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Abstract: The radiative transfer model, PROSPECT, has been widely applied for retrieving leaf biochemical traits.  However, 

little work has been conducted to evaluate the stability of the PROSPECT model with consideration of multiple factors (i.e., 

spectral resolution, signal-to-noise ratio, plant growth stages, and treatments).  This study aims to investigate the stability of 

the PROSPECT model for retrieving leaf chlorophyll (Chl) content (Cab).  Leaf hemispherical reflectance and transmittance of 

oilseed rape were acquired at different spectral resolutions, noise levels, growth stages, and nitrogen treatments.  The Chl 

content was also measured destructively by using a microplate spectrophotometer.  The performance of the PROSPECT model 

was compared with a commonly used random forest (RF) model.  The results showed that the prediction accuracy of 

PROSPECT and RF models for Cab did not produce significant differences under varied spectral resolutions ranging from 1 to 

20 nm.  The ranges of the relative root mean square errors (rRMSE) of the PROSPECT and RF models were 12%-13% and 

11.70%-12.86%, respectively.  However, the performance of both models for leaf Chl retrieval was strongly influenced by the 

noise level with the rRMSE of 13-15.37% and 12.04%-15.80% for PROSPECT and RF, respectively.  For different growth 

stages, the PROSPECT model had similar prediction accuracies (rRMSE = 9.26%-12.41%) to the RF model (rRMSE = 

9.17%-12.70%).  Furthermore, the superiority of the PROSPECT model (rRMSE = 10.10%-12.82%) over the RF model 

(rRMSE = 11.81%-15.47%) was prominently observed when tested with plants growth at different nitrogen treatment levels.  

The results demonstrated that the PROSPECT model has a more stable performance than the RF model for all datasets in this 

study. 
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1  Introduction

 

The photosynthetic capacity of crops is often used as an 

essential indicator to evaluate the potential crop yield[1,2].  

Chlorophyll (Chl) is one of the primary biochemical traits related to 

the process of photosynthesis[3].  Thus, accurate measurement of 

leaf Chl content (Cab) is critical for monitoring crop growth and 

health status in precision agriculture and crop breeding[4].  Since 

Chl mainly absorbs red and blue-violet light in the visible spectrum 

(VIS, 400-750 nm), it shows troughs in the reflectance curve of the 
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red and blue-violet light regions which makes possible the retrieval 

of Cab from the spectrum of the leaf[5].  Some researchers have 

developed various non-destructive methods to estimate Cab from 

leaf reflectance or transmittance properties, including 

physically-based and empirically-based methods[6].  Compared 

with empirical methods, the physically-based methods evolved 

from radiative transfer models (RTMs) are versatile in predicting 

leaf biochemical components[7].  PROSPECT, one of the most 

popular RTMs, has been widely used to retrieve Cab and is based 

on rigorous physical and mathematical theories[8,9].  The refractive 

index and the maximum incident angle of the leaf in the 

PROSPECT model are applied to establish the relationship 

between leaf biochemical traits (Chl content, dry matter content, 

equivalent water content, carotenoid content) and leaf surface 

reflectance and transmittance[10,11].  The PROSPECT model has 

also been significantly improved and applied to leaf biochemical 

component retrieval for numerous plant species[6,7,12,13].  Li et 

al.[12] optimized this model by coupling the PROSPECT model 

with the continuous wavelet transform (CWT) to suppress the 

surface reflectance effect and improve the accuracy of chemical 

composition retrieval.  Additionally, this model has also been 

used to quantify the carotenoid, dry matter, and anthocyanins[14-16].  

In view of the difficulty of accurately and non-destructively 

estimating the leaf protein and nitrogen content in a timely manner, 

researchers have further proposed the assessment of protein and 
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lignin content of fresh and dry leaves based on the PROSPECT 

model[17-19].  Further, several studies have empirically correlated 

the Cab with spectral features using machine learning algorithms, 

such as random forest (RF), partial least squares (PLS), support 

vector machine (SVM) and their feasibility and accuracy have also 

been demonstrated[20-27].  Spectral indices (e.g., vegetation indices 

(VI), and normalized difference vegetation indices (NDVI)) and 

derivative spectra were found to be the most preferable features for 

the estimation of the Cab of various crops[3,25,28-33].  Most of the 

aforementioned, empirically based methods are only used for 

estimating Cab at a single growth stage, and their performance is 

highly influenced by the spectral resolutions and signal-to-noise 

ratio (SNR) of the sensors.  Unlike machine learning algorithms, 

which require retraining for each plant type or growing conditions, 

the PROSPECT model has shown superior performance in 

estimating Cab and can be used to fit experimental data of a wide 

range of plant types.  The stability of these models in different 

growth stages or using datasets with varying spectral resolutions 

has not been investigated.  Therefore, the RF model, a typical 

empirically based model, was chosen as an example to evaluate the 

stability of the PROSPECT model by comparison. 

Generally, the quality of spectral data could be easily affected 

by environmental factors as well as sensor performance.  At the 

same time, the inversion of the PROSPECT model is sensitive to 

the noise level of the dependent variable (e.g., reflectance).  

Therefore, it is worthwhile to investigate the performance of the 

PROSPECT model to retrieve Cab with the reflectance at different 

spectral resolutions and noises levels acquired at different crop 

growth stages.  

This study aims to investigate the performance of the 

PROSPECT model for estimating Cab of oilseed rape leaves under 

different growing conditions and to compare its performance with 

the RF model.  Varied spectral resolutions were used and noise 

was added to the dataset to simulate real-world problems and to 

ensure that the model can generalize well for the dataset collected 

using different sensors under varied environmental conditions.  

The performance of both models under varied growth stages and 

nitrogen treatment levels was also explored in this study in order to 

comprehensively evaluate the stability of the PROSPECT model. 

2  Materials and methods 

2.1  Experimental design  

Two-year oilseed rape experiments were conducted in 

2017/2018 and 2018/2019 during the winter seasons at the 

Agricultural Research Station of Zhejiang University, Hangzhou, 

China (30°18′26′′N, 120°4′29′′E).  In the two experiments, the 

oilseed rape of cultivar “ZD630” was first sown in the prepared 

seedbeds using high fertility soil in mid-October, and the seedlings 

at the three-leaf stage were transplanted to plastic pots with a 

volume of 3 L.  During the first experiment, three nitrogen (N) 

levels, including a control treatment (no added nitrogen: N0), 

311.74 g/pot (N1) and 623.48 g/pot (N2) were used to obtain 

various leaf Cab content samples.  In the second experiment, three 

nitrogen levels, including a control treatment (no added nitrogen: 

(N0), 311.74 g/pot (N1), and 623.48 g/pot (N2) were also applied.  

For two experiments, the nitrogen was applied in three batches.  

The first batch was a basal fertilizer (50%), which was added into 

the soil before transplanting, the second batch (30%) was added at 

the seeding stage, and the third (20%) at the bolting stage.  The 

fertilizer was applied in the form of urea (CH4N2O).  Calcium 

magnesium phosphate (P2O5 = 478.13 g/pot) and potassium chloride 

(K2O = 239.06 g/pot) were added as supplementary nutrients. 

2.2  Data collection and processing 

2.2.1  Measurement of hemispherical reflectance and transmittance  

The hemispherical reflectance (R) and transmittance (T) were 

measured using an ASD FieldSpec4 Hi-Res Spectroradiometer 

(Analytical Spectral Devices, Boulder, CO, USA), with a spectral 

range of 350-2500 nm, equipped with an RTS-3ZC integrating 

sphere (Analytical Spectral Devices, Boulder, CO, USA).  The 

sampling interval of this spectrometer is 1.4 nm at 350-1000 nm 

and 1.1 nm at 1000-2500 nm with a spectral resolution of 3 nm in 

the visible and near infrared (VIS-NIR) spectrum and 8 nm in the 

shortwave-infrared (SWIR) spectrum.  The white plug 

(polytetrafluoroethylene) and light trap (metal coated with black 

paint) with a reflectivity of about 99% and 0, respectively, and 10 

W collimated ASD CL-10 halogen light source were assembled in 

this integrating sphere.  The measurement principle of 

hemispherical reflectance and transmittance is shown in Figure 1.  

The radiance of the sample was measured immediately after dark 

current and white plug radiance acquisition.  The hemispherical 

reflectance and transmittance of the leaf were determined using 

Equation (1) and Equation (2).  R and T of each sample were 

averaged with three repeated measurements.  In this study, 240 

and 316 leaf samples were collected in 2017/2018 and 2018/2019, 

respectively. 
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where, Rs is the hemispherical reflectance of the leaf; Is1 is the 

reflected radiance of the leaf; Id1 is the radiance of the light trap; Ir1 

is the radiance of the white plug, and Rr is the reflectance of the 

white plug (99%).  
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where, Ts is the hemispherical transmittance of the leaf; Is2 is the 

transmitted radiance of the leaf; Id2 is the radiance of the light trap; 

Ir2 is the radiance of the white plug and Rr is the reflectance of the 

white plug (99%). 

 
a. Reflectance measurement                              

 
b. Transmittance measurement 

Figure 1  The experimental setup for directional-hemispherical 

reflectance (a) and transmittance (b) measurements of leaf samples 
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Generally, the R and T at the spectral region of 400-2500 nm 

were used to retrieve various leaf biochemical traits[34].  Since this 

study aims to quantify the leaf Cab, the spectral range of 400-  

1000 nm was taken into account[35].  Public dataset (ANGER 2003) 

was used to prove our claim of considering this spectral region for 

the leaf Cab estimate.  First, the resolution of raw spectrum was 

reduced by binning (3 nm, 5 nm, 10 nm, 15 nm and 20 nm), which 

is a common method for changing spectral resolutions in order to 

study the effect on both models[36].  Then, by adding varied 

proportions of Gaussian white noise (1%, 2%, 3%, 5%, and 10%) 

into the raw spectrum, a stability evaluation of the noise addition 

on the two models was also carried out (Figure 2).  Finally, 

datasets of varied growth stages and nitrogen treatment levels were 

also considered for the stability assessment of the two models. 

 
a. Varied spectral resolutions             

 
b. Varied noise ratios 

Figure 2  Spectral curve under varied spectral resolutions and 

varied noise ratios. 
 

2.2.2  Measurement of leaf Cab 

After measurements of hemispherical reflectance and 

transmittance, each fresh leaf sample was cut into 12 round disks of 

a diameter of 0.85 cm with three replicates.  Four round disks 

were then put into 9 mL of ethanol solution (95%, v/v) for more 

than 24 hours for Chl extraction[37].  The absorbance of Chl at 

specific wavelengths (A649 and A665) was measured with a 

microplate spectrophotometer (Epoch 2, BioTek Instruments, 

Winooski, VT, United States).  The leaf Cab was calculated 

according to the following formulas[38]: 

Chla = 13.95×A665 – 6.88×A649             (3) 

Chlb = 24.96×A649 – 7.32×A665             (4) 

Chl(a+b) = Chla + Chlb                 (5) 

The content (μg/cm2) of Chla and Chlb was derived from the 

following equation: 

( )ab a b

V
C Chl Chl

S
                  (6) 

where, V is the volume of the ethanol solution and S is the area of 

the round disks per leaf sample, Cab is leaf Chl content. 

Datasets under varied growth stages and nitrogen treatment 

levels were collected in order to obtain a wide range of leaf Cab.  

One-way Analysis of Variance (one-way ANOVA) was then used 

to test all measured samples to evaluate the effectiveness of 

nitrogen treatment levels (N0, N1, and N2) on leaf Cab.  The 

effectiveness of nitrogen treatment was considered significant at  

p < 0.05.  Before one-way ANOVA, the measured leaf Cab value 

was examined by the Shapino-Wilk normality test method to 

confirm to Gaussian distribution.  Multiple comparisons and the 

Tukey method were selected to correct error after passing the 

normal distribution test.  GraphPad Prism 8 (GraphPad Software, 

Inc., San Diego, CA, USA) was used for the statistical analysis, 

and PROSPECT and RF models were performed with MATLAB 

2018 (MathWorks, Inc., Natick, Ma, USA). 

2.3  Models description 

2.3.1  PROSPECT model 

The PROSPECT model describes the structural properties of 

the leaf in detail and establishes the relationship between the 

biochemical components of the leaf and the reflectance and 

transmittance of the leaf based on strict physical and optical 

assumptions[10,34,39].  The PROSPECT model was initially 

developed based on the plate model in which the leaf was assumed 

to be composed of homogeneous elementary layers with the same 

refractive index and absorption coefficient everywhere[40].  In fact, 

the interior of leaf is not uniform.  With continuous advancements 

of research in this field, the leaf internal structure was described as 

N homogeneous elementary layers and N-1 air layers which have a 

specific absorption coefficient and refractive index for each layer, 

thus forming the preliminary PROSPECT model that has gradually 

increasing in use[10].  The advantages of the PROSPECT model 

include its ability to provide accurate spectral estimates with 

limited input parameters.  In the PROSPECT model, the 

reflectance and transmittance that are calculated involve leaf Chl 

content (Cab, expressed in µg/cm2), leaf dry matter content (Cm, 

expressed in g/cm2), equivalent water content (Cw, expressed in 

g/cm2), carotenoid content (Cxc, expressed in µg/cm2), and structure 

parameters (Nj, number of layers).  Minimizing the difference 

between the measured spectrum and the modeled spectrum is key 

to optimizing the estimates of these input parameters.  A program 

could be used to minimize the fitting between the PROSPECT 

model predicted reflectance and transmittance (Rmod and Tmod) and 

the measured reflectance and transmittance (Rmeas and Tmeas), 

regardless of the value of the initial input parameters[9,39,41].  

Therefore, merit function J was defined to describe the difference 

between the predicted reflectance and transmittance and the 

measured reflectance and transmittance at each wavelength:  

2
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where k(λ) is the total absorption coefficient of all biochemical 

components at the wavelength λ; Kspe,i(λ) is the absorption 

coefficient of biochemical component I; Rmod and Tmod are the 

predicted reflectance and transmittance; Rmeas and Tmeas are the 

measured reflectance and transmittance; Ci,j is the content of 

biochemical component i in leaf j; Nj is the structure parameter of 

leaf j; n is the number of biochemical components, and p represents 

the number of wavelength intervals between 400 and 1000 nm.  As 

the most popular version, the PROSPECT-5 model was selected to 

evaluate stability for leaf Cab retrieval in this study. 

2.3.2  Random forest model 

The RF model is a common supervised machine-learning 
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model used for regression and classification analysis[42,43].  It is 

characterized by the use of a resampling technique to randomly 

extract samples from the original training dataset to generate a new 

training set[44].  The regression trees were established with 

randomly selected samples and the predicted results were obtained 

by voting.  Finally, the result of each regression tree was 

integrated and generated simultaneously to complete the final 

prediction.  The RF model has been widely used to predict Chl 

fluorescence, biomass, leaf area index (LAI), and leaf Cab in the 

literature[45-50].  Therefore, the RF model was selected as a typical 

empirical model to predict leaf Cab.  The dataset was divided into 

the training dataset (70%) and the test dataset (30%) for the 

establishment of the RF regression model.  The training dataset 

and the test dataset were selected by a systematic sampling method 

in this study, which was easy to operate and can avoid random 

errors. 

2.4  Models evaluation 

In order to evaluate the performance and predictive ability of 

the PROSPECT and RF models, the prediction accuracy of the two 

models was tested.  The coefficient of determination (r2), root 

mean square error (RMSE), and relative root mean square error 

(rRMSE) were employed to estimate the performance of each 

model.  The determination coefficient indicates the fitting of the 

predicted values and measured values.  The RMSE quantizes the 

deviation between the predicted values and the measured values.  

Correspondingly, the rRMSE is obtained by taking the RMSE 

divided by the mean value of all samples.  The smaller the rRMSE, 

the better the performance of the model.  The calculation of these 

three performance evaluation indicators is as follows: 
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where, ŷ  is the predicted leaf Cab value calculated by the 

prediction models; yi is the measured leaf Cab value; y  is the 

average value of all measured leaf Cab, and n is number of samples 

measured in this study. 

3  Results  

3.1  Wavelength selection and validation 

The accuracies of leaf Chl retrieval using public dataset 

ANGER 2003 (OPTICLEAF-database (ipgp.fr)) at two different 

spectral regions are shown in Figure 3.  It is obvious that using the 

small spectral region (400-1000 nm) can provide the same accuracy 

as full spectral regions (400-2500 nm).  To reduce the 

computational complexity and eliminate unnecessary information, 

the spectral range of 400-1000 nm was considered for subsequent 

analysis and verified by PROSPECT model. 

3.2  Distribution of leaf Cab 

According to the results of leaf Cab distribution which are 

shown in Figure 4, it can be demonstrated that with an increase in 

nitrogen treatment levels, average leaf Cab increased proportionally.  

The average leaf Cab increased at the beginning and then decreased 

as growth stages continued.  This is because four-leaf growth 

 
a. 400-1000 nm                   b. 400-2500 nm 

Figure 3  Results of leaf Cab retrieval using ANGER 2003 dataset. 

Leaf Cab retrieval result at 400-1000 nm (a); leaf Cab retrieval result 

at 400-2500 nm (b). 
 

stage fertilizer was applied after the first measurement and before 

the second measurement.  Therefore, leaf Cab decreased 

synchronously as growth stages lasted and fertilizer decreased in 

the soil, so that leaf Cab increased at the beginning of the four-leaf 

growth stage.  These findings hold important potential for 

regulating crop growth and field management. 

The results of a one-way ANOVA analysis under varied 

nitrogen treatment levels and growth stages are shown in Figure 5.  

With increases in growth stages, significant differences among 

varied nitrogen treatment levels become more apparent, especially 

for N0 and N2.  These results indicated that varied nitrogen 

treatment levels showed an obvious difference in leaf Cab and 

confirmed that nitrogen treatments were effective in this 

experiment. 

3.3  Effects of spectral resolutions on model stability  

Leaf Cab retrieval results of different spectral resolutions are 

summarized in Figure 6.  The results showed that the PROSPECT 

model was more stable compared to the RF model, with an r2 range 

of 0.55-0.56.  In contrast, the RF model obtained a larger variation 

in outcomes when the spectral resolution was changed and r2 

ranged between 0.37 and 0.68, indicating that there was weak 

linear relationship between the predicted and measured values for 

the RF model.  The variation in the rRMSE was relatively small 

for the PROSPECT model (12%-13%) and the RF model 

(11.69%-12.86%), which confirmed the robustness of both models 

for the retrieval of leaf Cab from leaf R and T with varied spectral 

resolutions.  With decreases of the spectral resolution, the 

prediction errors of PROSPECT and RF models showed minor 

changes.  These findings indicated that the performance of both 

models was not sensitive to varied spectral resolutions. 

3.4  Effects of noise addition on model stability  

The performance of the PROSPECT and RF models was also 

compared under the effects of different noise ratios.  The results 

(Figure 7) showed that the prediction accuracy of the two models 

decreased significantly with the increase of noise ratio.  For the 

PROSPECT model, the rRMSE increased from 13.00% to 15.37%, 

and the rRMSE of the RF model increased from 12.04% to 15.80%, 

as shown in Figure 7.  It can be concluded that both models were 

severely affected by noise interference, while the PROSPECT 

model was less affected than the RF model.  According to the 

linear correlation analyses between the predicted and measured 

values which were presented in Figure 7, the r2 obtained from the 

PROSPECT model (r2
 = 0.46-0.56) was relatively more consistent 

than the RF model (r2
 = 0.68-0.01).  A stronger linear relationship 

between the predicted and the measured values was found in the 

PROSPECT model under varied noise addition. 

http://opticleaf.ipgp.fr/index.php?page=database


September, 2021          Zhai L, et al.  Stability evaluation of the PROSPECT model for leaf chlorophyll content retrieval            Vol. 14 No. 5   193 

 

 
a. N0 b. N1 c. N2 

 
d. Three-leaf growth stage e. Four-leaf growth stage f. Five-leaf growth stage 

 

Figure 4  Distribution of leaf Cab at different nitrogen treatment levels: N0 (a), N1 (b) and N2 (c).  Distribution of leaf Cab under varied 

growth stages: three-leaf growth stage (d), four-leaf growth stage (e) and five-leaf growth stage (f). 

 
a. Three-leaf b. Four-leaf c. Five-leaf 

 

Figure 5  Significant difference analysis of leaf Cab under three nitrogen treatment levels at three growth stages: three-leaf growth stage (a); 

four-leaf growth stage (b) and five-leaf growth stage (c).  Significance: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
 

 
a. PROSPECT (1 nm) b. RF (1 nm) c. PROSPECT (3 nm) d. RF (3 nm) 

 
e. PROSPECT (5 nm) f. RF (5 nm) g. PROSPECT (10 nm) h. RF (10 nm) 
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i. PROSPECT (15 nm) j. RF (15 nm) k. PROSPECT (20 nm) l. RF (20 nm) 

 

Figure 6  Results of leaf Cab using the PROSPECT (a, c, e, g, i, k) and RF (b, d, f, h, j, l) models from leaf reflectance and transmittance 

with varied spectral resolutions: 1 nm (a, b), 3 nm (c, d), 5 nm(e, f), 10 nm (g, h), 15 nm (i, j) and 20 nm (k, l). 

 
a. PROSPECT (0%) b. RF (0%) c. PROSPECT (1%) d. RF (1%) 

 
e. PROSPECT (2%) f. RF (2%) g. PROSPECT (3%) h. RF (3%) 

 
i. PROSPECT (5%) j. RF (5%) k. PROSPECT (10%) l. RF (10%) 

 

Figure 7  Results of leaf Cab retrieval using the PROSPECT (a, c, e, g, i, k) and RF (b, d, f, h, j, l) models with different noise ratios: no 

noise (a, b); 1% noise addition (c, d); 2% noise ratio (e, f); 3% noise ratio (g, h); 5% noise addition (i, j) and 10% noise ratio (k, l). 
 

3.5  Effects of varied growth stages on model stability 

Based on the results of one-way ANOVA analysis, it was 

confirmed that different growth stages and nitrogen treatment 

levels showed significant differences on leaf Cab.  The effects of 

these two factors on the PROSPECT and the RF models were 

explored to evaluate the prediction accuracy of leaf Cab. 

As for varied growth stages, the results showed that the 

PROSPECT (rRMSE = 9.26%, Figure 8a) and the RF (rRMSE = 

9.17%, Figure 8d) models exhibited the best performance at the 

three-leaf growth stage.  The prediction accuracies of the 

PROSPECT (rRMSE = 12.41%, Figure 8b) and RF (rRMSE = 

12.70%, Figure 8e) models at the four-leaf growth stage were 

similar.  At the five-leaf growth stage, no significant differences 

of prediction accuracy existed between the PROSPECT    

(rRMSE = 12.34%, Figure 8c) and RF (rRMSE = 10.04%, Figure 8f) 

models. 
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3.6  Effects of nitrogen treatment levels on model stability 

As shown in Figure 9, the prediction accuracy of the PROSPECT 

and RF models showed different patterns under three nitrogen 

treatment levels.  The performance of the PROSPECT (rRMSE = 

11.34%, Figure 9a) and RF (rRMSE = 11.81%, Figure 9d) models 

was similar at N0.  As for N1 and N2, the PROSPECT model (N1: 

rRMSE = 10.10%, Figure 9b; N2: rRMSE = 12.82%, Figure 9c) 

had better performance than the RF model (N1:  rRMSE = 12.78%, 

Figure 9e; N2: rRMSE = 15.47%, Figure 9f).  The PROSPECT 

model had higher prediction accuracy and stability under three 

nitrogen treatment levels, while there was a larger variation in the 

prediction accuracy of the RF model.  In particular, the prediction 

accuracy for N2 was very low.  All the above results showed that 

the performance of both models was affected by varied nitrogen 

treatment levels, but the degree of impact for them was different.  

The prediction capability of the PROSPECT model under different 

nitrogen treatment levels was more consistent indicating a robust 

prediction capability compared to the RF model. 

 
a. PROSPECT (three-leaf) b. PROSPECT (four-leaf) c. PROSPECT (five-leaf) 

 
d. RF (three-leaf) e. RF (four-leaf) f. RF (five-leaf) 

 

Figure 8  Results of leaf Cab retrieval using the PROSPECT (a, b, c) and RF (d, e, f) models at varied growth stages:  

three-leaf growth stage (a, d); four-leaf growth stage (b, e) and five-leaf growth stage (c, f). 
 

 
a. PROSPECT (N0) b. PROSPECT (N1) c. PROSPECT (N2) 

 
d. RF (N0) e. RF (N1) f. RF (N2) 

 

Figure 9  Results of Cab retrieval using the PROSPECT (a, b, c) and RF (d, e, f) models at varied nitrogen treatment levels:  

N0 (a, d); N1 (b, e) and N2 (c, f). 
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4  Discussion 

This study evaluates the stability of PROSPECT and RF 

models for leaf Cab estimation of oilseed rape grown in a two-year 

experiment.  It also confirmed the advantages of the PROSPECT 

model for leaf Cab retrieval with complex data sources.  Leaf Cab 

is an essential pigment for monitoring the growth and health status 

of a plant.  In field management, different growth stages and 

fertilizer treatments can affect leaf Cab as well.  According to the 

results of leaf Cab distribution which are shown in Figure 4, it can 

be demonstrated that with an increase in nitrogen treatment levels, 

average leaf Cab increased proportionally.  The average leaf Cab 

increased at the beginning and then decreased as growth stages 

continued.  This is because four-leaf growth stage fertilizer was 

applied after the first measurement and before the second 

measurement.  Therefore, leaf Cab decreased synchronously as 

growth stages lasted and fertilizer decreased in the soil, so that leaf 

Cab increased at the beginning of the four-leaf growth stage.  

These findings hold important potential for regulating crop growth 

and field management.  Although there are some empirical 

methods related to Cab retrieval, the empirical models still show 

some disadvantages, e.g., poor transferability, the need for large 

sample inputs, and difficulty of interpretation.  With the 

development of physically-based models, the PROSPECT model 

has become a popular means of leaf biochemical component 

retrieval.  

This study focused mainly on the stability evaluation of the 

PROSPECT model for leaf Cab retrieval of oilseed rape.  With the 

rapid development of optical technology in the field of plant 

phenotypes, hyperspectral technology plays an important role in 

modern farmland management.  Various hyperspectral devices 

with different spectral resolutions obtain plant spectral signals for 

further analysis of the growth status of crops.  Differences in 

spectral resolution are one of the most important factors affecting 

the quality of the raw spectrum data.  Thus, this article first 

evaluates the stability of the PROSPECT model under varied 

spectral resolutions.  As the results showed in Figure 6, sensors 

with lower spectral resolution can also be developed for the retrieval 

of leaf Cab and field management.  The potential of reducing 

spectral resolution to retrieve oilseed rape leaf Cab for both models 

was confirmed, which affirmed the feasibility of lower spectral 

resolution sensors to retrieve leaf Cab and provide a cost-effective 

method for future field management.  As for noise addition, both 

models showed an increased tendency in prediction error, which 

suggested that noise addition had a great impact on the stability of 

both models (Figure 7).  In view of this, more attention should be 

given to minimizing the impact of noise in experiments.  In 

addition, it was demonstrated that the PROSPECT and RF models 

showed similar estimation accuracy in varied growth stages (Figure 

8).  In addition, for varied nitrogen treatment levels, the 

PROSPECT model showed more stable performance than the RF 

model (Figure 9).  According to the distribution of leaf Cab shown 

in Figure 4 and the inversion results in Figure 8 and figure 9, it can 

be seen that the PROSPECT model has stable performance for both 

discrete data points and concentrated data points.  However, for 

the RF model, the prediction accuracy of concentrated data points 

was better than that of discrete data points.  This allows a 

significant reduction of the field management sensors and 

equipment cost when compared with high spectral resolution 

multispectral sensors.  In addition, devices with high 

signal-to-noise ratio must be a priority, which can help ensure the 

quality of the datasets.  For varied growth stages and different soil 

nutrient conditions, the advantages of the PROSPECT model will 

be more obvious.  With reference to these findings, it is possible 

to find a more suitable leaf biochemical components prediction 

method after analyzing the composition of the acquired datasets.  

Investigating the stability of two representative models provides 

support for researchers to select appropriate models for leaf Cab 

retrieval and inspires new ideas for the development of portable field 

sensors. 

An advantage of this study is that the stability of the 

PROSPECT model was evaluated using two-year experiments 

compared with the RF model under multiple factors such as varied 

spectral resolutions, noise addition, growth stages, and nitrogen 

treatment levels.  These results reveal that it not only contributes 

well to the selection, application and development of phenotypic 

sensors in oilseed rape, but also is in support of the selection of leaf 

biochemical components prediction methods.  Overall, the 

stability assessment of leaf biochemical components prediction 

models with consideration for multiple scenarios is promising and 

necessary for plant phenotypic research.  However, the dataset 

used in this study was still limited, and more oilseed rape cultivars 

and crops should be considered in future studies to examine the 

applicability and robustness of the results in this research.  Several 

versions of the PROSPECT model and various empirical models 

have been developed so far[12,16,39,51,52].  This article only took  

two representative models as examples, but it is a potential idea  

in future crop science research to carry out stability analyses of 

more prediction models.  The estimation of biochemical 

components at leaf scale was taken into account in this article, and 

larger scales (canopy scale or ecosystem scale) estimation 

applications should also be considered to meet the requirements of 

smart agriculture. 

5  Conclusions 

In this study, stability of the PROSPECT model was assessed 

in order to estimate leaf Cab of oilseed rape.  The results 

demonstrated that the prediction accuracy of the PROSPECT and 

RF models for leaf Cab retrieval was not highly influenced by 

reducing the spectral resolution.  However, when random noise 

was added into the raw spectrum, the prediction accuracy of both 

models decreased significantly, especially for the RF model.  This 

finding showed that the PROSPECT model had slightly higher 

stability against noise compared to the RF model.  For varied 

growth stages and nitrogen treatment levels, the PROSPECT model 

also showed more robust prediction capability.  All these findings 

showed that the PROSPECT model can be of potentially significant 

value when dealing with low spectral resolution, varied growth 

stages, different nitrogen treatment levels, and a small number of 

samples.  It can be concluded that the PROSPECT model could be 

adopted universally in the prediction of the biochemical content of 

plants due to its great advantages in dealing with data collected by 

sensors with varied internal specification, and they also provide 

reference for further improvements and the promotion of 

biochemical component retrieval models.  
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