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Abstract: Soil texture is one of the most important soil characteristics that affect soil properties.  Rapid acquisition of soil 
texture information is of great significance for accurate farmland management.  Traditional soil texture analysis methods are 
relatively complicated and cannot meet the requirements of temporal and spatial resolution.  This research introduced a 
self-developed vehicle-mounted in-situ soil texture detection system, which can predict the type of soil texture and the particle 
composition of the texture, and obtain real-time data during the measurement process without preprocessing the soil samples.  
The detection system is mainly composed of a conductivity measuring device, a camera, an auxiliary mechanical structure, and 
a control system.  The soil electrical conductivity (ECa) and the texture features extracted from the surface image were input 
into the embedded model to realize real-time texture analysis.  In order to find the best model suitable for the detection system, 
measurements were carried out in three test fields in Northeast and North China to compare the performance of different models 
applied to the detection system.  The results showed that for soil texture classification, ExtraTrees performed best, with 
Precision, Recall, and F1 all being 0.82.  For particle content of soil texture prediction, the R2 of ExtraTrees was 0.77, and 
RMSE and MAPE were 74.72 and 39.58.  It was observed that ECa, Moment of inertia, and Entropy had larger weights in the 
drawn model influence weight map, and they are the main contributors to predicting soil texture.  These results showed the 
potential of the vehicle-mounted in-situ soil texture detection system, which can provide a basis for fast, cost-effective, and 
efficient soil texture analysis. 
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1  Introduction 

Soil texture is one of the important physical properties of soil.  
It represents the percentage combination of soil particles of 
different diameters in the weight of the soil.  It is generally 
divided into three types: sand, loam, and clay.  Soil texture affects 
many dynamic physical properties, such as electrical conductivity 
(ECa), organic carbon, cation exchange capacity, and so on[1].  
Soils with different textures contain different minerals.  For 
example, soils with more clay have more iron oxides and 
kaolinite[2].  Soil texture also affects the root tensile strength of 
some plants (for example, Spartina patens)[3].  Good-textured soil 
can well regulate plants' requirements for water, nutrients, air, and 
temperature during crop growth, thereby promoting high crop 
yields.  For example, peanuts are important crops, and a coarser 
soil texture is needed to achieve better pod development and peanut 
growth[4]. 

The standard method for obtaining soil texture is the 
hydrometer method[5].  Although this method can provide very 
accurate soil texture results, it has obvious disadvantages: it cannot 
obtain a large data set at one time; it takes a lot of time to dry and 
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grind samples.  The soil samples need to be heated and treated 
with H2O2 and Na3PO4.  The whole experiment process needs 
manual operation to ensure accuracy and safety; measurement 
accuracy depends on the experimental conditions and the operator’s 
proficiency.  Many new methods of soil texture acquisition have 
been studied by scholars around the world, but there are some 
problems.  For example, although the laser particle size analyzer 
method based on the principle of particle diffraction[6] can generate 
high-resolution mechanical composition detail reports, it also has 
limitations because of the higher cost.  In addition, there are also 
studies using the γ-ray method, scanning electron microscopy, 
vis-NIR technology, Diffuse Revelations Infrared Fourier 
Transformations Spectroscopy (DRIFT), and remote sensing 
technology to predict soil texture[7-9], but expensive instruments or 
early-stage required pretreatment limits their usefulness.  In 
summary, the current research has time lag in obtaining soil texture, 
the spatial resolution is difficult to meet the demand and most of 
them require expensive equipment.  Therefore, it is necessary to 
develop a low-cost, real-time, high-precision soil texture 
information acquisition method and detection system to meet the 
development needs of smart agriculture. 

Images have been widely used in soil texture research in recent 
years.  Swetha et al.[10] used customized darkroom and 
smartphone images to predict soil texture.  After soil samples 
were dried, ground, and sieved in the laboratory, local features, 
color features, and texture features were extracted from the images.  
The results show that the prediction accuracy of clay particles 
(R2>0.97) and sand particles (R2>0.96) is high, while the prediction 
accuracy of powder particles (R2=0.62-0.75) is medium.  de 
Oliveira Morais et al.[11] used computer digital scanned images and 
used three multivariate correction methods Partial Least Square 
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(PLS), Successive Projections Algorithm- Multiple Linear 
Regression (SPA-MLR), and Least Squares Support Vector 
Machines Regression (LSSVMR) to predict the sand and clay 
content in the pre-treated soil samples, of which LSSVMR 
performed the best (R2>0.9).  de Oliveira Morais et al.[12] used 
digital image processing (image segmentation) and multivariate 
image analysis (MIA) of soil samples to predict soil texture.  In 
the range of 25% to 75% of sand and clay, there was a strong 
correlation between the predicted and measured sand and clay 
contents (R2>0.92).  Sudarsan et al.[13] developed a set of image 
acquisition systems by using a small and cheap hand-held 
microscope, and estimated the soil texture and soil organic matter 
by using various calculation parameters of the obtained images.  
The predicted performance of sand was better (R2=0.63).  
Although the above studies all need pretreatments such as air 
drying and sieving, it provides a basis for in-situ measurement of 
soil texture using images. 

Soil ECa has been proven to have a strong correlation with 
texture for many years.  Garcia-Tomillo et al.[14] found that clay, 
silt, and sand contents were significantly correlated with ECa 
(r=0.48, 0.24, and −0.36, p<0.05).  Therefore, ECa is used as an 
auxiliary variable to interpolate texture maps by regression Kriging.  
Soil texture and ECa showed strong spatial dependence, and ECa 
and soil quality maps showed similar spatial distribution patterns.  
Andrade et al.[15] used portable X-ray Fluorescence spectrometry 
(pXRF) and Magnetic Susceptibility (MS) to analyze soil texture.  
Among the three particle size components, the prediction of clay 
and sand content was the most accurate in this study.  The R2 of 
the best model for sand, silt, and clay were 0.79, 0.44, and 0.71, 
respectively.  The above results show that ECa can be used as an 
input to indirectly predict soil texture, and the results show that 
ECa has a good performance in predicting soil texture. 

Therefore, in order to obtain the field soil texture information 
in real time and provide the basis for accurate management, this 
study introduces a self-developed vehicle-mounted in-situ soil 
texture detection system based on ECa and soil surface image 
information.  According to the soil texture classification and soil 
texture particle composition, the best model is selected by using the 
field test data. 

2  Materials and methods 

2.1  Soil samples and experimental preparation 
There are three experimental sites, Erdaohe Farm, 

Heilongjiang, China (Farmland A); Shangzhuang, Beijing, China 
(Farmland B) and Tongzhou, Beijing, China (Farmland C). 

The geographical coordinates of Heilongjiang Province are 
123.02°E-137.3°E and 43.7°N-53.9°N, with a total area of  
473 000 km2, and an average annual temperature of −4°C-5°C, 
annual precipitation 400-650 mm.  It is mainly black soil with 
high fertility and fine texture. 

The geographical coordinates of Beijing are 115.7°E-117.4°E, 
39.4°N-41.6°N, covering an area of 16 410 km2, with an annual 
average temperature of 11.5°C.  The annual precipitation is about 
540.7 mm.  Most of the soil is loess and brown gray soil, which is 
fertile and moderate in texture. 

The distribution of the experimental area, path, and sampling 
area is shown in Figure 1, and farmland information is shown in 
Table 1.  All the experiments were carried out in the fallow period, 
in which farmland A is 1750 km2 of a paddy field, farmland B is 
2000 km2 of a maize field, farmland C is 2500 km2 of a maize field, 

and the sampling plot is 3 m×5 m.  The content of the experiment 
includes data collection of the detection system and soil sample 
collection.  A total of 221 soil samples were collected in the 
experimental path, including 36 in farmland A, 95 in farmland B, 
and 90 in farmland C.  Each soil sample is 1 kg, and the topsoil is 
collected at a depth of 5-10 cm.  The standard values of ECa and 
soil texture were measured by quartering each soil sample equally.  
The standard values were matched with the measured values by 
GPS data. 

 

 
 

a. Erdaohe Farm, Heilongjiang, China  b. Shangzhuang, Beijing, China       
c. Tongzhou, Beijing, China 

Figure 1  Test site, path, and sampling point 
 

Table 1  Experimental farmland information 

Farmland Location Planting type Area/km2 Samples 

A Heilongjiang Rice 1750 36 

B Beijing Maize 2000 95 

C Beijing Maize 2500 90 
 

The measurement method of ECa standard value is 5:1 static 
extraction method[16].  The soil samples were passed through a   
1 mm sieve and dried in an oven for 24 h.  Add 10 g soil sample 
and 50 mL deionized water into the flask.  Put the cap on the 
bottle and put it on the reciprocating horizontal constant 
temperature oscillator to oscillate for 30 min.  After oscillation, let 
it stand at room temperature (about 20°C) for 24 h.  Take a proper 
amount of transparent solution, use ECa instrument (DDSJ-319L, 
Shanghai Yidian Scientific Instrument Co., Ltd., China) to measure, 
measure three times, take the average value, and record the data as 
the standard ECa value of soil samples. 

The method of measuring soil texture is drying and sieving soil 
samples, using a laser particle size analyzer (NKT5200-h, 
Shandong Nijite Analytical Instrument Co., Ltd., China) for wet 
measurement.  After obtaining the analysis report, soil samples 
were classified according to Kaczynski soil classification 
standard[17] in Table 2, and three soil texture types were measured: 
sandy loam (81 samples), light loam (99 samples), and medium 
loam (41 samples).  The statistics of sample texture types of the 
three test sites are listed in Table 3. 
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Table 2  Kaczynski’s standard for classification of soil texture 

Soil 
Texture 

Physical clay (<0.01mm) content Physical sand (>0.01mm) content 

Podzol 
Grassland soil,  

red and yellow soil 
Columnar alkaline soil,  

strong alkaline soil 
Podzol 

Grassland soil,  
red and yellow soil 

Columnar alkaline soil,  
strong alkaline soil 

Sand 
Loose sand 0-5 0-5 0-5 100-95 100-95 100-90 

Tight sand 5-10 5-10 5-10 95-90 95-90 95-90 

Loam 

Sandy loam 10-20 10-20 10-15 90-80 90-80 90-85 

Light loam 20-30 20-30 15-20 80-70 80-70 85-80 

Medium loam 30-40 30-45 20-30 70-60 70-55 80-70 

Heavy loam 40-50 45-60 30-40 60-50 55-40 70-60 

Clay 

Light clay 50-65 60-75 40-50 50-30 40-25 60-50 

Medium clay 65-80 75-85 50-65 35-20 25-15 50-35 

Heavy clay >80 >85 >65 <20 <15 <35 
 

Table 3  Texture types of samples from three test sites 

Test site 
Sandy loam 

sample 
Light loam 

sample 
Medium loam 

sample 
Total  

sample 

Farmland A 18 2 16 36 

Farmland B 4 66 25 95 

Farmland C 59 31 0 90 
 

2.2  Principle of soil texture measurement 
Because it is difficult to measure soil texture directly, this 

study proposed a method to predict soil texture by using parameters 
highly related to soil texture.  The feasibility of indirect prediction 

of soil texture was analyzed in this study, in which image and ECa 
performed well in the prediction of soil texture.  ECa and soil 
surface images were selected to predict soil texture.  In the field 
experiment, through the self-designed ECa sensor and industrial 
camera, the required input parameters are obtained: ECa and the 
image features extracted from the soil surface image.  Finally, the 
soil texture information of the detection target is obtained by 
calling the prediction model.  The overall design scheme of the 
vehicle-mounted in-situ soil texture detection system is shown in 
Figure 2. 

 
Note: Blue block diagram: ECa measurement process; Grey block diagram: soil surface image acquisition process; DDS: Direct Digital Synthesizer;  
PC: Personal Computer. 

Figure 2  General design scheme of detection system 
 

The most important part of the detection system is the data 
collection of two kinds of sensing devices: disc ECa electrode and 
industrial camera.  Four disk electrodes were used to measure ECa.  
Industrial cameras were used to obtain images of soil surfaces.  
Among them, industrial cameras and industrial tablets were directly 
connected through USB cables.  In order to achieve real-time and 
fast data measurement, a high-speed data acquisition card was 
selected to ensure the mobility and accuracy of data, and a GPS 
receiver was installed to record the location information. 
2.3  ECa measurement principle and image analysis method 

The method of measuring ECa is the four-colter Wenner array 
method[18], as shown in Figure 3 and Equation (1).  This method 
has been proven to be stable and accurate. 

When JM = KN = a – b/2, MN = b, 

2

1 1

π
4

MNVa b

b

 
 

 
 

            (1) 

where, σ is the soil ECa value calculated by the four-terminal 
method, μS/cm; a and b are the distance between probes, cm; I is 
the constant current source current, A; ∆VMN is the M; N 

voltage between two probes, V. 

 
Note: i: Current; a and b: distance between electrodes. 

Figure 3  Current-voltage four-electrode method 
 

The method of extracting soil surface texture features is 
Gray-Level Co-occurrence Matrix (GLCM)[19,20].  GLCM is a 
classical second-order statistical algorithm.  In 1973, Haralick[21] 
proposed using GLCM to describe texture features.  This is 
because the texture is formed repeatedly and alternately by the gray 
distribution in the spatial position, so there must be a certain 
distance between the two pixels in the image space.  A certain 
gray-level relationship is called the spatial correlation of gray 
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levels in an image.  The texture is described by studying the 
spatial correlation of gray levels.  This is the basis of GLCM, 
which is composed of the joint probability density of the gray level.  
It can reflect the direction of the gray level of the image, the 
adjacent interval, and the change range of comprehensive 
information.  It is the basis of analyzing the local pattern of an 
image and its arrangement rules.  Based on the matrix, various 
statistics can be calculated: Energy, Entropy, Contrast, Uniformity, 
Correlation, Variance, Sum, etc.  The common parameters and 
their calculation equations are as follows[22,23]: 

1) Correlation  
Correlation refers to the degree of correlation between related 

pixels and their adjacent pixels, which reflects the local gray 
correlation in the image. 

2

( , )
Correlation

1 ( )i j

P i j

i j


             (2) 

where, P(·) refers to the input image; (i, j) refers to the pixel 
coordinates, the value range of i and j is usually 0-255. 

2) Energy 
Energy measures the uniformity of image texture and 

represents the repeated information of pixel pairs. 
2Energy ( , )

i j

P i j              (3) 

3) Entropy 
Entropy in physics means the degree of regularity of an object.  

The more ordered, the smaller Entropy, and the more disordered it 
is, the larger Entropy.  It represents the randomness and 
complexity of texture feature distribution. 

Entropy ( , ) log ( , )
i j

P i j P i j           (4) 

According to the research of predecessors[24,25] in our 
laboratory, energy, uniformity, Entropy, energy, and moment of 
inertia are highly correlated with soil roughness, soil bulk density, 
root mean square height and correlation length.  By comparing the 
correlation between the root mean square height and the correlation 
length of soil surface roughness and the 12 texture feature 
parameters, the four texture features used in this study have the 
highest R2.  Therefore, this study used four image parameters: 
Energy, Entropy, Moment of inertia, and Correlation to predict soil 
texture. 
2.4  Design of vehicle mounted in situ soil texture detection 
system 

According to the principle of soil texture prediction based on 
ECa and soil surface image proposed in this study, the 
vehicle-borne soil texture detection system was developed.  The 
structure diagram and the physical object are shown in Figures 4 
and 5.  The detection system mainly includes the detection unit, 
mechanical structure, and electronic control system. 

The detection unit is the core of vehicle mounted in situ soil 
texture detection system, including the ECa measurement device 
and surface image acquisition device.  The ECa measuring device 
consists of disc electrode, DDS signal generator, high-speed signal 
acquisition card, and signal processing circuit.  As a constant 
current source, the signal generator provides the initial signal, 
which contacts the soil to be measured through four disc electrodes.  
After amplification, filtering, conversion, and other processing, the 
returned signal is collected by the signal acquisition card.  The 
surface image acquisition device consists of an industrial camera 
(MV-SUA1201C-T, Shenzhen Mindvision Technology Co., Ltd., 
Shenzhen, China) and a tablet computer.  After the industrial 
camera takes the soil surface image, the texture features are 

extracted through image processing such as segmentation.  
Especially, due to the large measurement range of ECa in practice, 
the center line of the disk electrode is regarded as the measurement 
area, the camera is installed above the center line, and the area 
where the camera takes pictures and the center line overlap is 
regarded as the measurement point of the detection system. 

In order to ensure the normal operation of the detection system 
in farmland, in addition to the core detection unit, it also includes 
auxiliary mechanical system and electronic control system.  The 
auxiliary mechanical system provides platform support for the 
whole detection system, which is mainly composed of three-point 
suspension structure (connecting tractor), electronic components 
installation box, load support platform, etc.  The electronic control 
system realizes the acquisition and processing of ECa measurement 
signals and the display of measurement results.  The control part 
mainly consists of industrial plate, circuit processing module, GPS 
module, and so on.  The ECa measurement and image 
characteristic values collected by industrial flat plate are input into 
the embedded soil texture prediction model to obtain soil texture 
information.  The display part includes the local display on the 
industrial tablet and the display and data management on the 
mobile phone. 

 
1. Industrial tablet computer  2. Data acquisition card  3. ECa processing 
circuit 4. Resistance processing circuit  5 Disc electrode  6. Deep loose plough       
7. Industrial camera  8. GPS locator  9. Mobile phone  10. Centerline 

Figure 4  Detection system structure diagram 
 

 
Figure 5  Physical image of detection system 

 

2.5  Model and evaluation method 
In order to find the best model suitable for detection system 

embedding, six classic models were selected: AdaBoost, Light 
Gradient Boosting Machine (LightGBM), SVM, BP curve network, 
Random Forest (RF), Extremely Randomized trees (Extratrees). 

AdaBoost[26] is an iterative algorithm.  Its core idea is to train 
different prediction models (weak models) for the same training set, 
and then combine these weak models based on the error of the 
previous model to form a stronger model. 

LigthGBM[27] uses the negative gradient of the loss function as 
the approximate residual value of the current decision tree to fit the 
new decision tree. 

The basic idea of SVM[28] is to define the optimal linear 
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hyperplane and reduce the algorithm of the optimal linear 
hyperplane to a convex optimization problem. 

BP neural network[29] is a kind of multilayer feedforward 
neural network trained according to the error back propagation 
algorithm, which has the ability of arbitrary complex pattern 
classification and excellent multi-dimensional function mapping. 

RF[30] is a classifier with multiple decision trees, and its output 
categories are determined by the mode of the categories output by 
individual trees. 

Each decision tree of ExtraTrees[31] uses all the same training 
samples, and the bifurcation value is obtained completely at 
random, so as to achieve bifurcation of the decision tree 

The evaluation methods of the classification model are 
Precision, Recall, and the harmonic mean F1-score (F1).  These 
three indicators are all methods to evaluate the prediction accuracy, 
and F1 is the weighted average of Precision and Recall.  The 
regression model was evaluated by R2, Root Mean Square Error 
(EMSE), and Mean Absolute Percentage Error (MAPE).  The 
proportion of the model training set was 0.75, the number of 
training set samples of sandy loam, light loam, and medium loam 
were 60, 74, and 34, respectively, and the number of verification 
set samples was 21, 25, and 10, respectively. 

TP
Precision

TP FP



               (5) 

TP
Recall

TP FN



                (6) 

Precision Recall
F1 2

Precision Recall





             (7) 

where, TP is the number of positive classes predicted as positive 
classes; TN is the number of negative classes predicted as negative 
classes; FP is the number of negative classes predicted as positive 
classes; FN is the number of positive classes predicted as negative 
classes. 

3  Results and discussion 

3.1  Descriptive statistics and soil textural variations 
The descriptive statistics of physical clay (<0.01mm) content 

of Sandy loam, Light loam, and Medium loam show high 

variability, as listed in Table 4.  The physical clay (<0.01 mm) 
content of Sandy loam is between 10.09 μm and 19.89 μm, with an 
average value of 15.10 μm and an SD of 2.22.  The physical clay 
(<0.01 mm) content of Light loam also showed a wide range 
(13.57-29.99 μm), with an average value of 24.84 μm and an SD of 
4.01, indicating a greater degree of dispersion.  The physical clay 
(<0.01 mm) content of Medium loam is between 30.05 and 42.08, 
with an average value of 34.84 and an SD of 3.5.  Light loam and 
Medium loam showed moderate skewness (−0.674 and 0.417).  
These three kinds of soil separations all show a relatively flat 
non-normal distribution with negative kurtosis, which proves that 
the use of non-parametric regression such as RF is reasonable. 

 

Table 4  Descriptive statistics of physical clay content of three 
germplasm types 

Parameters Mean/μm Min/μm Max/μm SD Kurtosis Skewness Total 

Sandy loam 15.103 10.090 19.890 2.217 −0.844 0.075 81 

Light loam 24.844 13.580 29.990 4.008 −0.397 −0.674 99 

Medium loam 34.837 30.050 42.080 3.503 −0.777 0.417 41 
 

Table 5 summarizes the descriptive statistics of input 
parameters used to predict soil texture information.  In order to 
display the mean values more directly, Figure 6 shows the mean 
values of a texture parameter of three texture types in four different 
directions.  It can be seen that with the increase of physical clay 
(<0.01 mm) content, the mean values of energy and correlation 
show an upward trend, while the mean values of Entropy and 
moment of inertia decrease with the increase of physical clay 
content.  The important thing is that with the change of angle, the 
four texture parameters basically maintain a similar trend.  The 
SD of Energy, Entropy, and Correlation were between 0.01 and 
0.31, while the dispersion of moment of inertia was obvious (SD 
was 0.28-3.06).  The energy, moment of inertia, and correlation of 
the three germplasm sites all had positive skewness values, and the 
dispersion degree on the right side was large, showing a similar 
trend.  Entropy has positive bias and negative bias, but the 
difference is not significant.  Generally speaking, although there 
are differences in the degree of dispersion among individuals in the 
group, the difference in the mean value is very obvious, and the 
similar trend provides support for the classification. 

 

Table 5  Descriptive statistics of input parameters 

Parameters Direction 
Sandy loam Light loam Medium loam 

Mean SD Skewness Mean SD Skewness Mean SD Skewness 

Energy 

0° 0.024 0.016 2.091 0.039 0.017 1.324 0.042 0.013 0.909 

45° 0.020 0.014 2.320 0.035 0.030 6.537 0.035 0.011 0.724 

90° 0.025 0.016 2.374 0.040 0.018 1.467 0.043 0.013 0.678 

135° 0.020 0.013 2.330 0.032 0.015 1.937 0.034 0.011 0.752 

Entropy 

0° 4.300 0.442 −1.133 3.685 0.468 0.754 3.557 0.292 −0.460 

45° 4.496 0.440 −1.453 3.878 0.469 0.590 3.735 0.310 −0.265 

90° 4.280 0.422 −1.511 3.663 0.458 0.676 3.534 0.296 −0.178 

135° 4.486 0.425 −1.478 3.882 0.462 0.615 3.756 0.309 −0.358 

Moment of inertia 

0° 3.500 2.108 0.148 1.277 1.597 2.210 0.646 0.284 0.572 

45° 5.435 3.056 0.080 1.941 2.303 2.065 0.973 0.487 0.874 

90° 3.180 1.715 0.115 1.152 1.316 2.087 0.625 0.305 0.721 

135° 5.212 2.903 0.123 1.949 2.343 2.150 1.013 0.478 0.482 

Correlation 

0° 0.066 0.027 4.684 0.113 0.068 3.999 0.115 0.040 1.889 

45° 0.062 0.028 4.425 0.113 0.096 6.617 0.113 0.040 1.861 

90° 0.067 0.027 4.851 0.108 0.047 0.846 0.115 0.040 1.873 

135° 0.062 0.028 4.518 0.105 0.047 0.778 0.112 0.040 1.844 

ECa  316.369 100.570 0.522 229.838 70.173 1.578 247.080 60.825 0.208 

Note: ECa: Soil electrical conductivity. 
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a. Mean value of energy of  

three texture types 
b. Mean value of entropy of  

three texture types 
c. Mean value of moment of inertia of  

three texture types 
d. Mean value of correlation of three 

texture types 
 

Figure 6  Mean value of a texture parameter of three texture types 
 

3.2  Classification model 
Six models such as Adaboost and LightGBR were used in the 

system.  The standard texture types measured in the laboratory are 
compared with the predicted texture classification of the detection 
system model.  Table 6 lists the comparison of the classification 
performance of different models.  Precision, Recall, and F1 were 
used as the evaluation indexes of the classification model.  Figure 
7 shows the confusion matrix of the prediction performance of the 
six models.  Among them, ExtraTrees performed best, with 
Precision, Recall, and F1 all being 0.82.  Secondly, Adaboost’s 
Precision, Recall, and F1 are 0.79, 0.70, and 0.69, respectively.  
SVM, BP Nerve Network, and Random Forest also performed well.  
Unfortunately, the Precision of the LightGBR model is poor, only 
0.52.  From the perspective of the confusion matrix, SVM and 
ExtraTrees are the best predictors of Sandy loam.  The former 
incorrectly judges 2 samples as Light loam, and the latter 
incorrectly judges 1 sample as Light loam and 1 sample as Medium 

loam.  The best predictor of Light loam is BP Nerve Network, 
which misjudged 3 samples out of 25 samples.  Adaboost is the 
best predictor of medium load.  In traditional laboratory texture 
measurement, the higher the content of physical clay (<0.01 mm), 
the more uncertainty it shows.  However, due to the small number 
of samples, it is impossible to determine whether AdaBoost model 
still performs well in a large range of samples. 

 

Table 6  Comparison of texture classification of different 
models 

Parameters Precision Recall F1 

Adaboost 0.79 0.70 0.69 

LightGBR 0.52 0.55 0.53 

SVM 0.74 0.73 0.70 

BP Nerve Network 0.70 0.57 0.60 

Random Forest 0.68 0.69 0.68 

ExtraTrees 0.82 0.82 0.82 
Note: SVM: Support Vector Machine; BP: Back propagation. 

 
a. Performance of Adaboost model in prediction 

set 
b. Performance of LightGBR model in prediction set c. Performance of SVM model in prediction 

set 

 
d. Performance of BP Nerve Network model in 

prediction set 
e. Performance of RF model in prediction set f. Performance of ExtraTrees model in 

prediction set 
 

Figure 7  Confusion matrix of texture detection results of model in test set 
 

A wise choice of input variables is essential for portable and 
user-friendly devices because adding too many predictors often 
leads to over-simplification of the predictive model.  In this study, 
a total of 17 parameters were used as the input of the model.  For 
the best-performing ExtraTrees model, Figure 8 shows the weight 

map of the influence model of each input.  The first 4 weights are 
ranked: ECa, Moment of inertia 0°, Moment of inertia 135°, and 
Entropy 90°, and the following feature importance is observed in 
descending order of ECa, Moment of inertia, Entropy, Correlation, 
and Energy.  The close relationship between ECa and soil texture 
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has been confirmed.  The performances of Moment of inertia and 
Entropy in Table 5 and Figure 6 were also confirmed.  With the 
change of direction, the mean values of the three texture types 
maintain the same changing trend and spacing.  Moment of inertia 
reflects the strength of the texture, and the depth of grooves is large.  
When the content of physical clay (<0.01 mm) is small, the 
particles have a certain distance.  Entropy reflects the complexity 
of the texture.  Literature [32] introduced that the skin texture 
becomes more and more sparse with age, and the entropy value 
decreases.  This also verifies that as the content of physical clay 
(<0.01 mm) increases, the entropy value decreases. 

 
Figure 8  Classification model influence weight 

 

3.3  Physical clay content prediction 
In order to find the best model for predicting physical clay 

(<0.01 mm) content by the detection system, the performance of 
six models including Adaboost and LightGBR were compared.  
The model evaluation results are listed in Table 7.  The maximum 
R2 of ExtraTrees is 0.77, RMSE and MAPE were 74.72 and 39.58 
respectively, followed by R2 of Adaboost, LightGBR, and Random 
Forest were 0.74, 0.70, and 0.65.  SVM has the lowest RMSE 
(72.06), and LightGBR has the lowest MAPE (35.00).  Taken 
together, ExtraTrees performed the best, while SVM and BP Nerve 
Network did not perform very well.  The reason why ExtraTrees 
performs well may be that each of its decision trees uses all the 
original training sample data, which helps reduce the bias of the 
model.  Since the best-split attribute and threshold are randomly 
selected and set, it has a strong generalization ability.  The poor 
performance of SVM may be due to the fact that SVM is used to 
solve support vectors by quadratic programming, which is difficult 
to implement for large-scale training samples The reason why BP 
neural network does not perform well may be: it is highly 
dependent on samples, because of the complexity of the soil, there 
may be contradictory samples and redundant samples in the sample 
set, so it is difficult for BP neural network to achieve the expected 
performance. 

 

Table 7  Evaluation results of different models 

Parameters R2 RMSE MAPE 

Adaboost 0.74 77.71 41.22 

LightGBR 0.70 73.86 35.00 

SVM 0.49 72.06 41.90 

BP Nerve Network 0.58 77.25 39.22 

Random Forest 0.65 85.80 43.75 

ExtraTrees 0.77 74.72 39.58 
 

A total of 17 parameters are used as the input of the model.  
For the best-performing ExtraTrees model, the weight diagram of 

the influence model of each input is drawn, as shown in Figure 9.  
The top 4 weight rankings are Moment of inertia 135°, ECa, 
Moment of inertia 90°, and Entropy 90°.  And the importance of 
the following features is observed in descending order of Moment 
of inertia, ECa, Entropy, Correlation, and Energy.  This is similar 
to the result shown in Figure 8, indicating that if high accuracy is 
not required, the only moment of inertia, ECa, and entropy can be 
used as input. 

 
Figure 9  Physical clay content prediction model influence weight 

 

3.4  Performance comparison and limitation 
The soil texture prediction performance of this research was 

compared with the results of other scholars. 
From the results of texture classification, the overall accuracy 

of the ExtraTrees model is 82.14% (46/56).  The results of this 
study are better than the results of Demattê et al.[33] using satellite 
images to classify soil texture.  Their accuracy rates for clay loam 
and sandy loam are 60.6% and 56.6%.  It is also higher than the 
texture classification performed by Vibhute et al.[34] using 
hyperspectral remote sensing data (overall accuracy 71.18%).  
Higher than Taghizadeh-Mehrjardi et al.[35] and Dharumarajan et 
al.[36] using Digital Soil Mapping (DSM) to classify soil texture, the 
former has an overall accuracy rate of 67.5%, while the latter has 
an overall accuracy of 50%-65% in estimating six standard soil 
depth intervals.  But it is usually lower than the results of texture 
prediction using ex-situ information (such as soil images that have 
been sieved and air-dried).  For example, in the study of Barman 
et al.[37], the average accuracy is 91.37%. 

From the results of texture particle composition, ExtraTrees 
model R2 is 0.77, RSEM is 74.72.  This study produced a better 
soil texture prediction effect than Aitkenhead et al.[38] (using 
Digital RGB photography and visible-range spectroscopy to predict 
soil texture, the R2 of sand, silt, and clay are 0.27, 0.25, and 0.18, 
respectively).  Qi et al.[39] used the microscope-based sensor to 
predict the soil texture.  The R2 of indoor measured and on-site 
wet image predictions for sand, silt, and clay are 0.78, 0.67, and 
0.52, respectively.  This research is superior to this method 
because of its time advantage and the ability to use in-situ 
information to measure large-scale data sets.  The RMSE of the 
optimal model in this study is 74.72, which is inferior to the results 
of Sudarsan et al.[40].  Their study uses microscope images to 
study texture.  The R2 of the fine fractions (clay+silt) measured in 
the laboratory is 0.88, and the RMSE is 44.7, but slightly better 
than the results observed by Sudarsan et al.[41] using microscope 
computer vision technology (RMSE is 84.7).  The results of this 
study are generally lower than those using spectroscopy techniques.  
For example, Benedet et al.[42] used pXRF to best predict the 
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content of sand, silt, and clay, with R2 as high as 0.91, 0.81, and 
0.83, respectively; Wang et al.[43] used Fourier transform 
near-infrared spectrometer and pXRF to study two data fusion 
methods to predict soil texture.  The prediction accuracy R2 of 
sand and clay content is 0.85 and 0.93, respectively.  However, 
the advantage of this study is that the input of the detection system 
model is all in-situ information, and there is no need for 
pretreatment of soil samples such as grinding and sieving in the 
laboratory. 

Soil moisture content is one of the main challenges of 
image-based near-end soil sensing.  Because of the higher 
water-holding capacity of clay, image distortion may occur in soils 
with high clay content[44], and soil moisture content also affects 
ECa[45], it is necessary to conduct further research to measure the 
impact of moisture content on the performance of the detection 
system.  At the same time, the lack of sufficient samples of other 
texture types limits the scope and performance of the test model to 
a certain extent.  The next step should be to develop a detection 
system for more texture types to apply to all texture prediction 
models. 

4  Conclusions 

This study introduced a self-developed vehicle-mounted in-situ 
soil texture detection system and explores its optimal texture 
classification model and optimal soil texture particle composition 
prediction model.  The detection system is mainly composed of 
soil electrical conductivity (ECa) sensors, cameras, auxiliary 
mechanical structures, and electronic systems.  After the camera 
takes the image of the soil surface, the texture feature was extracted, 
the ECa was used as an input to the embedded model of the 
detection system, and finally, the predicted soil texture 
classification and particle composition are obtained.  Data 
collection was carried out using the detection system in three test 
plots, and the best model research was carried out using the 
collected data. conclusion as below: 

1) For soil texture classification, ExtraTrees performed best, 
with Precision, Recall, and F1 all being 0.82.  In the drawn model 
influence weight map, the following feature importance is observed 
in descending order of ECa, Moment of inertia, Entropy, 
Correlation, and Energy. 

2) For the prediction of soil particle content, the R2 of 
ExtraTrees was 0.77, and RMSE and MAPE were 74.72 and 39.58, 
respectively.  Approximately, the following feature importance is 
observed in the drawn model influence weight graph in descending 
order of Moment of inertia, ECa, Entropy, Correlation, and Energy.  
In general, ECa, Moment of inertia, and Entropy are the main 
contributors to predicting texture. 

3) It is necessary to conduct more experiments to study the 
influence of soil moisture on the prediction performance of the 
model, and to study more texture types to expand the database for 
predicting soil texture models. 
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