

control efficacy of the pesticides on the basis of the results of the 

ASDS. 
 

Table 5  Reduced rates and control efficacy in the ASDS and conventional parcels 

Parcels 
Population** 

(ind.) 

1 day after spraying 3 days after spraying 7 days after spraying 

Reduced rate/% Control efficacy/% Reduced rate/% Control efficacy/% Reduced rate/% Control efficacy/% 

ASDS parcel 632 67.6 65.3 91.5 91.2 98.1 98.0 

Conventional parcel 668 70.2 68.1 90.7 90.4 98.8 98.7 

Blank parcel 625 6.6 -- 3.0 -- 4.3 -- 

Note: **Population per 100 wheat plants before spraying. 
 

5  Conclusions 

1) In this study, the ASDS was developed for UAV spraying.  

This system was composed of environmental information 

monitoring sensors, a communication node, a cloud service 

database, an Android mobile client software, and a spraying 

decision model based on the RL algorithm with the actor-critic 

network structure.  The minimum UAV spraying volume rate and 

reasonable UAV spraying velocity, UAV spraying height, and 

initial droplet size were recommended by the ASDS based on the 

crop and environmental information.  

2) Field data were collected from five varieties of wheat in four 

growth stages for modeling.  The theoretical droplet deposition 

was calculated using the optimal coverage method as the evaluation 

criteria for the decision model.  The model was built by training 

the critic and actor networks to achieve adaptive decision-making 

in a complex environment.  

3) The spraying parameters recommended by the ASDS were 

used to spray the wheat parcel, and results showed that the ASDS 

can adjust spraying parameters according to the LAIs of the parcel.  

Moreover, the blocks with lower LAI correspondingly had lower 

spraying volume rates.  For experimental task 2 in this study, the 

ASDS could reduce the spraying volume rate by 14% compared 

with using the traditional parameters and thus can minimize 

pesticide use. 

4) Compared with the spraying effect under the conventional 

parameters, the RMSE between droplet deposition and theoretical 

droplet deposition was smaller, and the uniformity of the deposited 

droplets improved after UAV spraying on the basis of the ASDS.  

Moreover, no distinct difference in the penetrability of the droplets 

and the control efficacy was found between the two treatments.  

Thus, the ASDS can reduce the spraying volume rate without 

influencing the spraying effect and control the efficacy of 

pesticides.  Therefore, the ASDS is worthy of further research and 

improvement. 
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