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Abstract: Automatic identification and detection of fruit on trees by machine vision is the basis of developing automatic 
harvesting robots in agriculture.  The occlusion of branches, leaves and other fruits in canopy images will affect the accuracy 
of fruit detection.  To provide a scientific and reliable technical guidance for fruit harvesting robots, a method using point 
cloud images was proposed in this study to detect red fruits to overcome the impact of occlusion on detection.  Firstly, the fruit 
regions were segmented from a tree’s point cloud by applying the color threshold of red and green.  Then, the noise in fruit 
point clouds was removed with sparse outlier removal.  Finally, the point cloud of each fruit was detected and counted based 
on the subtractive clustering algorithm.  For the sweet pepper dataset, the true positive rate (TPR) is 90.69% and the false 
positive rate (FPR) is 6.97% for all fruits that are at least partially visible in the scene. 
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1  Introduction  

Fruit harvesting is an important part of the fruit production 
process, with strong seasonal and labor-intensive characteristics.  
The quality of fruit harvesting is directly related to the storage, 
processing, sale of fruit, and ultimately affects the market price and 
economic benefits.  At present, fruit harvesting is still dominated 
by high-cost, high-intensity and high-risk manual harvesting, in 
spite of the advances in agricultural robotics[1].  Since the concept 
of automatic harvesting machine was put forward in the 1960s, the 
application of agricultural robots in automatic weeding, field 
reconnaissance and harvesting has achieved some results.  At the 
same time, object identification, task planning algorithms, 
digitization and optimization of sensors are some challenges faced 
by digital agriculture[2]. 

With the development of machine vision technology, fruit 
harvesting robots based on machine vision have been widely 
studied.  The success rate of harvesting robots based on machine 
vision depends on the accurate detection of fruit from canopy 
images obtained by their vision detection system.  The complexity 
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and diversity of the natural environment, such as light changes, 
canopy structure, fruit color, occlusion, bring difficulties to the 
accurate detection of fruits[3].  To improve the accuracy of fruit 
detection, various image sensors and image analysis methods have 
been used for fruit detection gradually. 

Black/White (B/W) camera was used as an image sensor for 
fruit detection in earlier studies.  Edan et al.[4] applied two B/W 
cameras to acquire melon images under controlling illumination, 
the detection accuracy of 82.0%-88.0% was achieved by using 
geometric and texture features extracted from B/W images.  Color 
is one of the most prominent features to distinguish fruit from the 
background, B/W camera cannot get color information of an image, 
and hence, it is difficult to ensure the accuracy of fruit detection in 
natural scenes.  Lu et al.[5] developed a machine vision system 
consisting of a color CCD camera and computer to segment fruits 
and branches and achieved high precision. 

Currently, the RGB camera is the most widely used image 
sensor in the fruit harvesting robot.  The RGB camera can 
simultaneously obtain images at three channels (R/G/B), hence, the 
color feature, geometry and texture features can extract from RGB 
images.  Tabb et al.[6] proposed a background modeling method to 
detect apples in RGB images.  Kurtulmus et al.[7] used color 
cameras to obtain peach datasets, which were detected by statistical 
classifiers and neural networks.  Khoshroo et al.[8] developed an 
algorithm to distinguish red tomatoes using image processing 
techniques based on color information.  Kuang et al.[9] proposed a 
novel approach for multi-class fruit detection using effective image 
region selection.  Histogram of oriented gradient features, texture 
features, and color features were utilized to improve the detection 
accuracy.  Sa et al.[10] applied deep convolutional neural networks 
to detect fruits to build an accurate, efficient, and stable fruit 
detection system.  However, the training of the model requires a 
lot of pictures, and it also takes much time to label these images.  
In addition, the information provided by the RGB image is limited, 
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color cameras usually cannot achieve better results when the color 
of the fruit is close to the background. 

As the demand for fruit detection continues to increase, the 
fruit detection method based on RGB image is difficult to meet the 
requirements.  Many scholars have integrated the results of 
multiple sensors to improve fruit detection.  Shamshiri et al.[11] 

reviewed the configurable, modular prototype robot system 
provided by the simulated workspace in the virtual environment, 
through simple testing and debugging of control algorithms, it can 
adapt to various field conditions to accelerate the 
commercialization of real robots.  Wang et al.[12] used a 
stereovision camera to locate the target in global coordinates for 
repeated counting of multiple images.  Xiang et al.[13] proposed a 
clustering tomato recognition method based on depth images, and 
the images were obtained by a stereo matching technology.  
However, due to a large amount of computation of stereovision 
technology, it is often unsuitable for real-time systems.  Maturity 
grading is important for the quality of fruits, Wei et al.[14] built a 
multispectral indexes system to identify the maturity with the 
hyperspectral technique.  Because of the influence of light 
conditions, the sensor is unsuitable for fruit detection in outdoor 
environments.  Underwood et al.[15] developed a mobile terrestrial 
scanning system for almond orchards that can efficiently estimate 
yield and fruit distribution for individual trees, and the visual 
system was based on lidar and camera sensors.  Stein et al.[16] 

presented a novel multi-sensor framework that can efficiently 
identify, localize every piece of fruit in a mango orchard.  A novel 
lidar component automatically generated the image for each canopy 
and used a multiple viewpoint approach for occlusion problems.  
In order to detect immature green citrus, Gan et al.[17] created a new 
color-thermal combined probability algorithm to fuse information 
from the color and thermal images to distinguish fruit from the 
background.  However, sensors such as lidar and thermal imaging 
cameras are more expensive, it is usually uneconomical to apply 
these sensors to the field of fruit detection. 

In recent years, consumer-grade depth cameras have been 
favored by more and more scholars.  This kind of camera can 
simultaneously acquire color images and depth images of the target 
scene.  Compared with color cameras, we can obtain the position 
information of the target, and then calculate the three-dimensional 
geometric features of the object, which are significantly helpful 
when applied to fruit detection.  Gongal et al.[18] used a depth 
camera in conjunction with an RGB camera to identify duplicate 
apples visible in images captured from two opposite sides of the 
tree canopy.  The accuracy of this method was 87.0% in 
identifying duplicate apples.  Nguyen et al.[1] developed an 
algorithm for detecting apples on trees using an RGB-D camera.  
The Euclidean clustering algorithm was applied to the point cloud 
to extract clusters for each apple.  Tao et al.[19] proposed an apple 
recognition method based on point cloud data, which is compared 
with different 3D descriptors and other classical classifiers to 
obtain recognition results and horizontal comparison results.  The 
results showed that the method had a better performance, but 
improvements should be made for accurately determining the 
condition of fruit occlusion.  Qureshi et al.[20] proposed two new 
mango tree canopy image automatic counting methods for 
accurately segmenting and detecting fruits in canopy images, one 
using texture-based dense segmentation and another using 
shape-based fruit detection.  For images collected under the same 
conditions as the calibration image, the estimated number of fruits 

was within 16% of the actual fruit number.  However, the results 
were poor when the model was used to estimate the number of 
fruits with different canopy shapes and when using different 
imaging conditions. 

Since there are usually occlusions and clustering between fruits 
in natural environments and the shape of many fruits is irregular, 
methods based on fruit shape detection in previous literature are not 
effective in some situations.  In order to overcome these problems, 
a novel method was proposed to detect and count sweet peppers 
based on subtractive clustering, which stays robust despite the 
influence of fruit shape and occlusion. 

The ultimate goal of this research is to achieve fruit 
recognition under natural conditions.  Specifically, the proposed 
method is utilized to detect sweet pepper fruits in 
three-dimensional point cloud scenes. 

2  Datasets and methods 

2.1  Datasets 
An open dataset, called sweet pepper dataset[21], was used for 

evaluating the performance of the proposed method.  An RGB-D 
camera (Intel Real Sense F200, Intel company, USA) mounted on 
the robotic arm was used to collect RGB-D data of sweet pepper.  
The data collection was conducted over 10 days within a protected 
farming system.  After data collection, the reconstruction of a 
dense sweet pepper point cloud from multiple views is 
implemented using the Kinect fusion[22], and the statistical outlier 
remover and voxel grid down sampler supported from Point cloud 
library (PCL)[23] were used for data de-noising and filtering.   
Figure 1 shows the 3D models of the point cloud scene.  The more 
detailed dataset information can be found in Reference [22]. 

 

 
Figure 1  3D models of the point cloud scene 

 

2.2  Methods 
The color and geometric information of the 3D sweet pepper 

point cloud were used.  According to the algorithm, the fruit 
regions were segmented by applying the color threshold of R-G 
first.  Then, the noise was removed by an outlier filtering 
algorithm.  Finally, the point cloud of each sweet pepper was 
processed based on the subtractive clustering algorithm.  The 
automatic method was compared to the visual manual counting, 
where all the images were counted by human inspectors. 
2.2.1  Color Filtering 

In order to achieve accurate recognition and localization of 
fruits, it is necessary to segment the fruit regions from the 
background first.  The color feature is an important attribute to 
distinguish fruits from the background.  The segmentation 
method- based color threshold was widely used.  In this paper, the 
R-G color difference segmentation method was chosen to perform 
background separation on 3D point cloud.  The fruits 
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segmentation method is as follows: 
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where Rs and Gs are the red and green information of the point 
cloud s, respectively.  And δ is the segmentation threshold.  
When Rs−Gs is greater than δ, the point is recognized as fruit point 
cloud data, otherwise, it is recognized as background point cloud 
data.  After segmentation, only the fruit point cloud data is 
retained, and the background point cloud data is removed, which 
can provide support for the subsequent three-dimensional 
recognition of fruits. 
2.2.2  Sparse outlier removal 

In the fruit region point cloud data after color filtering, there 
are often some outlier noise points that are far from the target 
object.  Additionally, measurement errors lead to sparse outliers 
which corrupt the results even more.  Therefore, the sparse outlier 
removal module is used to correct these irregularities[24].  

Firstly, for fruit point cloud data, the average distance dl from 
each point pl(xl, yl, zl) (l=1,2,…,n) to all its neighbors pm(xm, ym, zm) 
(m=1,2,…,k) is calculated as: 
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Finally, the points which fall outside are trimmed as:  
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where, the value of α depends on the size of the analyzed 
neighborhood, and it is 0.6 in this paper. 
2.2.3  Subtractive clustering 

Since there is interference with occlusion and aggregation in 
the fruit point cloud, methods such as RANSAC algorithm based 
on shape fitting is not suitable, which easily incorrectly recognizes 
the occluded adjacent two fruits into one.  For these point cloud 
groups in 3D space, the clustering algorithm can work well. 

Data clustering divides the data set into several different 
groups, and the similarity within the groups is greater than the 
similarity between the groups.  It is generally to know the number 
of clusters in advance based on such as K-means algorithm.  
However, the estimation of fruit quantities in advance in a natural 
scene is unrealistic.  For this reason, a subtractive clustering 
algorithm[25] is utilized in this research to detect every fruit by 
finding high-density regions in 3D space.  The flow chart is 
shown in Figure 2. 

 
Figure 2  Flow chart of subtractive clustering 

 

Fruit point clouds in the 3D space are roughly modeled by 
Gaussian function.  The 3D coordinates of all point clouds are 
then considered as candidate clusters centers.  Thus, each point pi 
with coordinates (xi, yi, zi) is potentially a cluster center whose 
density Di is given by the following equation: 
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where, N represents the number of 3D points within the 
neighborhood defined by the radius Ra=(Rax, Ray, Raz), in this paper, 
Rax=Ray=Raz=0.02 m.  The shape of the cluster can then be 
appropriately adjusted based on the selection of parameters Rax, Ray, 
Raz, which are related to the actual dimensions of 3D.  Obviously, 
candidates pi surrounded by more points contained in the defined 
neighborhood will show a high value of Di.  Points at a distance 
well above the radius defined by Ra hardly affects the value of Di.  
Equation (5) is computed for all 3D points measured after sparse 
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outlier filtering.  Where pcl(xcl, ycl, zcl) represent the point 
dominated by Dcl that represents the maximum density.  This 
point is selected as the cluster center for the current iteration of the 
algorithm.  The density of all points Di  is then corrected based 
on pcl and Dcl.  For this purpose, calculate the subtraction 
represented in Equation (6) for all points. 
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where, parameters Rb=(Rbx, Rby, Rbz) define the neighborhood.  
Due to these data points that cannot become the next cluster center, 
the density of data point close to the first cluster center will be 
reduced.  To prevent clustering centers from being closer, 
parameters (Rbx, Rby, Rbz) are usually larger than (Rax, Ray, Raz).  
Typically, let Rb=1.5Ra. 

After the subtraction process, the density of the point near pcl is 
correspondingly reduced according to the distance from the point to 
pcl.  After the correction of densities, a new cluster center pcl,new is 
generated, corresponding to the new density maximum Dcl,new, and 
the above process will iterate until Equation (7) is not satisfied. 
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where, Tmin is the experimentally tuned parameter which can be 
adjusted to define the termination condition based on the 

relationship between the previous cluster density and the new one.  
When the density of the candidate cluster center is greater than Tmin 
times of the density of the previous cluster center and the distance 
between the cluster center and the previous cluster center should be 
less than r, which prevents secondary recognition of the same fruit.  
Therefore, the size of r depends on the size of the fruit.  For the 
test of sweet pepper, r is taken as 0.04 m.  If the point based on 
this density satisfies the above two requirements, then the cluster 
center is accepted.  If the density of the candidate cluster center is 
less than Tmin times of the density of the previous cluster center, it 
is considered not to be the cluster center. 

3  Results and discussion 

3.1  Color filtering and sparse outlier removal results 
The detection method was tested on the sweet pepper dataset, 

but since the amount of data in the point cloud scene in this dataset 
was too large, the sweet pepper was downsampling before it was 
detected by the algorithm.  Sparse the point cloud scene and the 
sampling result are shown in Figure 3. 

After obtaining the sparse data of the fruit trees, the color 
cloud threshold segmentation method of R-G was used to perform 
point cloud segmentation on the fruit and the background.  Figure 
4 shows the segmentation results of the fruit tree point cloud at 
different thresholds. 

 

 

 

 
a.  b. 

Figure 3  Point cloud original scene and sampling results 
 

a. 

b. 
Figure 4  Segmentation results of fruit tree point clouds under different thresholds. 
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As can be seen from Figure 4, after the color threshold 
segmentation, the fruit and background were well separated to 
obtain point cloud data for the fruit region.  From the point cloud 
part circled by the yellow mark, the segmentation effect was 
slightly different with the change of δ.  When δ changed from 20 
to 50, the segmentation effect was basically the same.  When δ 
was greater than 50 and approached 60, 70, it can be observed that 
the number of original point clouds in the yellow circle had a 
significant decrease trend, indicating that the threshold had passed.  
The assembly caused the filtration of normal fruit point clouds.  
Therefore, in this experiment, for the segmentation threshold 
between the red bell pepper and the green background, it was set 
between 20 and 50, and when identifying other fruits, different 
adjustments were made according to experience. 

In order to improve the efficiency and accuracy of clustering, 
the point cloud of the fruit region was first filtered and denoised.  
Figure 5 shows the point cloud processed by sparse outlier filtering.  
By filtering out the unstable noise points deviating from the main 
body, more accurate and effective fruit point cloud data were 
obtained. 

 

 
Figure 5  Filtering results after sparse outlier removal 

 

3.2  Subtractive clustering results 
The subtractive clustering algorithm was verified on the 

processed data and the effectiveness of the algorithm accuracy was 
identified.  The results of the qualitative analysis are shown in 
Figure 6, where the green point cloud label represents the 
recognition for sweet pepper.  The recognition results based on 
the filtered point cloud data in the front view are shown in Figure 
6a.  The recognition results based on the filtered point cloud data 
in the top view are shown in Figure 6b.  Figure 6c shows the 
effect picture of the green label in the original scene, where some 
labels are occluded in the point cloud and invisible. 

It can be seen from Figure 6 that there are different degrees of 
occlusion in the sweet pepper, that is, the marked area, for the total 
of 12 sweet peppers, 8 of which had more than 50% occlusion area 
of the total area.  Of the 12 fruits, 11 fruits were identified, and 
the cluster center was marked with a green label. 

To quantify the performance of our fruit recognition method, 
true positive rate (TPR), false positive rate (FPR) and the false 
negative rate (FNR) were used to describe the correct detection 
accuracy of sweet peppers in the scene. 

 

a. 
 

b. 
 

c. 
Figure 6  Results of the qualitative analysis based on the proposed 

method 
 

If the green clustering label was at the location of sweet pepper, 
then the detection was considered a true positive; otherwise, the 
detection was a false positive.  Each detection for a fruit was 
treated as unique: if multiple detections locating the same fruit, one 
of them was regarded as the true positive and the others were 
considered false positives.  A false negative represented a ground 
truth position that had no corresponding detection.  The specific 
recognition results are shown in Table 1.  The point plot of the 
recognition results is shown in Figure 7. 

In Table 1, the recognition result of the fruit detection 
algorithm for the sweet pepper data set analyzed in Section 3.2 was 
summarized.  For this data set, the TPR was 90.69% of all sweet 
pepper that were at least partially visible in the scene.  Analysis of 
unapproved fruits showed that these were highly occluded fruits 
with fruits at the edges of the image and only a small portion of the 
surface visible, and the FPR was 6.97%. 

 

Table 1  Recognition performance of the algorithm in sweet pepper datasets 
Tree Total fruits Occlusion area <50% Occlusion area >50% True Positive Rate (TPR) False Positive Rate (FPR) False Negative Rate (FNR)

1 12 8 4 11 0 1 
2 19 13 6 18 1 1 
3 17 10 7 16 2 1 
4 19 9 10 15 2 4 
5 19 11 8 18 1 1 

Total 86 51 35 78(90.69%) 6(6.97%) 8(9.31%) 
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Figure 7  Point plot of the recognition results 

 

The RANSAC[26] algorithm was also used in the experiment to 
detect the dataset and compared it with the detection results of the 
proposed algorithm.  RANSAC calculates the mathematical model 
parameters of the data based on sample data sets containing 
outliners and obtains an algorithm for valid sample data.  The 
RANSAC algorithm is often used in computer vision.  For 
example, solving the matching point problem of a pair of cameras 
and the calculation of the basic matrix simultaneously in the field 
of stereo vision.  The detection result is shown in Figure 8 where 
the original point cloud image is the same as Figure a. 

The recognition result can be seen in Figure 8, and 10 of the 12 
sweet peppers were detected.  The most important reason was that 
the two missing point clouds were fitted into one for the error 
detection of the adjacent occluded point cloud.  In Table 2, the 
recognition results of the RANSAC algorithm were summarized. 

 
a. 

 
b. 

Figure 8  Qualitative results based on RANSAC algorithm from 
different perspectives 

 

Table 2  Recognition results of the RANSAC algorithm in 
sweet pepper datasets 

Tree Total 
fruits 

True Positive Rate 
(TPR) 

False Positive Rate 
(FPR) 

False Negative Rate 
(FNR) 

1 12 10 0 2 

2 19 16 0 3 

3 17 15 1 2 

4 19 16 0 3 

5 19 17 2 2 

Total 86 74 (86.05%) 3 (3.49%) 12 (13.95%) 
 

Based on the RANSAC algorithm, a TPR of 86.05% was 
obtained, which was worse than the TPR of 90.69% based on the 
proposed algorithm.  The FPR of 3.49% in RANSAC was 
superior to the one based on subtractive clustering, which was due 
to the repeated detection of the same fruit.  But repeated 
recognition is also the right recognition of fruit, and has no 
negative impact on fruit picking.  So, a slightly higher FPR had 
not too much effect on the final identification of fruit.  In 
summary, the proposed algorithm was better than the RANSAC 
algorithm for a complex environment. 
3.3  Discussion 

Color filtering, sparse outlier removal and subtractive 
clustering were used to detect fruits in complex orchard 
environments.  Finally, the detection results of 90.69% TPR and 
6.97% FPR were obtained for the sweet pepper data set.  After 
compared with the RANSAC algorithm, the superiority of the 
proposed algorithm can be verified. 

For recognizing the fruit with severe occlusion, the radius 
parameters are set a little to adapt the size of the small fruit point 
cloud.  Therefore, the results of the algorithm may show two 
cluster centers for large-sized fruits, which leads to an increase in 
FPR, so future research will focus on changing the algorithm to 
parameter adaptation.  As for the FPR, the result of 6.97% is 
slightly higher, but the repeated detection of the fruit does not 
actually affect on the fruit picking, but only interferes with the 
yield estimation of the fruit.  Therefore, the final test results are 
generally satisfactory. 

Due to the use of the color threshold segmentation, the 
algorithm proposed is limited to detecting red and bicolored fruits.  
For detecting green apples, the filtering strategy should be 
improved.  For example, the method of machine learning can 
classify color regions in a point cloud, and the method of spectral 
images can identify the target by extracting spectral features. 

Because the algorithm is based on the sweet pepper point cloud 
dataset, it can be applied to larger fruits.  However, there are 
many fruit clusters in the natural scene, especially the bunch of 
fruits like grapes.  It is difficult to detect them for the proposed 
algorithm.  

4  Conclusions 

In this study, an algorithm was proposed and verified for sweet 
pepper detection which provides scientific and reliable technical 
guidance for sweet pepper harvesting robots.  Firstly, the fruit 
regions were segmented from the original point cloud by applying 
the color threshold.  Then, the noise in sweet pepper point clouds 
was removed with a sparse outlier removal method.  Finally, the 
point cloud of each sweet pepper was detected and counted based 
on the subtractive clustering algorithm.  For the sweet pepper 
dataset, the 90.69% TPR and the 6.97% FPR were obtained for all 
fruits that are at least partially visible in the scene.  Undetected 
sweet peppers showed that these were highly occluded fruits which 
could be detected more accurately from another angle. 
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