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Abstract: Soybean and maize are important raw materials for the production of food and livestock feed.  Accurate mapping of 

these two crops is of great significance to crop management, yield estimation, and crop-damage control.  In this study, two 

towns in Guoyang County, Anhui Province, China, were selected as the study area, and Sentinel-2 images were adopted to map 

the distributions of both crops in the 2019 growing season.  The data obtained on August 18 (early pod-setting stage of 

soybean) was determined to be the most applicable to soybean and maize mapping by means of the Jeffries–Matusita (JM) 

distance.  Subsequently, three machine-learning algorithms, i.e., random forest (RF), support vector machine (SVM) and 

back-propagation neural network (BPNN) were employed and their respective performance in crop identification was evaluated 

with the aid of 254 ground truth plots.  It appeared that RF with a Kappa of 0.83 was superior to the other two methods.  

Furthermore, twenty candidate features containing the reflectance of ten spectral bands (spatial resolution at 10 m or 20 m) and 

ten remote-sensing indices were input into the RF algorithm to conduct an important assessment.  Seven features were 

screened out and served as the optimum subset, the mapping results of which were assessed based on the ground truth derived 

from the unmanned aerial vehicle (UAV) images covering six ground samples.  The optimum feature-subset achieved 

high-accuracy crop mapping, with a reduction of data volume by 65% compared with the total twenty features, which also 

overrode the performance of ten spectral bands.  Therefore, feature-optimization had great potential in the identification of the 

two crops.  Generally, the findings of this study can provide a valuable reference for mapping soybean and maize in areas with 

a fragmented landscape of farmland and complex planting structure. 
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1  Introduction

 

Soybean (Glycine max L.) and maize (Zea mays L.) are two 

important food crops, which are extensively grown all over the 

world and attract considerable attention in global food production[1].  

As a high-yield crop with extremely high nutritional value, maize is 

known as the golden crop[2]; soybean is an important raw material 

of high protein food and feed[3], and both are of great significance 

to national food security.  China is one of the main producers of 

soybean and maize in the world.  In 2018, the cultivated area of 

maize in China reached 42159 khm2 (ranking first in the world), 

and the acreage of soybean reached 7974 khm2 (ranking fifth in the 

world) (http://www.fao.org/ faostat/en/#data).  Meanwhile, China 

has to import a large amount of soybean every year as the supply is 

less than demand[4].  Agricultural departments have continuously 

implemented policies to promote soybean production in recent 

years and strived to expand the acreage of soybean cultivation.  

Therefore, obtaining information on the spatial distributions of 
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soybean and maize in a timely and accurate manner is essential for 

the government to guide agricultural production and formulate 

agricultural policies[5].  Traditional methods of manual field 

investigation to estimate the acreage of soybean and maize usually 

consume lots of time, labor, and resources with low efficiency and 

strong subjectivity, and the results of the investigation also lack 

spatial distribution information[6].  Remote sensing has the 

potential of large-scale crop identification and mapping in the field 

of agriculture, providing a timely, efficient, low-cost and objective 

way to monitor large areas simultaneously[7].  

Mapping of soybean and maize by using remote-sensing data is 

primarily based on the unique signatures of both crops in terms of 

spectrum and crop phenology.  The majority of previous studies 

have explored the potential of spectral characteristics in identifying 

soybean and maize.  Utilizing single time-phase Landsat-8 OLI 

data, Wang et al.[8,9] found that RF had great advantages of accurate 

identification of soybean and maize, in addition, the importance of 

shortwave-infrared and near-infrared bands was highlighted.  

Furthermore, based on time-series Sentinel-2 images, the crucial 

role of short-wave infrared bands in the identification of soybean 

and maize was also confirmed in the work by Yin et al.[10].  

Red-edge range refers to the bands with central wavelength ranging 

from 670 nm to 780 nm, which is generally considered to be very 

effective in vegetation monitoring.  Sidike et al.[11] utilized 

WorldView-3 data to map the heterogeneous agricultural landscape 

and the red-edge band (705 nm-745 nm) was considered to be the 

most important feature that affected classification accuracy.  

Microwave remote sensing is sensitive to certain surface properties 

and works under all weather conditions, which can be used for crop 

http://www.fao.org/faostat/en/#data
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identification especially in the case of limited cloud-free optical 

images.  To obtain a reliable maize-cultivated area under the 

condition of smallholder farming with tremendous heterogeneity, 

Jin et al.[12] adopted microwave data (Sentinel-1 radar data) in 

addition to the image of traditional Sentinel-2 optical sensor and 

pointed out that the backscatter metrics could improve the 

identification accuracy of maize. 

Vegetation index (VI) also plays an important role in soybean 

and maize identification in addition to the reflectance of spectral 

bands.  Souza et al.[13] successfully mapped the distributions of 

soybean and maize in Paraná, Brazil by using VIs generated from 

Moderate Resolution Imaging Spectroradiometer (MODIS) data 

and found that the wide dynamic range vegetation index (WDRVI) 

and enhanced vegetation index (EVI) behaved better than 

normalized difference vegetation index (NDVI).  Silva et al.[14] 

proposed a new VI termed as perpendicular crop enhancement 

index (PCEI) with the support of time-series MODIS data and used 

it to participate in the construction of a decision-tree model to 

extract soybean cultivated area.  Huang et al.[6] evaluated the 

performance of different VIs derived from multi-temporal GF-1 

WFV data to map soybean and maize by using maximum 

likelihood, support vector machine (SVM), and random forest (RF) 

classifiers and the results showed that RF classifier combined with 

NDVI, normalized difference water index (NDWI), and WDRVI as 

the input had the best performance.  Considering the existence of 

the mixed-pixel effect, Li et al.[15] applied the linear spectral 

unmixing model to estimate the soybean-planting area in Lishu 

County, Northeast China based on TM data and the accuracy 

reached up to 92%. 

Crop phenology derived from multi-temporal images has great 

potential in crop identification, and crop phenology metrics can be 

generated from e.g., MODIS NDVI/EVI time-series data[16-18].  

Liu et al.[19] applied thirty-eight phenology metrics calculated from 

MCD43A4 product to map soybean and maize and noticed that the 

date-related metrics were the most important variables.  Chen et 

al.[20] concluded that under the condition of high spatial 

heterogeneity, eleven key phenological parameters derived from 

time-series MODIS-NDVI data could be used for crop mapping.  

However, it is difficult to guarantee the continuity of time-series 

data due to adverse factors such as cloud cover, which brings more 

challenges to phenological-metrics extraction.  To address this 

problem, some studies have combined spectral signatures with 

phenological metrics to identify soybean and maize.  To date, the 

combination of phenology-related and spectral metrics has been 

proved to be very effective to achieve satisfactory accuracy in 

soybean and maize mapping[21-23].  Furthermore, Zhong et al.[24] 

found that the introduction of the shortwave infrared band (MODIS 

band 6) could perfectly distinguish between soybean and maize 

which had similar phenological phases. 

Previous studies on the extraction of soybean and maize 

-growing areas mostly focused on the countries or regions with 

concentrated and continuous cropping and a high degree of 

industrialization, e.g., the United States, Brazil, and Northeast 

China[25-27].  It is obvious that some difficulties are still 

encountered in studies on soybean and maize mapping at the 

remote-sensing level, especially in areas with great challenges e.g., 

the Huang-Huai-Hai area, which is one of the main production 

areas of soybean and maize in China but has received little 

attention to date.  First and foremost, the high frequency of cloud 

cover arising from the changeable weather during the key growth 

stages of soybean and maize results in a significant reduction in 

available satellite images.  Second, the complexity of planting 

structure here brought by smallholder farming poses a huge 

challenge to the remote-sensing identification of the two crops.  

Moreover, the phonological similarity between soybean and maize 

also increases the difficulty of this task. 

Sentinel-2 data with relatively high resolution (up to 10 m) is 

expected to be more appropriate for crop mapping in areas with 

complex summer-crop planting structure compared with the data 

source with low resolution, e.g., MODIS (500 m and 250 m)[28].  

The working bands of the Sentinel-2 sensor with a higher temporal 

resolution (5-day revisit period), covering from visible to 

shortwave infrared spectral scope offer a richer band setting than 

the Landsat series of satellites.  Thus, it is extensively used to 

monitor global vegetation in view of the aforementioned 

advantages[29,30].  Anhui Province is situated in the main soybean 

and maize production areas of Huang-Huai-Hai area.  The study 

area with substantial maize and soybean cultivation in Anhui 

Province was selected in the present study to explore appropriate 

methods of soybean and maize mapping through remote-sensing 

technology.  

Accordingly, the specific objectives of this study were to: (1) 

determine the optimum time phase for soybean and maize 

identification based on multi-temporal Sentinel-2 data; (2) select 

the optimum classifier to extract soybean and maize-planting areas; 

(3) screen out the optimum feature-subset to identify the fields of 

soybean and maize. 

2  Materials 

2.1  Study area 

The acreage of soybean cultivation in Anhui Province has 

exceeded 600 khm2 and is second only to Heilongjiang Province 

and Inner Mongolia Autonomous Region, ranking third in China; 

the maize-planting area in the province reaches more than     

1130 khm2, ranking around the tenth in the country (data from 

China Rural Statistical Yearbook in 2019).  Bozhou, located in 

northern Anhui Province, is the traditional main producing area of 

maize and high-protein soybean in Huang-Huai-Hai area.  Its 

soybean-cultivated area always maintains the first place among all 

municipal administrative units in the province; the acreage of 

maize in the city ranks the third in the province (data from 2019 

Anhui Statistical Yearbook).  Guoyang as a county under the 

jurisdiction of Bozhou spans the spatial scope between 

33°27′N-33°47′N and 115°53′E-116°33′E.  Over the years, it has 

the largest soybean planting scale (more than 72 khm2/year) in the 

province.  Soybean and maize-cropped areas account for about 

54% and 37% of the total area of summer food crops in the county, 

respectively (data from 2019 Bozhou Statistical Yearbook).  The 

terrain here is dominated by plains with average elevation of 

26.5-33.5 m.  It has warm temperate semi-humid monsoon climate; 

the annual average temperature is about 15.1°C and the annual 

precipitation is about 851.6 mm.  Given the superior natural 

conditions, it is suitable for the growth of various summer crops, 

e.g., soybean, maize, sorghum, sweet potatoes, and various Chinese 

medicinal materials in the same season.  With Guohe river as the 

boundary, the northern part of the county is dominated by soybean, 

while maize is overwhelming in the southern area.  Two towns, 

Longshan and Qingtuan, as the typical soybean and 

maize-producing areas were selected as the study area in the 

present research (Figure 1).  The farmland landscape is 

fragmented due to small-holder farming and mixed-planting of 

different crops, with small patch size of cropland.  Generally, the 
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phenological stages of soybean and maize (http://data.cma.cn/) are 

similar to each other (Figure 2). 

 
Figure 1  Map of the study area 

 
Note: E, M, and L represent the early, middle, and last 10-day of a month, 

respectively. 

Figure 2  Phenological stages of soybean and maize in Bozhou 

City, Anhui Province 

2.2  Sentinel-2 data 

The Copernicus Sentinel-2 mission comprises a constellation 

of two polar-orbiting satellites: 2A and 2B, which were launched 

on June 23, 2015, and March 7, 2017, respectively.  Sentinel-2 is 

a high-resolution multispectral operational imaging mission for 

global land observation, each one carries a multispectral instrument 

(MSI) with a wide swath width (290 km) and high revisit capability 

(10 d at the equator with one satellite, and 5 d with two satellites 

under cloud-free conditions)[31].  A total of thirteen working bands 

are designed, covering the spectral range from visible to short-wave 

infrared, as well as three levels of spatial resolution (10 m, 20 m 

and 60 m) dedicated to identifying spatial details consistent with  

1 hm2 minimum mapping unit (Table 1)[32].  Moreover, among all 

multispectral sensors, Sentinel-2 MSI is the only one providing 

three spectral bands in the red-edge spectral scope, which is very 

effective for vegetation monitoring[33]. 

In this study, three Sentinel-2 images in good quality were 

available throughout the entire soybean and maize growing season 

in 2019 owing to the limitation of clear observation.  These 

images were provided by the ESA Copernicus Open Access Hub 

(https://scihub.copernicus.eu/) (Table 2). 

 

Table 1  Specifications of the multispectral instrument (MSI) 

mounted on Sentinel-2 satellite constellation 

Band 

number 
Band name 

Central 

wavelength/nm 

Band 

width/nm 

Spatial 

resolution/m 

1 Coastal 443 20 60 

2 Blue 490 65 10 

3 Green 560 35 10 

4 Red 665 30 10 

5 Vegetation Red Edge 705 15 20 

6 Vegetation Red Edge 740 15 20 

7 Vegetation Red Edge 783 20 20 

8 NIR 842 115 10 

8A Narrow-NIR 865 20 20 

9 Water Vapor 945 20 60 

10 SWIR-Cirrus 1375 30 60 

11 SWIR 1610 90 20 

12 SWIR 2190 180 20 
 

Table 2  Sentinel-2 data employed in the study 

Acquisition date 
Number of  

scenes 

Soybean growth  

stage 

Maize growth  

stage 

August 18, 2019 1 Early pod-setting Heading 

August 28, 2019 1 Middle pod-setting Heading 

September 7, 2019 1 Late pod-setting Heading 
 

2.3  Field survey and unmanned aerial vehicle imaging 

Six ground samples were set evenly in the study area (each was 

1 km×1 km in size), considering to minimize the proportion of the 

built-up area (Figure 3).  Images of the six ground samples were 

captured using DJI-Phantom4 Pro during September 7-9, 2019.  A 

high-resolution digital camera with a field of view of 84° and a 

1-inch 20-megapixel CMOS sensor was mounted onto the 

unmanned aerial vehicle (UAV) to acquire RGB images in JPEG 

format.  All flight missions were implemented at 200 m altitudes 

with a forward overlap of 80% and a side overlap of 80% under 

favorable weather conditions in these 3 days; the spatial resolution 

of the image was about 6 cm.  To obtain high spatial-positioning 

accuracy of UAV images, four image control points originated 

from clearly discernible ground features were deployed in each 

ground sample, and the geographic coordinates (longitude and 

latitude) of each control point were measured by Real-Time 

Kinematic (RTK) (CHCNAV i70, China). 

 
Figure 3  Spatial distribution of the six ground samples with labels 

 

Field survey was conducted simultaneously when the UAV 

images were acquired.  212 ground survey plots covering the main 

land-cover types in the study area were selected.  A hand-held 

GPS (Trimble Geo7X, USA) was used to obtain the geographic 

coordinates of each survey plot, and the corresponding land-cover 

types were also recorded in detail.  The numbers of survey plots 

http://data.cma.cn/
https://scihub.copernicus.eu/dhus/#/home
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for soybean, maize, sorghum, bare soil, and other vegetation were 

91, 79, 13, 5, and 24, respectively.  

All other non-remote sensing data adopted were mainly 

town-level administrative boundary (in vector form) of Guoyang 

and statistics on the sown area of major crop types. 

3  Methods 

3.1  Data preprocessing 

Only the bands with 10 m and 20 m resolution were adopted in 

this research.  First, the atmospheric correction was performed 

using Sen2Cor processor (version 2.8, http://step.esa.int/main/ 

third-party-plugins-2/sen2cor/) to convert top-of-atmosphere (TOC) 

Level 1C data to bottom-of-atmosphere (BOC) reflectance.  The 

output was resampled to 10-m spatial resolution and then exported 

to ENVI format under the environment of the Sentinel Application 

Platform (SNAP) (version 7.0.0, http://step.esa.int/main/download/), 

the bilinear interpolation method was applied.  Finally, the data 

were subset with Longshan and Qingtuan administrative boundaries 

by using ENVI 5.3 to obtain the image of the study area.   

As for the UAV images, a quality check was carried out first to 

eliminate the scenes with poor imaging quality.  Subsequently, the 

qualified UAV images were imported into ContextCapture Center 

(version 4.4.9), and image matching, aerotriangulation and texture 

mapping would be automatically completed to generate dense point 

clouds, then a triangulated irregular network (TIN) model was 

constructed from this.  The digital orthophoto map (DOM) was 

produced later based on TIN and the control points.  Finally, we 

employed Global Mapper (version 19.0) to mosaic the DOM 

images to achieve the complete coverage of each ground sample. 

3.2  Selection of the optimum time phase for soybean and 

maize identification 

Sentinel-2 images of three-time phases were selected in this 

study.  Remote-sensing identification of soybean and maize 

required high separability between these two crops as well as 

other cover types, which depended largely on the acquisition time 

of images.  Previous studies indicated that the Jeffries-Matusita 

(JM) distance based on the conditional probability theory is more 

suitable for describing inter-class differences than other 

indicators, and it can effectively evaluate the separability between 

training samples of various cover types[34].  In this study, the JM 

distance was employed as a quantitative evaluation indicator of 

the separability among different land-cover types in these 

three-time phases, so as to determine the optimum one for 

soybean and maize mapping.  According to the field survey, 

sparsely distributed vegetation e.g., weed, sweet potato, peanut, 

vegetables, watermelon, and sesame were collectively termed as 

“others”.  Thus, eight main land-cover types (soybean, maize, 

sorghum, artificial objects, trees, water body, bare soil, and others) 

with more than 50 sample sets of each type were selected through 

the ground survey campaign and visual interpretation with the 

support of Google Earth.  

The JM distance between a pair of type-specific probability 

functions is computed as follows[35]: 

2

( , ) ( | ) ( | )j k j k
x

JM c c P x c P x c dx  
         (1) 

where, x is the data value of different bands; cj and ck are the two 

different crops or other land-cover types under consideration. 

Under the normality assumptions, Equation (1) can be defined 

as Equation (2): 

2 (1 )BJM e                   (2) 

1

21 1
( ) ( ) ln

8 2 2
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j k j k

j k
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B

j k
   



 
 

   
       

   
 
 

 
 

 
(3) 

where, μj and μk represent the mean values of the spectral 

reflectance of two specific cover types; T is the transpose function, 

and ∑j, ∑k are the unbiased estimates for the covariance matrices 

of j and k, respectively[36].  

The JM distance, which ranges from 0 to 2, describes the 

degree of separability between the two specific cover types[37].  

The greater JM distance is, the better separability between the two 

classes is. 

3.3  Screening out the optimum classifier for soybean and 

maize extraction 

Machine-learning algorithms can achieve high-accuracy 

ground object extraction based on single-phase data, which is also a 

convenient, high-efficiency, and extensively used method of crop 

mapping.  The selection of optimum classifier is very important 

for obtaining reliable extraction results.  Accordingly, three 

commonly used machine-learning methods were adopted in this 

study as candidate classifiers and described as follows. 

3.3.1  Support Vector Machine  

Support Vector Machine (SVM) proposed by Cortes and 

Vapnik in 1995 is an effective and extensively used method of 

ground-objects classification[38].  It has attracted considerable 

attention in the field of crop mapping by remote sensing[39].  SVM 

is designed to establish a hyperplane and maximize the distance 

between the samples on both sides of the hyperplane to separate 

different classes.  This technique is a suitable machine-learning 

method for a small set of samples with a strong theoretical basis; it 

can automatically learn the classification knowledge of samples in 

the case of small sample size and obtain good results[38,40]. 

The SVM classifier provided by ENVI 5.3 was used to map 

soybean and maize.  In light of the non-linear relationship 

between the classification results and the input feature variables, 

classification was implemented through the radial basis function 

(RBF) kernel, which had certain advantages in crop 

identification[41].  Four parameters needed to be set: the value of 

classification probability threshold was set to zero to ensure that all 

pixels participated in classification and each one was defined as a 

specified cover type; the value of the pyramid parameter was also 

set to zero for the purpose of processing the image at its original 

resolution; the kernel width (gamma) was set to 0.1 and the penalty 

parameter kept the default value. 

3.3.2  Back-Propagation Neural Network  

Back-Propagation Neural Network (BPNN) developed by 

Rumelhart in 1986 is a multi-layer feed-forward neural network 

trained according to the error back-propagation algorithm[42].  

BPNN with strong nonlinear, high self-learning and adaptive 

ability is one of the most popular techniques in artificial neural 

networks and can effectively extract crop-planting information in 

the agricultural field[43].  The learning rule for the entire network 

is to make the error reach the expected minimum value by 

constantly adjusting the weights and thresholds between neurons 

through the gradient-descent method.  In this work, soybean and 

maize were mapped with the aid of the Neural Net Classification 

module of ENVI 5.3 under default parameters, using the same set 

of training samples as SVM method. 

3.3.3  Random Forest  

Random Forest (RF) is a machine-learning algorithm that has  
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been increasingly reported in remote-sensing crop mapping owing 

to its high efficiency, strong adaptability and anti-noise ability[44,45].  

It works well with large and high-dimensional datasets by using a 

set of classification and regression trees[46].  Each tree is trained 

with two-thirds of data randomly selected from the original dataset, 

and the remaining one-third called out-of-bag (OOB) data is not 

actually involved in growing the tree[47].  The OOB error 

produced by the OOB data is an unbiased estimate of the RF 

generalization error to assess the RF model’s performance.  

For RF method, two key user-defined parameters are required 

to build the model.  One of the parameters is the number of 

decision trees (ntree), and the other is the number of features (mtry) 

used in each split node.  Several studies have revealed that RF can 

obtain satisfactory results with default parameters[48,49].  The mtry 

was kept the default value that was the square root of the number of 

all features.  We found that under the default setting of mtry, ntree 

had little effect on the classification accuracy when the number of 

ntree was more than 100.  Therefore, ntree was set to 100. 

3.3.4  Selection of the optimum classifier 

The above three machine-learning algorithms have their unique 

advantages, and determining the optimum classifier for soybean 

and maize extraction in the study area is particularly crucial.  

Accordingly, these three methods were applied to the image singled 

out in the previous step to compare their performance in crop 

identification.  

In general, the accuracy of spatial distribution can most 

suitably be evaluated by the confusion matrix[50].  Overall accuracy, 

user accuracy, producer accuracy, and Kappa coefficient were 

generated from the confusion matrix to assess the performance of 

the three classifiers.  Kappa was calculated as follows[5,51]: 

1 1

2

1

m m

i i

i i

m

i i

i

N xii x x

Kappa

N x x

 

 

 



 



 

 


           (4) 

where, N denotes the number of pixels; m is the number of 

categories; xii is the number of pixels on the diagonal of the 

confusion matrix; xi+ and x+i are the sum of the number of pixels in 

row and column i.  

254 ground truth plots (covering eight main land-cover types) 

from field survey and visual interpretation with the aid of Google 

Earth were used to generate the confusion matrix.  Extraction 

results of different classification methods were evaluated with 

Kappa coefficients, and the optimum classifier was screened out 

accordingly. 

3.4  Screening out the optimum feature-subset for soybean 

and maize identification 

3.4.1  Description of candidate features 

Twenty features were selected and applied to subsequent 

analyses targeted at screening out the optimum feature-combination.  

The well-behaved features were expected to be more sensitive to 

soybean and maize and contribute more to the mapping of both 

crops.  The candidate features included reflectance of the ten 

spectral bands with a spatial resolution at 10 m and 20 m, which 

were referred to as B2, B3, B4, B5, B6, B7, B8, B8A, B11, and 

B12 (Table 1), and the ten additional features (Table 3) generated 

from these ten bands.  Previous studies showed that red-edge 

bands were favorable for soybean and maize extraction[52].  It was 

worth mentioning that for the red-edge NDVI, only two forms 

calculated from two red-edge bands (B5 and B6) were adopted 

because we found that the NDVI generated based on B7 (783 nm at 

central wavelength) was of poor quality. 
 

Table 3  Description of the ten additional features used in this 

study 

Name Expression Reference 

Enhanced Vegetation Index 

(EVI) 

8 4
2.5

8 6 4 7.5 2 1

B B

B B B




    
 

Huete et al., 

2002
[53]

 

Soil Adjusted Vegetation Index 

(SAVI) 

8 4
1.5

8 4 0.5

B B

B B




 
 

Huete, 

1988
[54]

 

MERIS Terrestrial Chlorophyll 

Index (MTCI) 

6 5

5 4

B B

B B




 

Dash et al., 

2007
[55]

 

Red-Edge Position (REP) 
0.5 ( 4 7) 5

705 35
6 5

B B B

B B

  
 


 

Guyot et al., 

1988
[56]

 

Normalized Difference 

Vegetation Index (NDVI) 

8 4

8 4

B B

B B




 

Rouse et al., 

1973
[57]

 

Red-edge NDVI (NDVIre1) 
8 5

8 5

B B

B B




 

Gitelson, 

1997
[58]

 

Red-edge NDVI (NDVIre2) 
8 6

8 6

B B

B B




 

Gitelson, 

1997
[58]

 

Green Normalized Difference 

Vegetation Index (GNDVI) 

8 3

8 3

B B

B B




 

Gitelson, 

1997
[58]

 

Normalized Difference Water 

Index (NDWI) 

3 8

3 8

B B

B B




 

McFeeters, 

1996
[59]

 

Normalized Difference Building 

Index (NDBI) 

11 8

11 8

B B

B B




 Zha, 2003

[60]
 

 

3.4.2  Selection of the optimum feature-subset for soybean and 

maize identification 

Not all features were effective enough for soybean and maize 

identification owing to the differences in sensitivity to specified 

ground objects.  Hence, feature-subset optimization was necessary 

so as to screen out the features that contributed more to the 

mapping of these two crops[61].  The optimum feature-subset with 

a smaller data volume was expected to be more practical for maize 

and soybean identification.  Numerous studies have revealed that 

the RF algorithm was attractive not only for classification but also 

for feature selection[48,62].  About 1000 samples covering all main 

land-cover types (soybean, maize, sorghum, artificial objects, trees, 

water body, bare soil, and others) were selected as input datasets to 

conduct the feature selection procedure.  OOB error produced 

feature variable importance (FVI) and could thus be used to derive 

the importance of each candidate feature[46].  The importance 

score of feature j is computed by Equation (5)[63]: 

1

1
( )

N
j j

j Ni Oi

i

FVI OOB OOB
N 

              (5) 

where, N denotes the number of decision trees, and 
j

NiOOB  

represents the OOB error of decision tree i for the feature j without 

noise.  If the OOB error (
j

OiOOB ) changes obviously when noise 

is randomly added to feature j, it indicates that the feature j has a 

great influence on the classification result, that is to say, the more 

important the feature is.  The RF package in MATLAB 2018 was 

applied to evaluate the weights and ranks of different feature 

variables and thus select the optimum feature subset.  In view of 

the uncertainty in the results of each operation arising from the 

inherent randomness of the RF method, we ran the algorithm fifty 

times and took the average as the output. 

The optimum dimension of candidate features sorted by 

importance was investigated subsequently.  In the present study, 

twenty features in descending order of importance were 

sequentially added to the optimum classifier for soybean and maize 

identification by using sequential forward selection (SFS)[64].  In 

other words, one feature was added at a time.  First, the feature 



176   November, 2020                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 13 No.6 

with the highest score was taken as the basic input, and the 

classification accuracy was calculated using the optimum classifier.  

Then, the subsequent feature with a slightly lower score was added 

in turn, and a new dataset was constructed along with previous 

input to generate new accuracy.  The program operated in this 

way until the resulting accuracy reached a stable level, or the 

accuracy no longer increased significantly as new features were 

added, indicating that a relatively higher accuracy could be 

achieved with fewer features and that the data volume and 

computational cost were significantly reduced. 

3.4.3  Assessing the performance of the optimum subset of features 

Three classification schemes were designed to conduct 

remote-sensing extraction of soybean and maize (Table 4) and 

further assess the performance of the optimum feature-subset.   

Scheme A mapped soybean and maize planting areas on the basis 

of the ten spectral bands of Sentinel-2; Scheme B employed all of 

the twenty features; Scheme C was conducted based on the result 

of feature selection.  
 

Table 4  Description of different classification schemes 

Scheme Feature combination 

A 
Reflectance of ten spectral bands (B2, B3, B4, B5, B6, B7, B8, 

B8A, B11, and B12) 

B Total twenty features (ten spectral bands+ten additional features) 

C Optimum subset of the twenty features 
 

UAV images covering the six ground samples (each was 1 km× 

1 km in size) (Figure 3) were applied to examine the accuracy of 

different classification schemes for soybean and maize extraction 

based on Sentinel-2 images.  UAV images were processed to cover 

the same spatial scope as each ground sample.  These images 

provided fine-enough surface texture, enabling easy identification 

and interpretation of ground objects.  With the support of ArcGIS 

10.4 software, we manually delineated the boundary of maize and 

soybean-planting areas in each ground sample and created vector 

layers as ground truth to generate confusion matrix, and then 

evaluate the accuracy of soybean and maize extraction results. 

This study involved the following tasks: (1) data preparation; 

(2) determining the optimum time phase and classifier; (3) 

screening out the optimum feature-subset; and (4) assessing the 

performance of the optimum feature-subset based on three schemes.  

The overall technology roadmap is as follows (Figure 4). 

4  Results 

4.1  Optimum time phase for soybean and maize mapping 

The separability (represented by JM distance) between 

soybean, maize, and other main land-cover types was calculated 

based on the available images of three time-phases (Table 5).  

Results showed that soybean, maize, and non-vegetation cover 

types, i.e., bare soil, water and artificial objects had always good 

separability.  The values of JM distance derived from the images 

obtained on August 18 and 28 were all greater than 1.8, which 

were significantly higher than those of September 7.  Moreover, 

the separability between soybean, maize and other land-cover 

types derived from the image on August 18 was better than the 

latter date, except for trees.  In view of the fact that the cover 

types in the study area were primarily dominated by soybean and 

maize crops, these results demonstrated that August 18 (early 

pod-setting stage of soybean) was the optimum time phase for 

soybean and maize extraction.  Therefore, the image on August 

18 was selected to identify soybean and maize. 

 
Figure 4  The overall technology roadmap of this study 

 

Table 5  JM distance between soybean, maize, and other main 

land-cover types in different time phases 

Soybean August 18, 2019 August 28, 2019 September 7, 2019 

Maize 1.834 1.801 1.795 

Sorghum 1.953 1.898 1.896 

Water 1.998 1.998 1.998 

Artificial objects 1.987 1.985 1.985 

Bare soil 1.968 1.968 1.968 

Trees 1.963 1.974 1.951 

Others 1.892 1.836 1.554 

Maize August 18, 2019 August 28, 2019 September 7, 2019 

Soybean 1.834 1.801 1.795 

Sorghum 1.965 1.903 1.567 

Water 1.999 1.999 1.998 

Artificial objects 1.978 1.978 1.978 

Bare soil 1.964 1.958 1.952 

Trees 1.873 1.882 1.784 

Others 1.971 1.954 1.853 
 

4.2  Optimum classifier for soybean and maize mapping 

The mapping accuracy generated with the aid of 254 ground 

truth plots is given in Table 6.  The overall accuracy of SVM, 

BPNN and RF classifiers were 84.65%, 85.04%, and 87.00%, and 

the corresponding Kappa coefficients were 0.80, 0.80, and 0.83, 

respectively (Figure 5).  Generally, RF showed better performance 

than the other two methods.  In terms of the individual 

classification results of soybean and maize, SVM had higher 

producer accuracy for maize while user accuracy was relatively 

lower, whereas the situation for soybean was just the opposite.  

The results of BPNN were similar to those of SVM.  RF 

outperformed the other two methods in the identification of 

soybean and also showed good behavior in maize extraction.  In 

general, RF method with higher efficiency and accuracy was 

determined as the optimum classifier for soybean and maize 

extraction in this study. 
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Table 6  Assessment of different classifiers in the extraction of main cover types 

Classifier Accuracy/% Soybean Maize Sorghum Trees Artificial objects Bare soil Water body Others 

SVM 
PA 80.22 89.87 69.23 81.82 95.00 100.00 100.00 75.00 

UA 85.88 79.78 56.25 90.00 100.00 100.00 87.50 100.00 

BPNN 
PA 89.01 82.28 92.31 45.45 80.00 100.00 100.00 87.50 

UA 85.26 85.53 66.67 100.00 100.00 100.00 87.50 77.78 

RF 
PA 90.11 88.61 92.31 54.55 85.00 100.00 100.00 75.00 

UA 88.17 83.33 80.00 100.00 100.00 100.00 77.78 85.71 

Note: PA: producer accuracy; UA: user accuracy. 
 

 
Figure 5  Comparison of the overall accuracy and Kappa 

coefficients corresponding to the three classifiers 
 

4.3  Optimum feature-subset for soybean and maize mapping 

Based on the Sentinel-2 image acquired on August 18th, the 

score of each candidate feature given by the RF algorithm was 

shown in Figure 6a in descending order.  Results showed that B6 

had the highest score (3.75) while the weight of NDWI was the 

lowest (0.19).  B6 (red-edge band) contributed the most to the 

extraction of soybean and maize, whereas the feature of NDWI was 

the least important.  B12 (short-wave infrared band) and B8 

(near-infrared band) were also very important feature factors.  B5 

and REP related to red-edge characteristics, as well as the NDVIre2, 

calculated based on the red-edge band (B6) also ranked higher.   

According to the determination method of the optimum 

dimension of feature-subset, B6 with the highest score was first 

added to the RF classifier, and the following feature with a 

relatively lower score was added in turn and formed new input, 

NDWI was the last one to be added.  Then, the optimum number 

of input features was determined by the classification accuracy 

(Figure 6b).  With more features added and served as input data, 

the accuracy initially kept increasing and reached the local 

maximum (94.12%) when the number of features reached seven.  

However, with the number of features increased from seven to 

twenty, the accuracy did not obviously improve, and the overall 

accuracy fluctuated within a small range.  Accordingly, we 

selected the top seven features (B6, B12, B8, B3, NDVI, B2, and 

NDVIre2) shown in Figure 6a as the optimum feature-subset for 

soybean and maize mapping.  It meant that the performance of RF 

classifier was expected to be maintained by reducing 65% of the 

data volume and ensured a high-precision extraction result. 

 
a. Ranking of the importance of candidate features in descending order          Note: Red dot indicates the number of optimum feature-subset 

                                                              b. Relationship between the number of participated features and classification accuracy 

Figure 6  Results of feature selection based on sequential forward selection (SFS) method 
 

4.4  Performance of different classification schemes 

The spatial distributions of soybean and maize in the study 

area are shown in Figure 7.  They were obtained by RF classifier 

through the three classification schemes.  The planting areas of 

soybean and maize derived from the UAV images were taken as 

the ground truth to assess the accuracy of these classification 

schemes.  The classification results of the six ground samples 

(Figure 8) exhibited obvious differences between the results of 

scheme A and those of the other two schemes.  The results of 

scheme B and C were more consistent with ground truth derived 

from UAV images, indicating that these two schemes could achieve 

higher accuracy of maize and soybean mapping.   

The resultant accuracy corresponding to the three classification 

schemes of each ground sample is listed in Table 7.  Compared 

with scheme A, the extraction effect of schemes B and C was 

significantly improved in all ground samples.  The Kappa 

coefficients of samples 1, 3, and 6 derived from scheme B and C 

reached up to more than 0.80; and those of samples 2, 4 and 5 also 

exceeded 0.70. In general, scheme B performed slightly better than 

scheme C.  Therefore, the application of the optimum 

feature-subset in soybean and maize mapping could achieve a high 

level of accuracy with great advantages in data volume and 

runtime. 

The ground truth of soybean and maize from UAV images 
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(Figure 8) can explain the difference in the extraction effect among 

different ground samples.  The farmland in samples 2, 4, and 5 

had a higher degree of fragmentation, and many maize fields were 

more scattered and smaller in patch size, which greatly increased 

the difficulty of remote-sensing identification.  The distributions 

of soybean and maize in samples 1, 3, and 6 were relatively more 

concentrated, enabling a better effect than the other three ground 

samples. 

 
Figure 7  Crop maps generated from schemes A, B, and C (a, b, and c are local zooms providing detailed soybean and maize distributions 

corresponding to different schemes) 
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Figure 8  Extraction results of the six ground samples derived from different schemes: 1-6 represent the labels of the ground samples;  

A-C represent schemes A, B, and C; D represents the ground truth of soybean and maize planting areas generated from UAV images.   

The blue boxes highlight the regions with the most obvious differences in the results of the three schemes 
 

Table 7  Accuracy evaluation results of schemes A, B and C 

Ground 

sample 
Crop 

A B C 

PA/% UA/% OA/% Kappa PA/% UA/% OA/% Kappa PA/% UA/% OA/% Kappa 

Sample_1 
Soybean 71.81 92.49 

86.64 0.71 
87.68 89.84 

91.31 0.82 
88.84 88.25 

91.01 0.81 
Maize 96.23 84.07 93.64 92.21 92.41 92.80 

Sample_2 
Soybean 89.01 88.39 

85.27 0.68 
94.44 87.11 

87.27 0.71 
95.57 85.91 

86.99 0.70 
Maize 78.37 79.39 73.84 87.64 71.23 89.76 

Sample_3 
Soybean 85.97 88.89 

88.17 0.76 
93.45 88.38 

91.01 0.82 
93.83 86.42 

90.14 0.80 
Maize 90.18 87.57 88.78 93.69 86.84 94.03 

Sample_4 
Soybean 94.29 91.55 

88.96 0.68 
97.13 91.67 

90.99 0.73 
97.68 90.60 

90.49 0.71 
Maize 71.49 79.26 70.51 88.01 67.26 89.98 

Sample_5 
Soybean 82.54 82.63 

86.66 0.72 
80.10 89.89 

89.08 0.76 
78.44 91.52 

88.90 0.75 
Maize 89.22 89.17 94.53 88.66 95.45 87.60 

Sample_6 
Soybean 78.93 89.50 

88.32 0.75 
90.91 87.39 

91.33 0.82 
92.83 85.77 

91.38 0.82 
Maize 94.21 87.72 91.61 94.03 90.47 95.33 

Note: OA: overall accuracy; PA: producer accuracy; UA: user accuracy. 
 

5  Discussion 

The present study achieved high-quality mapping of soybean 

and maize in the typical producing areas in Anhui Province, 

China-based on Sentinel-2 data, and satisfactory results were 

produced.  Results showed that Sentinel-2 data was appropriate 

for the identification of soybean and maize in areas with 

changeable weather, retail planting, complicated planting structure 

and highly fragmented farmland.  Additionally, seven feature 

variables termed as the “optimum feature-subset” for soybean and 



180   November, 2020                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 13 No.6 

maize extraction were screened out and five of them were spectral 

bands of Sentinel-2.  Therefore, Sentinel-2 data has great 

advantages and prospects in soybean and maize mapping under 

complex planting conditions. 

Five features, i.e., B6, B12, B8, B3, B2, which were the 

original bands of Sentinel-2 outperformed other spectral bands and 

remote-sensing indices.  B6 as the variable related to red-edge 

characteristics ranked first among all the candidate features, 

indicating that red-edge related variables were very useful for 

soybean and maize mapping.  B12 (short-wave infrared band) 

with its weight ranking second was indeed greatly beneficial to 

soybean and maize extraction, which was in line with the finding 

by Wang et al.[8], who pointed out that the introduction of a 

short-wave infrared band could greatly improve the ability to 

identify and map soybean and maize when a single time-phase 

image was used.  The near-infrared band (B8) was also a very 

important feature factor (ranking third), the differences between the 

typical spectra of different field vegetations in the near-infrared 

band were found to be obviously greater than those in the visible 

bands.  Yin et al.[10] demonstrated in their work that the 

near-infrared band was very effective for remote-sensing 

identification of soybean and maize, especially for conventional 

four-band sensors, which was confirmed in the present study. 

The optimum feature-subset for the mapping of these two 

crops contained two VIs, i.e., NDVI and NDVIre2 in addition to 

the abovementioned spectral bands.  NDVI is calculated from the 

red (B4) and near-infrared (B8) radiation reflected by ground 

objects[57], vegetation signals could be enhanced through 

normalization operation and some noise might be eliminated in 

some sense.  NDVI is considered to be able to highlight certain 

crop information and amplify the differences between different 

crops.  Thus, its performance in the identification of soybean and 

maize is probably better than some original working bands.  

Previous studies found that NDVI was very effective for 

distinguishing between different crops[6,13].  The results of this 

study also demonstrated that NDVI was useful for remote sensing 

extraction of soybean and maize.  Moreover, the importance of 

NDVIre2 was also emphasized.  NDVIre2 was the combination of 

red-edge (B6) and near-infrared (B8) bands, both of them have 

advantages in soybean and maize mapping.  The normalization of 

the two bands contributed to the good performance of NDVIre2, 

which played an important role in crop identification. 

RF method behaved better than SVM and BPNN in our study 

area.  Generally, RF is insensitive to the dimension of the input 

dataset and has higher operational efficiency than SVM and BPNN.  

It can obtain higher classification accuracy under default parameter 

settings, and the parameter adjustment has less effect on the 

classification results compared with the other two methods[49].  

Another advantage of RF method is that it can rank the importance 

of each input feature.  When the input dataset has a high 

dimension, feature selection can be realized according to the 

importance to eliminate insignificant features and thus reduce the 

computational cost[9].   

Regarding the optimization of candidate indicators and the 

determination of the optimum dimension of the features, only one 

method, i.e., RF was selected.  Other methods of feature selection 

e.g., ReliefF, max-relevance and min-redundancy (mRMR) and 

correlation analysis will be considered in follow-up studies to 

further explore the optimum solution for the remote-sensing 

extraction of soybean and maize.  In addition, only frequently 

used NDWI, NDBI, and several VIs were selected as the additional 

features in this study to conduct feature selection, these indicators 

may have their inherent limitations in the mapping of soybean and 

maize.  Future research will take texture parameters, e.g., 

homogeneity, variance, dissimilarity, entropy, and correlation, etc.  

into consideration to investigate their performance in 

remote-sensing identification of soybean and maize.  

Although the accuracy of crop identification using the 

optimum feature-subset (scheme C) was not as good as the 

combination of all candidate features (schemes B), the data volume 

of scheme C was reduced by 65% and the extraction accuracy was 

only slightly reduced.  Therefore, the combination of optimum 

features is promising in practical application.  In this work, 

ground truth maps were generated by visual interpretation and 

screen digitization method based on UAV images, which have 

centimeter-level resolution to verify the extraction results of 

soybean and maize-derived from Sentinel-2 images with a 

resolution of 10 m.  The main reason for manual digitization was 

that the acquisition time of the UAV images was late (September 

7-9) in some sense for some personal reasons, and many soybean 

plots in the ground samples had entered the yellow ripening period, 

resulting in the coexistence of soybean fields in different 

phenological stages, which brought greater challenges to 

remote-sensing identification of this crop.  The resolutions of the 

two data sources are not at the same level, the difference in spatial 

scale is obvious, and the high degree of farmland fragmentation in 

the study area also exacerbates the mismatch between these two 

results, which explains the relatively low Kappa coefficients to 

some extent.  More space-borne high-resolution image data 

sources (e.g., SuperView-1 and GF-2) should be adopted to further 

examine the extraction effect in future work.  

Generally, the method and approach of this study can provide a 

reference for the follow-up work and crop-identification related 

research.  The conclusions are expected to be applicable to other 

producing areas of soybean and maize with similar growing 

conditions, crop types and planting structures in Huang-Huai-Hai 

region.  However, the applicability of the findings of this study in 

the rest of China’s main producing areas e.g., Southern China is 

still unclear and remains to be investigated.  In addition, we are 

also examining the generalization of the conclusions in larger 

spatial scope and more growing seasons. 

Some uncertainties and limitations also existed in the present 

study.  Given the frequent cloud cover in the study area, some thin 

clouds on the image of September 7 might bring some uncertainties 

to the results obtained in this work.  Moreover, the study area 

covering two towns was relatively small, and we only focused on 

one growing season of soybean and maize in 2019.  Follow-up 

work will appropriately expand the scope of the study area and 

conduct remote-sensing identification of these two crops aimed at 

multiple growing seasons to test the robustness of the conclusions 

drawn in this study.  Considering the highly complicated cropping 

patterns in the study area, a more systematic and comprehensive 

field survey is urgently needed in the future, and the removal of 

interference from non-agricultural land cover types may increase 

the accuracy as well. 

6  Conclusions 

An integrative study on the identification and mapping of 

soybean and maize in two towns in Guoyang County, Anhui 

Province was carried out using Sentinel-2 data.  The performance 

of different time-phases, multiple classifiers, and multiple 

remote-sensing features in the identification of soybean and maize 
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was investigated using machine-learning methods.  Results 

revealed that the early pod-setting stage (August 18) of soybean 

was the optimum time phase for soybean and maize mapping and 

the RF algorithm was the most appropriate classifier.  Moreover, 

the importance evaluation of twenty candidate features including 

spectral bands and remote sensing indices generated from them was 

performed.  Results indicated that the top seven features (B6  

(740 nm), B12 (2190 nm), B8 (842 nm), B3 (560 nm), NDVI, B2 

(490 nm), and NDVIre2 (derived from B6 and B8)) were the most 

effective factors for maize and soybean identification, the role of 

the red edge-related variables was particularly highlighted.  The 

superiority of the selected feature combination was confirmed in 

the subsequent results of ground-sample validation, with the 

ground truth stemming from UAV images.  High-accuracy crop 

mapping was achieved (Kappa ranging from 0.70 to 0.82) by the 

optimum feature-subset, though slightly inferior to the input 

consisting of the total of twenty features, the data volume could be 

reduced greatly (by 65%) compared with the latter.  In addition, 

both schemes outperformed the results generated from ten working 

bands.  Generally, the selected feature-combination had a broad 

application prospect in soybean and maize mapping. 

The significance of this study lies in the approach of reliable 

remote sensing mapping of soybean and maize in areas with 

heterogeneous planting conditions in a relatively fast and low-cost 

way.  This work could compensate for the lack of research on 

soybean and maize extraction in regions with complicated planting 

structures and fragmented farmland landscape.  Relevant 

achievement of the present study can facilitate the development of 

precision agriculture in the field of crop mapping and may serve as 

a valuable reference for agricultural departments to make 

decisions. 
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