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Abstract: Acoustic echo cancellation is often applied in communication and video call system to reduce unnecessary echoes 

generated between speakers and microphones.  In these systems, the speech input signal of the adaptive filter is often colored 

and unstable, which decays the convergence rate of the adaptive filter if the NLMS algorithm is used.  In this paper, an 

improved nonparametric variable step-size subband (NPVSS-NSAF) algorithm is proposed to address the problem.  The 

variable step-size is derived by minimizing the sum of the square Euclidean norm of the difference between the optimal weight 

vectors to be updated and the past estimated weight vectors.  Then the parameters are eliminated by using the power of 

subband signal noise equal to the power of subband posteriori error.  The performance of the proposed algorithm is simulated 

in the aspects of misalignment and return loss enhancement.  Experiment results show a fast convergence rate and low 

misalignment of the proposed algorithm in system identification. 
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1  Introduction

 

In modern communication systems, such as cellphones, video 

communication systems, and car phone systems, the phenomena of 

acoustic echo are inevitable, which may greatly affect speech 

quality and even cause discomfort for users.  Therefore, the 

problem in need of immediate solutions in communication systems 

is improving voice quality.  The acoustic echo cancellation (AEC) 

technology is a typical approach of improving the quality on the 

remote end, which has been widely concerned in recent years.  

Various adaptive filtering algorithms are applied to the AEC 

system[1-6], the basic principle of which is through building an echo 

path of impulse response signal to generate an electronic replica of 

the real acoustic echo between the loudspeaker and the microphone.  

Then the echo is canceled by subtracting echo signal from the 

microphone signal[7].  Widrow et al. initially proposed the 

adaptive least mean square (LMS) algorithm[8], which is widely 

used in echo cancellation because of its simple structure and strong 

robustness[9].  However, the fixed step size of the LMS algorithm 

cannot meet the requirement of fast convergence rate and low 
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misalignment simultaneously.  Therefore, different variable step 

size normalized least mean square (VSS-NLMS) algorithms have 

been extensively proposed and used[10-16].  Although these 

algorithms have fast convergence rates and low misalignment, 

when the input signal is colored, the convergence rate may decay 

significantly[17].  Therefore, in order to improve the convergence 

rate of the colored input signal, Lee et al. proposed a normalized 

subband adaptive filtering (NSAF) algorithm[18], which converts 

the input signal into subband signal and whitens the subband signal.  

Although the NSAF algorithm can improve the convergence rate of 

the colored input signal, both it and the NLMS algorithm have the 

defect of fixed step size which cannot result in a fast convergence 

rate and low misalignment simultaneously.  Therefore, Shams et 

al. proposed a new VSS-NSAF algorithm which has a faster 

convergence rate and lower misalignment compared to the NSAF 

algorithm[19].  Meanwhile, Jae[20] and Ni[21] proposed a variable 

step size NSAF adaptive filtering algorithm which is derived by 

minimizing the mean-square deviation between the optimal weight 

vector and the estimated weight vector at each iteration at the same 

time.  Although these algorithms improve the convergence rate 

and low maladjustment, the complexity of calculation is increased 

seriously.  In order to guarantee fast convergence rate, low 

misalignment and low computational complexity simultaneously, a 

variety of variable step-size NSAF algorithms are proposed in 

succession[22-28]. 

However, these algorithms need to introduce some parameters 

which are difficult to adjust in a practical application.  In this 

paper, a nonparametric variable step size normalized subband 

adaptive filtering (NPVSS-NSAF) algorithm is proposed.  The 

variable step size iterative formula is obtained by minimizing the 

sum of the square Euclidean norm of the difference between the 

optimal weight vectors to be updated and the past estimated weight 

vectors.  Then the step size factor without parameters is derived 
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by making the power of subband signal noise equal to the power of 

subband posteriori error.  The algorithm proposed in this paper 

has strong robustness since the NPVSSS algorithm is easy to 

control in practical applications[29].  The superiority of the 

proposed algorithm is demonstrated by computer simulation, the 

results illustrate that the NPVSS-NASF algorithm behaves more 

excellence than other related algorithms in the non-stationary 

environment. 

The structure of this paper is organized as follows.  In Section 

2, we review the system model and some related algorithms.  

Section 3 proposes an improved nonparametric variable step size 

subband adaptive filtering (NPVSS-NSAF) algorithm.  Section 4 

shows the simulation results that the improved algorithm has better 

performance in the non-stationary environment than other 

algorithms.  Finally, conclusions are given in Section 5. 

2  Materials and methods 

2.1  System model 

In a communication and video call system, the echo of the 

speech signal which is picked up by the microphone is caused by 

the spatial reflection.  The AEC system models the echo path 

between the loudspeaker and the microphone to eliminate the echo 

from the signal the structure is showed in Figure 1[30]. 

 
Figure 1  Structure of the acoustic echo canceller system 

 

In the AEC system, the desired signal d(n) is picked up by the 

microphone 

d(n) = XT(n)h + v(n) = y(n) + v(n)            (1) 

where, X(n) = [x(n)x(n–1)–x(n–L+1)]T is the system input signal 

from the far end, and the impulse response of the estimated system is 

h=[h0(n), h1(n), …, h(N–1)(n)]T, whose length is L, the sign T 
represents the transpose of one vector or matrix; v(n) is the near-end 

signal, which is constituted of the speech signal s(n) and the 

background noise signal b(n).  And y(n) is the output of the 

estimated system, which is the real echo signal.  

The output of the adaptive estimator is,  

 ˆ( ) ( ) ( )Ty n X n W n                 (2) 

where, W(n) = [w0(n)w1(n), …, w(L–1)(n)]T is the weight coefficient 

of the adaptive filter, which is updated automatically with the 

change of environment[31]. 

The error signal e(n) is subtracting the filter output signal from 

the microphone signal 

 ˆ( ) ( ) ( )e n d n y n                  (3) 

Substitute (2) into (3), a priori estimation error e(n): 

 ( ) ( ) ( ) ( )Te n d n X n W n               (4) 

And a posteriori estimation error ε(n)  

 ( ) ( ) ( ) ( 1)Tn d n X n W n   
   

      (5) 

2.2  VSS-NLMS 

The NLMS algorithm is described as follows: 

( 1) ( ) ( ) ( )
( ) ( )T

w n w n e n x n
x n x n c


  


   

    (6) 

where, μ(0<μ<1) which controls the convergence rate of the 

algorithm is a positive scalar known as the step size; c is a very 

small constant that is used to avoid division by zero.  However, μ 

is a fixed step size that cannot meet the requirement of fast 

convergence rate and low misalignment simultaneously.  

In order to solve the contradiction between fast convergence 

rate and low misalignment, a variable step-size algorithm can be 

used.  The idea of the algorithm is that it has a larger convergence 

rate in the initial stage, that is, a larger step size; meanwhile, at the 

end of the convergence phase, a smaller step size is used to ensure 

a lower misalignment.  Therefore, the variable step-size NLMS 

(VSS-NLMS) algorithm balances the tradeoff between 

convergence rate and final misalignment.  The iterative formula 

is: 

 
( ) ( ) ( )

( 1) ( )
( ) ( )T

n e n x n
w n w n

x n x n c


  


           (7) 

where, μ(n) is the variable step size[32]. 

2.3  Subband adaptive filters 

The idea of subband filtering mainly comes from subband 

coding, which has been mentioned subband adaptive filtering in 

references[33,34].  In the subband adaptive filter, the input signal is 

decomposed by multiple parallel channels and more efficient signal 

processing can be achieved by using the characteristics of subband 

segmentation.  In addition, the correlation of the input signal is 

reduced by the filter group and the subband filter is implemented at 

under sampling rate.  Therefore, the subband adaptive filter can 

achieve fast convergence and reduce computational complexity. 

Figure 2 shows the traditional SAF structure for an application 

of adaptive system identification.  The fullband input signal x(n)  

and desired response signal d(n) are decomposed into N spectral 

bands by using analysis filters Hi(z), i=0,1,…N–1.  Meanwhile, 

these subband signals are extracted by using a lower rate and 

processed by many adaptive subfilters using the same factor D.  

Each subfilter which calculates its error signal separately is 

independent, and the correlation subband error signal is minimized 

by updating iteration.  Finally, the synthetic filter bank is used to 

interpolate and recombine all subband error signals to obtain the 

fullband error signal e(n).  Notice that the variable n is the time 

index of the full band signal and k is the time index of the extracted 

subband signal. 

 
Figure 2  Structure of the NSAF 
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It can be seen from Figure 2: 

d(n) = XT(n)w0 + v(n)                 (8) 

where, w0 denotes the tap weight vector of an unknown system to 

be estimated.  Signals d(n), X(n) and v(n) are decomposed into 

di(n), Xi(n) and vi(n) through Hi(z), i=0,1,…N–1.  Then the 

subband signals yi(n) and di(n) are decimated at a lower sampling 

rate to yield signals yi,D(k) and di,D(k).  The ith subband output 

signal is expressed as: 

( , ) ( ) ( )( ) T
i D iy x k wk k                (9) 

where, ( ) [ ( ), ( 1),..., ( 1)]T T
i i i ix k x kN x kN x kN L    . 

The update equation for the traditional NSAF is 

 (

1

0 , )2

( )
( 1) ( )

( )
( )

N

i

i
i D

i

x k
w k w k e

x k
k




          (10) 

where, μ
 
is fixed step size and the ith subband error is expressed: 

 , , ,( ) ( ) ( )i D i D i De k d k y k              (11) 

2.4  Proposed NPVSS-NSAF algorithm 

In this section, an improved nonparametric variable step size 

NSAF algorithm (NPVSS-NSAF) is proposed to overcome the 

contradiction between convergence rate and low misalignment 

when the input signal is colored.  This algorithm minimizes the 

sum of the square Euclidean norm of the difference between the 

optimal weight vectors to be updated and the past estimated weight 

vectors to obtain the variable step size avoiding that the echo path 

estimation vector does not produce large fluctuation under the 

condition of low SNR.  To further improve the robustness of the 

VSS-NSAF algorithm, the step size factor without parameters is 

derived by making the power of subband signal noise equal to the 

power of subband posteriori error.  The following optimization 

problem can be established:  

 
1 2

0
( )

L L
oL

W w k





 
            (12) 

where, φ as the weight factor, 0<φ<1. 

We have: 

( , )( ) ( )T
ii D od k x k W               (13) 

A new formula by using Lagrange multipliers is derived: 

1 2

( , )0
( ) (( )( ) ) [ ]T

LL

o i i D oiL
J k W w k d k x k W




 

 
   (14) 

where, λi is the Lagrange multiplier.  Then take the derivative of 

(14) with respect Wo  

0

1 1

0

( )
2 [ ( )]¦ ( )

L L T
o

N

i iL i
o

J k
W w k x k

W
 










  


 

    

 (15) 

We make the result of (15) equal to zero: 

1 1 11 1

0 0 0

1

0

1
( ) ( ) ( ) ( )

2

L L LL L L N T
o iL L iiL

W w k x k   
   

  




      (16) 

Put (13) into matrix form: 

( ) ( )T
D od k X k W                 (17) 

where, 0, 1, 1,( ) [ ( ), ( ),..., ( )]D D D N Dd k d k d k d k    

Substitute (16) to (17): 

1

0
( ) ( ) ( ) ( ) ( )

2

LLT T
D L

A
d k X k A w k X k X k 




 

  
  (18) 

where, 
1 1

0
( )

LL

L
A 

 


   and 0 (1) ( 1),...[ , ], T

N        

From (18) we can derive: 

1( 1)

0

2
[ ( ) ( )] [ ( ) ( ) ( )] T

LLT
D L

X k X k d k X k A w k
A





    (19) 

Define ( , ) ( ,

1

0) ( )( () ( ) )
L

T
i D i D

L

L
k ke d X k A w k




  , then we 

have: 

 
1 1

( , )0
( ) ( )[ ( ( ] )) ) (

LL T
o i DL

W A w k X k X k X kk e
 


     (20) 

Make the subband a posterior error signals equal to the 

subband systems noise[12]. 

( , ) ( , ) ( , )( ) ( 1( ) ) ( )[ ( 1)]( ) ( )T T
i D i D i i o i Dd x k w k x k W w k vk k k                   

(21) 

where, , ,( ) ( )i D i Dk v k  , and [ ( 1)] 0oW w k   .  The result of 

(20) can yield 

1 1
( , )0

( 1) ( ) ( ) [ ( ( )) ( )]
LL T

i DL
w k A w k X k X k k kX e

 


    (22) 

It can be concluded from Literature [16], 

,

2
( )

2
,{ ( )}

i DD viE k  
         

       (23) 

where, 
,

2
( , )

2 { ( )}
i D i Dv E v k 

 
is the power of the subband system 

noise.  We define 2 2
( , ){ ( )}

ix i DE x k 
 

as the power of the subband 

input signal.  Then substitute (10) into (21), using (11) to cancel 

w(k). 

 
,,

2 2
(

2 2 2
( , ) ( ), )( ){ ( )} [1   ]

i ii D Di D i D x ve kE k k      
 

   (24) 

where, 
, ,

2 2{( ) ( }
i D i De eEk k  ）

 
is the power of the subband error 

signal.  Rearranging (24) gets: 

,

, ( )

2

2
( , ) 2 2 2 2

(

,

)

2 1
( ) ( ) [1 ] 0

( )
 i D

i i i D k

v

i i

x e

DD

x

k k


 
 


        (25) 

We can get 

 
,

, ( )

2

, 2
( ) [1 ] 0i D

i D k

v

i D

e

k





                 (26) 

It is clear that 
, ,

2 2
( )i D i De k v 

 
which implies that , ( ) 0i D k  .  

In practice, the ith subband error signal 
,

2
( )i De k  and the ith 

subband input signal is estimated as follows: 

, , ,

2 2 2( ) ( 1) (1 ) ( )
i D i D i De e ek B k B k              (27) 

 2 2 2( ) ( 1) (1 ) ( )
i i ix x xk B k B kN               (28) 

where, B is an exponential window.  This estimation could result 

in a lower magnitude than 
,

2

i Dv .  The proposed algorithm can be 

summarized as follows: 

1 , ( )

0

( )
( 1) ( ) ( )

[ ( ) ( )]

LL i D k

TL

X k e
w k A w k n

X k X k
 




        (29) 

3  Results and discussion 

In this part, in order to analyze the performance of the 

NPVSS-NSAF algorithm, simulation is carried out in the context of 

AEC.  The simulation is divided into two parts: one is to use the 

white Gaussian noise (WGN) as the input signal to evaluate the 

performance of the proposed algorithm; the other is to evaluate the 

performance with speech input signals.  In the simulation, the 

NPVSS-NSAF algorithm is compared with the NLMS algorithm, 

SM-NLMS algorithm and VSS-NLMS algorithm. 

3.1  Criteria evaluation 

In this paper, to evaluate the property of the proposed 

NPVSS-NSAF algorithm, two objective criteria which are 

normalized misalignment and echo return loss enhancement (ERLE) 

are utilized.  These two evaluation criteria which are widely used 

can well evaluate the superiority of an adaptive filtering algorithm.   

Normalized misalignment is given by the following formula in 

dB: 

 

2

10 2

( )
10 ( )

o

o

W n W
Misalignment log

W


       (30) 
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The closer the adaptive filter coefficient is to the real echo path, 

the smaller the normalized misalignment is and the better the 

experimental results are. 

ERLE is used to detect the amount of loss caused by the 

adaptive filter, which is expressed by the following formula in dB: 

 

2

10 2

( )
10 (

( )

E d n
ERLE log

E e n


   

          (31) 

where, e(n) is the normal linear filtering error.  The bigger the 

ERLE is and the better the experimental results are. 

3.2  WGN signal used in simulation  

In this section, in order to analyze the convergence rate and the 

misalignment of the proposed algorithm, an acoustic impulse 

response of length L=512 is used and the same length is used for all 

the adaptive filters at 8 kHz sampling rate.  The input signal is 

WGN which is independent is added to the output of the echo path, 

at different SNR: 30 dB and 10 dB.  In this experiment, the noise 

power of the system is known. 

In Figure 3, the misalignment is used as a learning curve and 

the WGN signal with SNR=30 dB is used as the input signal to 

compare the stability of the NPVSS-NSAF algorithm with the other 

three algorithms (NLMS algorithm with step size μ = 1.0, 

VSS-NLMS and SM-NLMS).  Figure 3 shows that the 

convergence rate of NLMS (μ = 1.0), SM-NLMS in the initial stage 

is the same as that of NPVSS-NSAF.  But in the stationary state, 

the misalignment of this paper proposed algorithm is greatly lower 

than both of the NLMS (μ=1.0) and SM-NLMS algorithm.  We 

can also note that although the final misalignment of VSS-NLMS 

is better than that of SM-NLMS and NLMS (μ = 1.0), the 

convergence rate of VSS-NLMS is not as fast as that of them.  

Therefore, the proposed algorithm in this paper has a lower 

misalignment and faster convergence rate in comparison with the 

other three algorithms. 

 
Figure 3  Misalignment comparison of four algorithms,  

SNR=30 dB 
 

In this simulation, in order to prove the superiority of the 

proposed algorithm and eliminate the influence of SNR, the input 

signal is a white Gaussian noise with SNR=10 dB.  Figure 4 

shows that the performance of the proposed algorithm behaves 

better than the other three algorithms in terms of fast convergence 

rate and low misalignment in the non-stationary environment. 

In this part, the ERLE learning curve is discussed in the same 

configuration of the simulation, and the results of the ERLE 

criterion are shown in Figure 5.  It shows that the proposed 

algorithm in this paper has a significant advantage in terms of the 

ERLE criterion; the ERLE of the NPVSS-NSAF algorithm is over 

3 dB higher than SM-NLMS, over 5 dB than NLMS (μ=1.0) and 

over 8 dB than VSS-NLMS.  In addition, the NPVSS-NASF also 

has a faster convergence rate than the other three algorithms.  

Therefore, the results suggest that the theory that the 

NPVSS-NSAF is superior to the other three algorithms when the 

input signal is WGN. 

 
Figure 4  Misalignment comparison of four algorithms,  

SNR=10 dB 

 
Figure 5  ERLE comparison of four algorithms, SNR=30 dB 

 

When the WGN is used as the input signal, the proposed 

algorithm in this paper is better than the other three algorithms in 

terms of two objective criteria as misalignment and ERLE in this 

section.  However, the WGN signal is not fully capable of the 

NPVSS-NASF algorithm to prove excellence in echo cancellation.  

Therefore, speech signals are used to testify the performance of the 

proposed algorithm in the next section. 

3.3  Speech signals used in simulation 

In this subsection, in order to verify the excellent performance 

of the proposed algorithm in a non-stationary environment, speech 

signals are acquired from the TIMIT database[35].  In this 

experiment, two speech signals are used as input signals, which are 

far-end speech signal and speech near-end signal respectively.  

The far-end speech signal x(n) is pronounced by a female speaker, 

and the pronunciation sentence is as follows: ‘‘She always ask an 

objective question.’’ The proximal speech signal s(n) is 

pronounced by a male speaker, and the pronunciation sentence is as 

follows: ‘‘don’t let him eat too many strawberries’’.  And the 

colored noise signal could be added to the original signals with 

different SNR (10 dB and 30 dB) testifying the excellent 

performance of the improved algorithm under the condition of the 

color input signal.  In order to make the experiment convincing, 

an acoustic impulse response of length L=512 is used and all the 

adaptive filers have the same length as the acoustic impulse 

response at 8 kHz sampling rate.  At last, three traditional 
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adaptive algorithms, NLMS, VSS-NLMS and SM-NLMS (the total 

number of iterations n=8000), are employed, are compared with the 

proposed algorithm in terms of misalignment and ERLE.   

In Figure 6, the misalignment is used as a learning curve and 

the speech signal with SNR=30 dB is used as the input signal to 

compare the stability of the NPVSS-NSAF algorithm with the other 

three algorithms (NLMS algorithm with step size μ=1.0, 

VSS-NLMS and SM-NLMS) in the non-stationary environment. 

The simulation results show that the convergence rates of 

NLMS (μ=1.0) and SM-NLMS in the initial stage are the same as 

that of NPVSS-NSAF.  However, in the stationary state, the 

misalignment of the paper proposed algorithm is greatly lower than 

both of the NLMS (μ=1.0) and SM-NLMS algorithm.  We can 

also note that although the final misalignment of VSS-NLMS is 

better than that of SM-NLMS and NLMS (μ=1.0), the convergence 

rate of VSS-NLMS is not as fast as that of them.  And it is easy to 

find that the convergence rate of the VSS-NLMS algorithm decays 

seriously when the input signal is colored.  Therefore, it can be 

seen that the misalignment and convergence rate of the proposed 

algorithm in this paper is better than VSS-NLMS, the VSS-NLMS 

and SM-NLMS when the input signal is colored. 

 
Figure 6  Misalignment evaluation of double-talk speech with 

SNR=30 dB 
 

In this simulation, in order to prove the superiority of the 

proposed algorithm and eliminate the influence of SNR, the speech 

signal from the noise TIMIT database with SNR=10 dB is used as 

the input signal.  Figure 7 shows that the value of the misalignment 

of the four algorithms increases a little when the SNR decreases.  

The simulation results show that the proposed algorithm has a 

lower misalignment and faster convergence rate in comparison with 

the other three algorithms when the input signal is colored. 

 
Figure 7  Misalignment evaluation of double-talk speech with 

SNR=10 dB 

In this part, the same configuration of the simulation is 

employed to discuss the ERLE learning curve, and the results of the 

ERLE criterion are shown in Figure 5.  It shows that the adaptive 

filter introduces a lower loss in the steady-state value of 

NPVSS-NSAF compared to the other three algorithms (high 

ERLE).  Therefore, the results suggest that the theory that the 

proposed algorithm is superior to the other three algorithms. 

 
Figure 8  ERLE of evaluation of the double-talk speech 

4  Conclusions 

In this paper, a nonparametric variable step size subband 

adaptive filtering algorithm has been proposed and its performance 

has been deeply investigated with various input signals such as 

WGN signal, colored noise signal and speech signal.  To verify 

the effectiveness of the proposed algorithm, which was compared 

with the VSS-NLMS, SM-NLMS and the standard NLMS 

algorithm in terms of two objective criteria as misalignment and 

ERLE.  The experiment results showed that the NPVSS-NSAF 

algorithm behaved better performance in fast convergence and low 

misalignment than the other three algorithms.  Therefore, the 

proposed algorithm is a good echo cancellation method and could 

achieve excellent performance under the condition of a color input 

signal and low SNR. 
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