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Abstract: Remote sensing is an important technical means to investigate land resources.  Optical imagery has been widely 

used in crop classification and can show changes in moisture and chlorophyll content in crop leaves, whereas synthetic aperture 

radar (SAR) imagery is sensitive to changes in growth states and morphological structures.  Crop-type mapping with a single 

type of imagery sometimes has unsatisfactory precision, so providing precise spatiotemporal information on crop type at a local 

scale for agricultural applications is difficult.  To explore the abilities of combining optical and SAR images and to solve the 

problem of inaccurate spatial information for land parcels, a new method is proposed in this paper to improve crop-type 

identification accuracy.  Multifeatures were derived from the full polarimetric SAR data (GaoFen-3) and a high-resolution 

optical image (GaoFen-2), and the farmland parcels used as the basic for object-oriented classification were obtained from the 

GaoFen-2 image using optimal scale segmentation.  A novel feature subset selection method based on within-class aggregation 

and between-class scatter (WA-BS) is proposed to extract the optimal feature subset.  Finally, crop-type mapping was 

produced by a support vector machine (SVM) classifier.  The results showed that the proposed method achieved good 

classification results with an overall accuracy of 89.50%, which is better than the crop classification results derived from 

SAR-based segmentation.  Compared with the ReliefF, mRMR and LeastC feature selection algorithms, the WA-BS algorithm 

can effectively remove redundant features that are strongly correlated and obtain a high classification accuracy via the obtained 

optimal feature subset.  This study shows that the accuracy of crop-type mapping in an area with multiple cropping patterns 

can be improved by the combination of optical and SAR remote sensing images. 
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1  Introduction

 

Mapping regional and global cropland distribution in a timely 

manner is a main basis for crop yield estimation, crop growth 

monitoring and acreage surveys[1,2].  With the ability to quickly 

and efficiently collect information in real time over wide ranges, 

remote sensing is a rich data source for crop-type mapping[3].  

Multiresolution or multitemporal optical images with abundant 

spectral and texture information have been widely used in crop 

identification[4-6].  However, data acquisition of optical remote 

sensing images will inevitably be affected by clouds and rain.  

Due to the limitation of optical images for discrimination of crops 

with similar spectra, the accuracy of crop classification with a 

single optical image may be reduced. 

Radar remote sensing mainly acquires images, which are 
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different from optical remote sensing images, based on 

electromagnetic waves in the microwave range and records the 

backscattering characteristics of ground objects.  Synthetic 

aperture radar (SAR), as an active microware imaging sensor, has 

become an effective tool for crop-type mapping with its all-weather, 

all-time and wide coverage characteristics[7,8].  Single-band and 

single-polarization SAR images were used as data sources in early 

crop identification research.  These studies often used C-band and 

VV or HH polarization modes produced by spaceborne sensors 

such as ERS-1/2 and RADARSAT-1[9,10].  However, single 

polarization and low spatial resolution greatly limit the ability to 

identify crops, especially in complex planting pattern areas and 

fragmented land.  With the launch of COSMO-SkyMed 1/2, 

RADARSAT-2 and Sentinel-1 satellites, multipolarization and 

fully polarimetric SAR (PolSAR) data have become available in 

recent years.  PolSAR data contain information regarding the 

shape, dielectric constant, roughness, orientation and 

backscattering properties of ground objects, thereby having more 

advantages in crop classification and area monitoring[11-13].  

McNairn[14] proposed that there are generally three types of 

scattering mechanisms in farming regions, including surface 

scattering, double-bounce scattering and volume scattering.  Many 

scholars have explored polarimetric decomposition theorems to 

distinguish different scattering mechanisms from radar 

responses[15-18].   Haldar[19] used a single date fine quad-pol 

mailto:cuijt@radi.ac.cn
mailto:wangws@ms.xjb.ac.cn


January, 2020   Cui J T, et al.  Integration of optical and SAR remote sensing images for crop-type mapping based on feature selection method  Vol. 13 No.1   179 

C-band RADARSAT-2 dataset to evaluate five decomposition 

techniques based on incoherent and coherent decompositions as 

well as the radar vegetation index (RVI) for crop classification over 

heterogeneous agricultural areas.  Among the incoherent models, 

Freeman 3-component decomposition was found to perform better 

in distinguishing vegetation from other land covers.  Jiao[20] 

applied the polarimetric parameters extracted from Cloude–Pottier 

and Freeman–Durden decompositions to SAR crop mapping, and 

object-oriented classification results derived from a single date of 

PolSAR image indicated an overall accuracy of 95% and a Kappa 

of 0.93, which was a 6% improvement over linear-polarization only 

classification. 

Due to the different characteristics of SAR and optical remote 

sensing in imaging mechanisms, the combination of radar and 

multispectral data has become one of the trends in agricultural 

remote sensing.  Several studies verified that higher mapping 

accuracies can be reached by combining the two data sources[21-23].  

Steinhausen et al.[24] applied a random forest-based wrapper 

approach to select the most relevant SAR images for combining 

with optical images, and the results indicated that combining 

Sentinel-1 and Sentinel-2 data can improve land cover mapping in 

cloud-prone regions.  De Alban et al.[25] created image stacks from 

the Landsat and SAR layers and delineated regions of interest to 

map land cover using a random forest classifier, indicating that the 

combined use of Landsat and L-band SAR data was superior to 

individual sensor data.  Fusing optical and SAR data has been 

given more attention in numerous studies and were employed on 

three levels: the pixel level, the feature level and the decision level.  

However, due to speckle noise inherent in SAR imagery, 

pixel-level fusion is inappropriate for SAR data[26].  Hong et al.[27] 

noted that some methods, such as high-pass filters (HPFs), wavelet 

transforms and contourlet transforms, can retain texture 

information, but high-frequency information and spatial details 

derived from SAR images were lost.  Feature-level fusion is 

usually implemented on features extracted from images.  Perushan 

et al.  [28] adopted feature-level image fusion to fuse Sentinel-2 and 

Landsat 8 images with SAR images and discriminated an alien 

plant species from its surroundings using a support vector machine 

(SVM) supervised classification algorithm, but the classification 

accuracy needs to be improved.  Because of the inherent noise in 

SAR data and different imaging models between optical and SAR 

data, fusion methods between two heterogeneous images are 

difficult to perform. 

Speckle noise resulting from the coherent imaging system of 

SAR affects the image quality and interpretation, reducing the 

classification accuracy derived from the pixel-based classification 

methods[29].  Object-oriented classification, as a novel 

classification approach, can extract features, such as texture, shape 

and spatial information, after image segmentation which would 

suppress noise and improve the classification accuracy[30].  Some 

statistical models and segmentation methods for SAR data have 

been studied[31-33].  However, due to the high dynamics and local 

statistical properties of SAR images, there are still limitations in 

SAR image segmentation.  Therefore, a feasible solution, that is, 

image segmentation based on high-resolution optical imagery, 

could accurately express the ground information and avoid 

salt-and-pepper noise in image processing. 

To make full use of the advantages of optical and SAR images, 

a scheme has been developed for crop-type mapping using 

GaoFen-2 (GF-2) optical images and GaoFen-3 (GF-3) PolSAR 

images.  In total, 58 feature parameters related to crop growth 

were extracted from optical and SAR images, and object-oriented 

crop classification was performed with the support of farmland 

parcels segmented from the high-resolution GF-2 image.  

Furthermore, a novel feature selection algorithm that is based on 

within-class aggregation and between-class scatter is proposed to 

extract the optimal feature subset and is abbreviated WA-BS.  To 

utilize and evaluate the complementary advantages of the 

multisensory method, our main objectives are (1) to test the validity 

of the combination of GF-2 and GF-3 data for crop-type mapping 

with the support of farmland parcels derived from optical image 

segmentation and (2) to quickly select the optimal feature subset 

from remote sensing images and evaluate the contribution of each 

feature during the crop growth stage.  An experiment was carried 

out in an agricultural district within Xinjiang Uygur Autonomous 

Region, China, to examine the feasibility of the proposed method. 

2  Study area and datasets 

2.1  Study area 

   The study area is located in an agricultural district stretching 

over Bohu and Yanqi counties of Xinjiang Uygur Autonomous 

Region that faces Bosten Lake to the east, which is the largest 

inland freshwater lake in China.  This area is one of the most 

productive agricultural regions in Xinjiang Uygur Autonomous 

Region, mainly for food crops (maize and winter wheat) and 

economic crops (tomatoes, beets, cotton and fruit).  The 

geographic extent of the study area is shown in Figure 1.  This 

region has a dry, temperate continental climate.  The annual 

precipitation is approximately 79.2 mm, and the annual evaporation 

ranges from 1800 to 2000 mm.  Due to the multiple crop types 

and a unique crop calendar, this area is ideal to examine the 

potential for the combined use of optical and SAR remote sensing 

images for mapping crops. 

 
Figure 1  Study site in the agricultural area of Xinjiang Uygur 

Autonomous Region, China 
 

2.2  Remote sensing data and preprocessing 

As one of the new generation satellite programs developed by 

China, the GF-2 satellite has potential capabilities in many 

applications[34-36].  The GF-2 satellite carries two 1-m 

panchromatic and 4-m multispectral cameras, with four 

multispectral bands ranging from 450 to 890 nm.  In this study, 

image data from 25 June 2018 were downloaded from the website 

(http://www.cresda.com/CN/sjfw/zxsj/index.shtml) provided by the 

China Centre for Resources Satellite Data and Application 

(CRESDA), with a cloud coverage of less than 3%.  The 
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preprocessing of the GF-2 data was performed in ENVI 5.3, 

including radiation calibration, atmospheric correction and 

geometric correction.  Radiometric calibration was performed by 

using the absolute radiation calibration coefficient of the GF-2 data 

provided by CRESDA.  Atmospheric correction was carried out 

using the second simulation of the satellite signal in the solar 

spectrum (6S) model[37].  Geometric correction was based on a 

WorldView-2 image with accurate spatial coordinate information.  

A quadratic polynomial correction algorithm was utilized by 

adding group control points (GCPs), and the error was controlled 

within 0.5 pixels.  In the 1-m fusion image, farmland boundaries 

could be clearly represented on the GF-2 images, guaranteeing the 

extraction of the farmland parcels. 

The GF-3 satellite, the first Chinese C-band civil radar satellite, 

has 12 imaging modes with a fine spatial resolution up to 1 m and 

was launched on 10 August 2016.  The GF-3 PolSAR data of 

quad-polarization strip I (QPSI) mode with a spatial resolution of  

8 m were downloaded from the CRESDA website.  According to 

field investigations, the crop types in the study area were mainly 

wheat, cotton, maize, beets and tomatoes.  Considering the 

phenological characteristics of the crops (Figure 2), GF-3 data from 

6 July 2018 were utilized to classify the crop types.  At this time, 

the crop growth characteristics were significantly different.  The 

SAR data were preprocessed in Pixel Information Expert (PIE), 

including radiometric calibration, multi-look processing, refined 

Lee filtering (window size of 5×5)[38] and geometric correction.  

GCPs were used to coregister the GF-3 image and the preprocessed 

GF-2 image until the error was less than 0.5 pixels. 

 
Figure 2  Crop calendar for the study site 

 

2.3  Field data collection 

The sample data were collected in mid-July 2018 during 

fieldwork.  With a land use map of the study area and a Google 

Earth image from this period as reference maps, the random 

clustered sampling approach[39] was used to obtain the samples.  

The sampling method first randomly selected certain groups that 

were non-crossing and non-repeating in the study area, then 

randomly selected several clusters from the groups and investigated 

all the individuals or units in these clusters.  Then, a simple 

random sampling method was used to select a certain class in the 

cluster as the sample to be collected.  Each cluster was a 

geographical area, which was used as an investigation unit.  A 

Trimble Pro XRT GPS receiver with a positioning accuracy of  

0.2 m was used to mark the geographical coordinates (latitude and 

longitude) of these samples, and geotagged photos were taken at 

each site to record the sample types.  In addition, the field data 

also contained other land cover information, including water bodies, 

residential areas, woodlands, wetlands and bare land.  To train the 

classification model and investigate the crop classification accuracy, 

we randomly divided the crop samples into 3224 training samples 

and 1470 validation samples, as shown in Table 1. 

Table 1  Training and validation samples of each crop class 

Class Training samples Validation samples 

Wheat 589 257 

Maize 564 252 

Cotton 635 283 

Beets 691 340 

Tomatoes 745 338 

3  Methodology 

The four-step procedure for crop-type mapping with the 

combined use of optical and SAR remote sensing images is outlined 

in Figure 3: (1) acquire the map layer of the farmland parcels at the 

optimal segmentation scale, which is used to classify crop types at 

parcel level; (2) extract multiple polarimetric features from the SAR 

image and the texture features and vegetation index from the optical 

image; (3) select the optimum feature set from high-dimensional 

features through the WA-BS algorithm proposed in this paper; and 

(4) use the support vector machine one-versus-rest (SVM-OVR) 

algorithm to perform object-oriented classification with the support 

of the farmland parcels segmented from high-resolution optical 

image. 

 
Figure 3  Overview of the methodology for mapping crops with 

the combined use of optical and SAR remote sensing images 
 

3.1  Farmland parcel extraction from an optical image 

The process of catchment area division was divided into four 

steps: DEM generation, flow direction setting, and two key 

technologies in the object-oriented analysis: image segmentation 

and object-oriented image classification.  Image segmentation 

greatly affects the quality of subsequent processing.  Multiscale 

segmentation is a bottom-up segmentation method that combines 

similar adjacent pixels to form image objects by identifying the 

similarities between pixels.  The segmentation effect depends on 

the parameter settings, including the smoothness, compactness, 

color, shape and scale.  Because of speckle noise and the lack of 

effective feature expression, multiscale segmentation of SAR 

images cannot be performed effectively.  Therefore, in this study, 

we performed multiscale segmentation on the GF-2 image.  

Typical samples of six types of ground objects distributed in the 

study area were selected for the supervised classification based on 

an SVM to obtain the distribution of ground objects: water bodies, 

residential areas, woodlands, wetlands, bare land and farmland.  

Then, the extracted nonfarming land was masked to obtain the 

farmland range. 
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In the process of image segmentation, the segmentation scale 

greatly affects the spatial structure of the objects.  Therefore, it is 

important to set the optimal scale so that the homogenous pixels 

with similar spectral characteristics, brightness and texture can be 

classified as the same object.  In this study, we used the local 

variance method[40,41] to select the optimal scale of farmland and 

resegmented the farmland layer.  The local variance in the 

window was calculated by a moving window of size n×n pixels, 

and then the average local variogram (ALV) map was generated, as 

shown in Equation (1).  The range for the ALV curve was 

determined by the change rate in the ALV with the segmentation 

scale.  In fact, the extreme point or critical point of the local 

variance cannot be found mathematically.  Therefore, the 

threshold of the change rate in the ALV should be set according to 

the experiment.  As the segmentation scale increases, the scale 

that corresponds to the point whose change rate is initially less than 

the threshold is the optimal segmentation scale of the farmland 

parcels. 

1 1

0 0

( , ) /
M N

i j

ALV LV i j MN
 

 

              (1) 

2 2

0 0

( , ) | ( , ) | /
n n

i j

LV i j g i j g n
 

   

where, M and N represent the number of rows and columns of the 

image, respectively; i and j are the row and column numbers in the 

local window, respectively; LV(i, j) is the local variance of the i-th 

row and j-th column pixel; g(i, j) is the gray value of the pixel, and 

g  is the mean of the gray values with the local window. 

3.2  Feature extraction from multisource images 

3.2.1  SAR image feature extraction  

Features derived from polarimetric decomposition and the radar 

indices have physical meanings and are sensitive to crop growth 

stages[42].  Polarimetric decomposition is helpful for revealing the 

physical mechanism of scatters by using a polarimetric scattering 

matrix, such as a covariance matrix, a coherence matrix or a 

scattering matrix.  A number of polarimetric decomposition 

theories have been proposed, including coherent target 

decomposition and incoherent target decomposition.  The various 

parameters derived from SAR polarimetric decomposition reflect 

the scattering difference between the target and the background from 

different angles, which is helpful for accurately identifying crop 

targets via the joint use of these parameters.  In this study, we 

extracted three types of features from the SAR imagery: (1) features 

based on the original PolSAR data (i.e., the Sinclair scattering 

matrix, coherent matrix and covariance matrix were calculated for 

the full-polarized image to extract the original matrix parameters); 

(2) features based on different polarimetric decomposition theories, 

including Cloude-d[43], Freeman-d[44], VanZyl-d[45], Krogager-d[46], 

Pauli decomposition[47] (Pauli-d), Barnes-d[48], Holm-d[49], 

Yamaguchi-d[50], Huynen-d[51], Neumann-d[52] and H/A/Alpha-d[53]; 

and (3) features including the total scattering power SPAN of the 

Sinclair scattering matrix, the radar vegetation index (RVI), and the 

pedestal height (PH).  In total, 50 parameters were extracted, as 

shown in Table 2. 
 

Table 2  Features extracted from the PolSAR data for crop-type mapping 

Feature class Method Feature parameter N-parameters 

Original features 

Sinclair scattering matrix (1) S1 (2) S2 (3) S3 3 

Coherence matrix (4) T1 (5) T2 (6) T3 3 

Covariance matrix (7) C1 (8) C2 (9) C3 3 

Polarimetric  

Decomposition 

features 

Freeman (10) Freeman-Vol (11) Freeman-Odd (12) Freeman-Dbl 3 

Krogager (13) Krogager-KS (14) Krogager-KD (15) Krogager-KH 3 

van Zyl (16) VanZyl-Vol (17) VanZyl-Odd (18) VanZyl-Dbl 3 

Barnes (19) Barnes-T11 (20) Barnes-T22 (21) Barnes-T33 3 

Pauli (22) Pauli-a (23) Pauli-b (24) Pauli-c 3 

Cloude (25) Cloude-T11 (26) Cloude-T22 (27) Cloude-T33 3 

Holm (28) Holm-T11 (29) Holm-T22 (30) Holm-T33 3 

Yamaguchi 
(31) Yamaguchi-Vol (32) Yamaguchi-Odd (33) Yamaguchi-Dbl 

4 
(34) Yamaguchi-Hlx   

Huynen (35) Huynen-T11 (36) Huynen-T22 (37) Huynen-T33 3 

Neumann (38) Neumann-dela-mod (39) Neumann-dela-pha  2 

H/A/Alpha (40) Alpha Angle (41) A (Anisotropy) (42) H (Entropy) 3 

SAR 

discriminators 

(43) RVI (Radar Vegetation Index) 

8 

(44) PF (Polarization Fraction) 

(45) PH (Pedestal Height) 

(46) PA (Polarization Asymmetry) 

(47) SE (Shannon Entropy) 

(48) DERD (Double-bounce Eigenvalue Relative Difference) 

(49) SERD (Single-bounce Eigenvalue Relative Difference) 

(50) SPAN 
 

3.2.2  Optical image feature extraction 

The texture features derived from optical images are helpful 

for distinguishing different objects compared with classification 

with pure spectral features only[54].  The commonly used texture 

feature extraction methods include a Gabor wavelet transform, the 

GLCM and a Markov random field[55-57].  The GLCM is an 

effective method to describe the spatial correlation of the pixel 

grayscale and to count the occurrence frequency of the gray level 
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of two pixels in a certain spatial relationship.  Four directions (0°, 

45°, 90° and 135°) were selected in this experiment, considering 

that the GLCM is related to each direction.  The eigenvalues of 

the subwindows from the four directions were calculated and then 

averaged to reduce the influence of direction on the feature 

parameters.  Comparing the effect of texture feature extraction, 

this experiment finally chose the parameters with a window of 5×5 

pixels, a moving step of (1, 1) and a 64-level grayscale.  Six 

texture feature statistics from the GF-2 optical image were 

extracted using MATLAB R2016a, including the homogeneity 

(HOM), energy (ASM), contrast (CON), variance (VAR), mean 

(MEAN) and correlation (COR), which are numbered from 51 to 

56.  In addition, the normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI) are important 

indicators for characterizing vegetation growth and are closely 

related to the vegetation coverage, biomass and the leaf area index.  

Therefore, the mean NDVI and EVI values within each parcel were 

calculated as the features used in crop classification, and the NDVI 

and EVI are numbered as 57 and 58.   

3.3  Optimal feature subset selection 

Selecting the optimal feature subset is essential for quickly 

finding effective or necessary information in a large feature set.  A 

high dimensionality of features would be hard to process and would 

lower the classification accuracy due to the redundancy and 

relatedness of the features.  Existing methods of feature subset 

selection (FSS) are of two types: filters and wrappers.  Wrapper 

models need to utilize a classifier to assess the feature subsets and 

always have a high computational complexity.  Filter models, such 

ReliefF[58], mRMR[59] and CFS4[60], are independent of the 

classifiers.  However, some FSS methods still have limitations 

since the individually optimal features are certainly not the optimal 

combination of these features as a whole.  Therefore, a novel 

feature selection method based on within-class aggregation and 

between-class scatter, namely, WA-BS, is developed in this study.  

The aim of the WA-BS algorithm is to choose a compact set of 

features that is important and sufficient to represent the 

characteristics of objects.  The WA-BS algorithm generally 

includes two steps: (1) discarding features that are weak in terms of 

distinguishing target objects to obtain the candidate features and (2) 

removing redundant features from the candidate features that are 

strongly correlated.  First, the WA-BS functions were defined, and 

the two functions of each type of crop for a certain feature were 

calculated.  Then, the evaluation criterion function of the feature set 

was constructed to measure the ability of a feature to distinguish 

different types of objects.  Based on this criterion, the Monte Carlo 

sampling method was used to select the candidate feature subset 

from the original feature set.  Second, the correlation coefficient 

matrix was built, and the final optimal feature subset was obtained 

by setting a reasonable threshold to remove highly correlated 

features.  Through the above steps, the optimal feature set can be 

selected from high-dimensional features and improve the 

recognition efficiency. 

3.3.1  The extraction of candidate features 

Each crop type can be considered an independent class.  

Therefore, the quantitative criteria for optimal feature selection can 

be established by calculating the within-class aggregation and the 

between-class scatter of various types of crops in a certain feature.  

When the within-class aggregation Cnii is high and the 

between-class scatter Dnij is large, the feature of interest can 

distinguish these ground objects. 

Definition 1: the within-class aggregation Cnii of the crop class  

i that corresponds to the n-th dimension feature is: 

Cnii = ||x 

n
ik – E(X 

n
i )||2  

    
          (2) 

where, n is the dimension of the feature vector; x 

n
ik is the k-th 

sample vector of crop class i of the n-th dimension feature, 

k=1,2, …, N, X 

n
i =[X 

n
i1, X 

n
i2, …, X 

n
iN], E(X 

n
i ) is the expected value of 

X 

n
i, and || ·||2 is used to calculate the 2-norm of a vector. 

Definition 2: the between-class scatter Dnij of crop class i and 

crop class j that corresponds to the n-th dimension feature is: 

Dnij = ||E(X 

n
i ) – E(X 

n
j )||2  

    
         (3) 

where, E(X 

n
i ) is the expected value of X 

n
i and E(X 

n
j ) is the expected 

value of X 

n
j. 

Definition 3: the discriminant function Gnij that describes both 

Cnii and Dnij can be obtained by combining definitions 1 and 2. 

Gnij = Dnij/(Cnii + Cnjj)                 (4) 

If there are S types (S≥2) of crops to be identified, the 

complexity of the identification should be considered, so lower 

dimensions of the selected feature subset are better.  Furthermore, 

the samples in the same class should be as compact as possible, and 

samples of different classes should be dispersed; that is, larger 

discriminant functions Gnij are better.  According to the 

discriminant function in definition 3, the criterion function fn for 

evaluating the quality of the feature set can be expressed as formula 

5: 

             
1

1 1

S S

n nij

i j i

f G

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                  (5) 

According to the above formula, a larger between-class scatter 

of various ground object types produces a larger criterion function, 

while a smaller within-class aggregation produces a larger criterion 

function.  Therefore, the larger the value of the criterion function 

is, the better the ability of the feature to distinguish ground object 

types. 

Based on the criterion function fn, the Monte Carlo random 

sampling algorithm was used to select the candidate feature subset 

to reduce the feature dimensionality and to improve the 

classification efficiency.  The processing chain is shown in  

Table 3. 

3.3.2  Removing redundant features that are strongly correlated 

Because of the possible correlation between some candidate 

features, the redundant features that are strongly correlated also 

need to be removed.  A correlation coefficient matrix can be built 

for multiple vectors since the correlation between two variables can 

be expressed by the correlation coefficient.  Therefore, feature 

parameters with similar classification capabilities can be deleted by 

analyzing the correlation between these parameters.  First, a 

feature parameter matrix was constructed according to the feature 

subset that was extracted above.  All the features were sorted in 

ascending order according to fn.  Second, the correlation 

coefficient between every two columns in the feature parameter 

matrix was calculated by the nonparametric correlation coefficient, 

and the correlation coefficient matrix P was obtained: 

                

'

' ' '

11 1

1

....

: .... :

....

n

n n n

r r

P

r r

 
 

  
 
 

                   (6) 

Due to the equality of rij and rji, P is a symmetric matrix.  

Therefore, only the lower triangular matrix of P needs to be 

analyzed.  According to the relationship between the element 
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value rij in the correlation coefficient matrix and the threshold T, 

the elements Xi and Xj are strongly correlated if rij>T.  Thus, the 

i-th (or j-th) dimension feature in the feature parameter matrix 

should be removed to obtain the final optimal feature subset. 
 

Table 3  Processing chain for candidate feature set selection 

Candidate feature selection algorithm 

Input 

(1) Sample data 1{ }l

p pT t  , where l is the total number of samples; 

(2) Types of ground objects X={x
1
, x

2
, …, x

S
}, where S is the number of ground objects and x

i
 is the sample set of the i-th class of ground objects; 

(3) Number of training samples of each class {Mk}, k=1,2,…,N; 

(4) Number of features q; 

(5) Threshold tv; 

(6) Maximum number of iterations mi. 

Processing chain 

(1) Initialize n = 1 and select the n-th feature; 

(2) Use (1)-(4) to calculate fn.  If fn < tv, delete the n-th feature, and the dimension of the feature space is d = d–1.  Otherwise, jump to step (3); 

(3) Use the linear congruential generator (LCG) 

vu = (avu–1+c)(modM), ru = vu/M (where a is the multiplier, 0 < a < M; c is the increment, 0 ≤ c < M; M is the modulus, M>0; v0 is the original value, 

0 ≤ v0 < M; and ru is a random number) to obtain H random numbers.  Select X′= {xe, xf, …, xz} from a set X by using these random numbers, 
where xf = floor(l×ru)·H and floor()is the integral function; 

(4) Perform random rearrangement to the selected set X′ to obtain X″; 

(5) Combine the rest of set X and set X″ to obtain a new set Y; 

(6) Use (1)-(3) to calculate fn′; 

(7) If fn′ >fn, the new set Y is more suitable for sample classification than the original set X, so num = num+1.  Otherwise, the original set X is more 

suitable for sample classification than the new set Y, and num remains the same. 

(8) Do mi iterations from step (3) to (7); 

(9) If num ≥ mi/3, delete the n-th feature, and the dimension of the feature space is d = d–1.  Otherwise, retain this feature; 

(10) n = n+1.  If n ≤ q, repeat steps (1)-(9).  Otherwise, output the feature subset. 

Output Candidate feature set 
 

3.4  Object-oriented classification by combining optical and 

SAR remote sensing images 

Support vector machines (SVMs), a universal learning method 

based on statistic learning theory, have an excellent learning 

performance and a good generalization ability when solving 

small-sample, nonlinear and high-dimensional problems.  The 

SVM algorithm was originally used to solve the problem of 

two-class classification.  When the training sample set originates 

from m (m>2) classes, the set belongs to the multiclass classification 

problem.  At present, many algorithms have extended SVMs to 

multiclass classification problems, and these algorithms are 

collectively called multi-category support vector machines 

(M-SVMs).  The one-versus-rest (OVR) method is widely used[61], 

so this method was utilized to solve the problem of multiclass crop 

classification in this study.  The parameter settings of the SVM 

model include the type and parameters of the kernel function.  Roli 

F et al.[62] showed that the classification accuracy was generally 

higher when using a radial basis function (RBF) kernel than when 

using a polynomial kernel or sigmoid kernel, while using a linear 

kernel yields the lowest precision.  Therefore, the RBF was chosen 

as the kernel function.  With the support of farmland parcels 

segmented from the optical image as the basic unit for classification, 

the mean values of multi-features within the farmland parcels were 

calculated.  Because the ranges of the extracted feature parameters 

were different, the feature parameters were normalized, and then the 

SVM-OVR classifier was used for classification processing. 

4  Results 

4.1  Optical-based segmentation of farmland 

According to the method in Section 3.1, a mask of the 

nonfarming areas was built to obtain the range of farmland by using 

eCognition Developer version 9.0.2.  Then, the farmland was 

resegmented, the segmentation scale was set to range from 10 (very 

broken) to 80 (very rough) in the interval of 5 and was continuously 

adjusted to determine the optimal scale.  Then, the shape and 

compactness parameters were set to 0.3 and 0.6, respectively.  

These settings focused on the dependence of the spectral 

information and were closely connected to the crop growth, thereby 

achieving a better segmentation effect for farmland.  The ALV and 

the corresponding change rate were calculated at different scales, 

and the change rate threshold of the ALV was set according to the 

experimental results.  After the test, the point that corresponded to 

the change rate that was less than 0.2 was used to determine the 

optimal scale.  To compare the trends, the change rate of the ALV 

was increased by a factor of 10 and is shown alongside the ALV in 

Figure 4.  An upward trend was observed in the ALV curve with 

increasing scale.  The fitted curve of the corresponding change rate 

indicated that the change rate was less than the specified threshold 

for the first time at a scale of 64.  Therefore, the preliminary 

optimal scale for farmland was 64. 

 
Figure 4  ALV and the corresponding change rate at different 

segmentation scales 

To evaluate the optical-based segmentation for farmland, the 

segmentation results at different scales were analyzed to determine 

the optimal segmentation scale.  Referring to the land cover 
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samples from the GF-2 images of the same period, the overlap 

method[63] was used to calculate the accuracy of the segmentation 

results.  The accuracy evaluation at different scales is shown in 

Table 4.  The extraction accuracy of the farmland parcels initially 

increased and then decreased with increasing scale, while the 

number of parcels gradually decreased.  The accuracy was the 

highest (0.925) at a scale of 65, and the number of parcels was 

relatively small.  Therefore, this result was not much different 

from the predicted best scale of 64, satisfying the optimal 

segmentation requirement.  Through the above process, the 

complete boundary of the farmland parcels was acquired (Figure 

5). 
 

Table 4  Accuracy evaluation of the optical-based segmentation process 

Scale 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Number of parcels 25882 23605 21409 19364 17530 15738 14191 13560 12762 11504 10326 9582 8970 8351 7889 

Segmen-tation accuracy 0.582 0.635 0.664 0.707 0.736 0.743 0.775 0.796 0.829 0.862 0.917 0.925 0.893 0.856 0.821 
 

 
Figure 5  Segmented layer for crop planting area at the optimal 

scale 
 

4.2  Feature selection and analysis 

4.2.1  Optimal feature subset for crop identification 

The WA-BS algorithm was used to determine the optimal 

feature subset for crop identification from the 58 extracted 

features through the feature set evaluation criteria.  The 

dimensions of the optimal feature subset and the runtime of the 

algorithm were controlled by setting the maximum number of 

iterations mi.  mi was set to values between 0 and 5000 and by 

gradually adjusting by intervals of 500.  Then, the dimensional 

variation in the optimal feature subset with different iteration 

numbers was obtained (Figure 6).  The dimension of the optimal 

feature subset converged to 18 and remained constant when 

mi≥3000.  Therefore, setting mi to 3000 could yield an optimal 

feature matrix for the identification of the 5 crop types.  Because 

the optimal feature matrix is a symmetric matrix, only the lower 

triangular matrix is shown to express the optimal feature subset 

for crop identification (Table 5). 

 
Figure 6  Dimensional variation in the optimal feature subsets by 

the number of iterations 
 

Table 5  Optimal feature matrix for crop classification 

Class Wheat Maize Cotton Beets Tomatoes 

Wheat      

Maize {10,12,25,27,38,41,42,52,57}     

Cotton {17,25,31,34,38,42,47,52,53,56,57} {12,25,31,34,38,47,50,56}    

Beets {10,17,25,27,31,38,41,43,48,57} {17,31,34,47,50,57} {12,27,34,38,41,43,47,50,52,56,57}   

Tomatoes {12,17,25,38,42,48,52,57} {10,17,25,27,31,38,42,47,48,57} {12,17,27,38,41,43,50,52,53,57} {12,27,31,34,43,56}  
 

After analyzing the optimal feature matrix, only 18 of the 58 

features were involved in the classification of the five crop types, 

thus greatly reducing the information redundancy and calculations.  

The feature parameters derived from different polarimetric 

decompositions greatly contributed to the classification results, 

mainly originating from Freeman-Vol, Freeman-Dbl, VanZyl-Odd 

from VanZyl decomposition, two eigenvectors from Cloude 

decomposition, Yamaguchi-Vol, Yamaguchi-Hlx from Yamaguchi 

decomposition, Neumann-dela-mod from Neumann decomposition, 

and A and H from H/A/Alpha decomposition.  The scattering 

properties of the target crops are uncertain and temporally vary, so 

the scattering echo of each pixel mostly consists of the scattering 

information of multiple scatterers.  Therefore, incoherent target 

decomposition played a positive role in the classification results.  

The polarimetric physical parameters derived from incoherent 

target decomposition reduced the influence of speckle noise, 

thereby accurately explaining the scattering process of the target, 

which was beneficial for distinguishing different land cover types.  

NDVI and texture information such as CON, COR, and ASM 

derived from the optical image also played an important role in 

crop identification, indicating the effectiveness of using spectral 

information and texture information as classification features.  

Although this study performed filtering before polarimetric 

decomposition, the results still retained noise information.  

Therefore, some of the extracted polarimetric feature components 

may have affected the classification results and even reduced the 

classification accuracy.  In this case, this information was 

excluded by feature selection. 
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4.2.2  Optimal feature subset for crop identification 

In this section, the optimal features derived from the optical  

and SAR images during the growing period of various crops were 

analyzed by boxplots.  Figure 7 shows the boxplots of the 18 

features in the optimal feature subset, with the 0.5th, 25th, 50th 

(median), 75th and 99.5th percentiles shown. 

As shown in Figure 7, the volume and double-bounce 

scattering components from Freeman decomposition played a 

more important role in crop classification than the surface 

scattering component, and the ability of the volume scattering 

component to distinguish crop types was greater than that of the 

double-bounce scattering component.  The reason for this 

finding may be because Freeman decomposition is more accurate 

at modeling volume scattering, which is influenced by the actual 

scattering mechanisms of crops.  Analyzing the features of 

volume scattering of various crops from the Freeman 

decomposition indicated the following: (1) the volume scattering 

component of cotton during this period was obviously dominant.  

This period was the growing stage of cotton, and canopy 

scattering was the main backscattering component.  The incident 

waves scattered many times, so the volume scattering was 

increased.  (2) Because of the uniform growth of wheat in the 

ripening stage, the eigenvalue for volume scattering was the 

smallest among all the crops, and the distribution of the 

eigenvalues was relatively dispersive.  In contrast, the value for 

double-bounce scattering was large.  (3) The eigenvalue for 

volume scattering of tomatoes was relatively large and its 

distribution was the most concentrated.  The height of beet 

plants was relatively low, so the reflection of radar waves mainly 

involved surface reflection.  The branches and the ground 

comprised a pair of orthogonal surfaces, which sometimes caused 

double-bounce scattering.  Therefore, beets had a small 

eigenvalue of double-bounce scattering.  Cloude theory[43] 

decomposes the polarimetric coherence matrix into a weighted 

sum of three components, and each component corresponds to a 

scattering mechanism (single scattering, bidirectional scattering 

and cross scattering).  Therefore, Cloude decomposition can 

include all the scattering mechanisms.  Analyzing the different 

boxplot values of the two-component Cloude-T11 and Cloude-T33 

features indicated that the two components of Cloude 

decomposition exhibited a strong ability to describe ground 

objects with different scattering mechanisms.  

 
a. b. c. 

 

 
d. e. f. 

 

 
g. h. i. 
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Figure 7  Boxplots of the optimal feature subset.  (a-r) are the optimal features extracted from the 58 features 
 

The scattering entropy H reflects the randomness degree 

between isotropic scattering (H=0) and completely random 

scattering (H=1) of a scattering medium.  The larger the value of 

H is, the higher the randomness degree.  When analyzing the 

scattering entropy of various crops, the scattering type of maize 

during this period was complicated.  Here, maize was in the early 

harvest stage, so the maize canopy was dense, resulting in a high 

scattering entropy.  In contrast, beets were in the middle of the 

growing period, and the row spacing of beets was relatively large 

when seeding, so the area of bare soil was large and the surface 

structure was simple.  In this case, the target contained relatively 

simple scatters, and the polarimetric entropy was relatively low.  

The anti-entropy A, a supplementary parameter of the scattering 

entropy H, is also in the optimal feature set for crop identification.  

The energy parameter SPAN contains the intensity information of 

the scattering mechanism, so introducing SPAN into the 

classification helped to distinguish ground objects with the same 

scattering mechanism but with different scattering intensities.  

The RVI can reflect the vegetation features and volume scattering 

information, which exhibited certain differences because the 

density of crop covers during this period was different.  The 

density of wheat at harvest was the highest, so the incident waves 

had sufficient random scattering in the medium, resulting in the 

depolarization of the scattering echo.  The planting of beets was 

sparse, and the vegetation structure was relatively simple, so any 

random scattering occurring when the incident waves interacted 

with the vegetation was rare.  Most of the incident waves directly 

escaped after single- or double-bounce scattering, and the 

depolarization effect was low.  In addition, DERD can be used to 

compare the importance of different scattering mechanisms, which 

played a certain auxiliary role in crop classification.  The SE is 

defined based on the intensity and polarization; the intensity 

contribution is related to the backscattering energy, and the 

polarization contribution is related to the polarizability.  

Analyzing the SE boxplot, the value of maize was the largest 

during this period, and the SEs of tomatoes, wheat, cotton, and 

sugar beets were lower, indirectly reflecting differences in the 

backscattering energy of various crops. 

The texture features extracted from the optical image, 

including CON, COR and ASM, were important eigenvectors for 

crop identification according to the boxplots.  The values of these 

three types of eigenvectors for cotton were generally large.  

During this period, the coverage of cotton was high, and the cotton 

leaves had unique characteristics; thus, the texture primitives 

strongly contrasted, and the grooves were deep, indicating obvious 

texture effects.  In contrast, the growth of wheat was relatively 
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uniform, and the texture was fine; the ASM and CON values of 

wheat were the lowest.  The NDVI has an important ecological 

significance and can reflect the crop growth information, so it was 

included in the optimal feature set for crop identification.  

However, due to the similar NDVI values for cotton and maize 

during this period, the NDVI had a weaker ability to distinguish 

between the two crops, so it was not the main feature to separate 

cotton and maize. 

4.3  Crop classification and accuracy assessment 

With the SVM-OVR classifier, referred to in Section 3.4, the 

training samples of the five types of crops were used to train the 

model, and the validation samples were used for accuracy 

assessment.  When employing the classifier, the kernel parameter 

γ and the penalty factor C in the RBF kernel need to be determined.  

A cross-validation algorithm was employed to determine these two 

parameters[64].  In this study, the cross-validation parameter 

selection model from LIBSVM-3.22 was used to search for the 

optimal set of γ and C.  After the experiment, the optimal 

parameters were considered γ = 0.125 and C = 512.  Finally, with 

the optimal feature subset, the classifier was employed in 

object-oriented classification.  The crop classification result is 

shown in Figure 8, and the statistics of the crop acreage were 

calculated using ArcGIS 10.3 (Figure 9).  From Figure 8, 

crop-type mapping supported by segmentation from the optical 

image accurately identified crops and avoided the 

“salt-and-pepper” phenomenon that often appears in pixel-based 

classification.  The crop type of each parcel was indicated, and 

confusion among different crop types was rare.  Analyzing Figure 

9, tomatoes were the most widely planted crop in the region, with 

an area of 156.5 km2, accounting for 25.98% of the total planting 

area, followed by cotton (147.6 km2, accounting for 24.51%), 

wheat (112.4 km2, accounting for 18.66%), beets (97.5 km2, 

accounting for 16.19%) and maize (88.3 km2, accounting for 

14.66%).  According to the data published in the 2018 Xinjiang 

Agricultural Statistical Yearbook, the actual planting areas of 

tomatoes, cotton, wheat, beet and maize in the study area were 

165.2 km2, 151.8 km2, 107.3 km2, 100.7 km2 and 82.6 km2 

respectively.  Therefore, the feasibility and effectiveness of this 

method have been proved by the experiment. 

 
Figure 8  Crop classification result derived from multifeatures and 

optical-based segmentation 

 
Figure 9  Crop planting area of the five crops 

 

The accuracy of the crop classification results was evaluated 

with the validation samples to assess the effect of the crop 

identification model.  A confusion matrix, a standard format for 

accuracy evaluation, was used to calculate the overall accuracy 

(OA), the user’s accuracy (UA), the producer’s accuracy (PA), and 

the Kappa coefficient.  According to the confusion matrix[65] 

(Table 6), the OA of the five crop types was 89.50%, and the 

Kappa coefficient was 0.87.  Therefore, the proposed method 

achieved a good performance, indicating that the model has strong 

practicability for identifying crop types.  Generally, when the PA 

and UA are both higher than 85%, the crop classification is 

considered to be reliable[66].   Therefore, the results showed that 

the extracted features from the optical and full polarimetric SAR 

images with the support of farmland parcels can be used for 

crop-type mapping, satisfying the effect of crop identification. 
 

Table 6  Classification accuracy of the proposed method 

Class 
Wheat 

(parcel) 

Maize 

(parcel) 

Cotton 

(parcel) 

Beets 

(parcel) 

Tomatoes 

(parcel) 
UA/% 

Wheat (parcel) 225 4 13 0 2 87.55 

Maize (parcel) 0 221 3 10 0 90.20 

Cotton (parcel) 5 9 235 12 17 86.72 

Beets (parcel) 12 0 0 301 14 96.47 

Tomatoes (parcel) 9 16 17 6 288 86.23 

PA/% 89.64 88.40 87.69 91.49 89.72  

OA 89.50%   Kappa coefficient 0.87 

5  Discussion 

5.1  Comparison with different datasets 

To evaluate the practicability of the proposed method for 

crop-type mapping, we carried out a comparative experiment under 

the same experimental conditions.  The farmland parcels were 

obtained from GF-3 image segmentation, and the multifeatures 

were extracted from the GF-2 optical and GF-3 SAR images.  In 

this experiment, the optimal segmentation parameters for shape = 

0.2, compactness = 0.6, and scale=40 were set to obtain the 

farmland parcels from the GF-3 SAR image, and then, the mean 

values of the optimal features from the optical and SAR images 

within farmland parcels were extracted.  The same set of training 

samples was used to train the classifier, and the classification 

results are shown in Table 7 and Figure 10.  The OA of the 

comparative experiment is 82.24%, which is inferior to the 

classification accuracy derived from the proposed method (89.50%).  

From Figure 10, the crop-type mapping was inefficient in 

delineating the farmland parcel boundary due to the poor 

segmentation results from the GF-3 image.  The inherent speckle 

noise reduced the spatial resolution of the SAR data and blurred the 
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detail of the image, which led to confusion between crop types and 

other classes.  Because a high variability resulting from the 

backscattering effect of ground objects on radar beams exists 

within a class, SAR image segmentation divided a homogenous 

region into several parcels.  In the process of farmland extraction, 

some fields were classified as non-agricultural land and thus 

masked, resulting in an omission error.  For example, the UAs and 

PAs of wheat and maize were not ideal with large commission and 

omission errors, declining from 76.89% to 74.39% for wheat and 

from 75.48% to 78.17% for maize.  However, the classification 

results were improved by the object-oriented classification based 

on optical image segmentation, which was more suitable to extract 

farmland parcels and reduced salt-and-pepper noise.  From the 

above comparison, the proposed method is better for crop 

classification, helping to improve classification accuracy. 
 

Table 7  Classification accuracy of the comparative 

experiment 

Class 
Wheat 

(parcel) 

Maize 

(parcel) 

Cotton 

(parcel) 

Beets 

(parcel) 

Tomatoes 

(parcel) 
UA/% 

Wheat (parcel) 183 15 0 13 27 76.89 

Maize (parcel) 30 197 12 8 14 75.48 

Cotton (parcel) 9 16 242 6 9 85.82 

Beets (parcel) 13 19 23 270 0 83.08 

Tomatoes (parcel) 11 5 3 19 275 87.86 

PA/% 74.39 78.17 86.43 85.44 84.62  

OA 82.24%   Kappa coefficient 0.78 

 
Figure 10  Crop classification results derived from multifeatures 

and SAR-based segmentation 
 

5.2  Comparison with different feature selection methods 

To verify the performance of WA-BS, a comparison between 

the proposed method and three baseline methods (ReliefF[58], 

mRMR[59] and LeastC[67]) was performed on a 3.4 GHz, 64 bit 

AMD CPU.  The above comparison models are filter models and 

are independent of classifiers.  The overall accuracy of crop 

classification conducted by the SVM classifier with the same 

parameter settings is shown in Figure 11.  The accuracy of crop 

classification using the optimal feature subset achieved by the 

WA-BS algorithm is 89.50%, which is better than that of other 

feature selection methods.  The mRMR algorithm considers the 

relevance between features and identifying targets as well as the 

independence between features and achieved a classification 

accuracy of 87.59%.  The LeastC algorithm is fault-tolerant to 

noise and is not affected by feature interaction; the classification 

accuracy using the optimal features achieved by the LeastC 

algorithm is 86.74%.  However, the ReliefF algorithm cannot 

effectively remove redundant features due to the lack of 

consideration of the correlation between features, reaching a crop 

classification accuracy of only 85.01%.  The dimensions of the 

optimal features obtained using WA-BS, ReliefF, mRMR and 

LeastC algorithms are 18, 46, 25 and 33, respectively.  Therefore, 

the WA-BS algorithm can effectively remove redundant features 

that are strongly correlated and achieves a higher classification 

accuracy via the optimal feature subset. 

 
Figure 11  Overall accuracy using the optimal feature subset 

obtained by different feature selection methods 

6  Conclusions 

Crop-type mapping with a single type of remote sensing image 

sometimes has unsatisfactory precision.  The purpose of this study 

is to promote the collaborative application of optical and SAR 

remote sensing data in agriculture.  A framework for crop 

identification is proposed based on GF-2 and GF-3 images.  A 

demonstration in Xinjiang Uygur Autonomous Region targeting 

wheat, maize, cotton, beet and tomato crops showed that the crop 

growth features derived from the GF-2 and GF-3 images within 

farmland parcels segmented from an optical image can achieve 

good classification results, with an overall accuracy of 89.50%, 

which is better than the accuracy of 82.24% derived from 

SAR-based segmentation.  Compared with the ReliefF, mRMR 

and LeastC feature selection algorithms, the WA-BS algorithm 

proposed in this paper can effectively remove redundant features 

that are strongly correlated and can achieve a higher classification 

accuracy via the obtained optimal feature subset.  The results 

indicate that the combination of optical and full polarimetric SAR 

images under the constraints of farmland parcels can be used for 

crop-type mapping, resulting in crop identification.  Furthermore, 

this study extends the application of the GF series satellites to 

agriculture and indicates their great potential in crop monitoring. 
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