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Abstract: The zero-inertia model is widely used for simulating surface flow in irrigation systems.  This model is accurate 
when inflow discharge is constant.  However, simulation of irrigation systems with rapidly varied inflow discharge is needed 
due to the development of real time control irrigation technology.  Hence, the objective of this study is to validate the 
zero-inertia model with rapidly varied inflow discharge.  For this purpose, twenty-three border irrigation tests at a range of 
inflow changes on different field slopes and roughness coefficients were conducted.  Then, the sensitivity analyses of bed 
slope, infiltration parameters, and roughness coefficient were examined.  The results indicate that the zero-inertia model 
predictions are in good agreement with field data in both advance/recession times and flow depths.  The infiltration parameters 
were the most sensitive input variable of the zero-inertia model.  The input variables have a more considerable impact on the 
recession phase than the advance phase. 
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1  Introduction  

Surface irrigation is still the most common method for 
irrigating crops across the world.  Numerical simulation of surface 
irrigation flow can provide the necessary tools to simulate, design 
and evaluate irrigation systems.  Since the 1970s, with the 
popularization of computer application, the numerical simulation 
model of surface irrigation has developed rapidly.  At present, 
there are mainly four mathematical models.  

The full hydrodynamic model is recognized as the accurate 
description of the water flow in surface irrigation[1].  It is based on 
Saint–Venant long wave equations, which are two separate 
hyperbolic partial differential equations and include a mass 
conservation equation and a momentum equation.  Because these 
equations are hard to solve algebraically in the purest form, 
numerical solution methods, such as the finite difference 
method[2,3], the method of characteristics[4], the finite element 
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method[5] and the finite volume method[6], were used to obtain the 
numerical solution.  Although the full hydrodynamic model can 
provide an accurate simulation, sometimes it is numerically 
sensitive, and existing a numerical oscillation[7].  Additionally, the 
complexity also limits its wide application.  For these reasons, 
Strelkof and Katopodes[8] introduced the zero-inertia model based 
on the full hydrodynamic model.  Removing the inertial, or 
acceleration, terms in the momentum equation simplifies the 
calculation and increases the operation speed as well as 
robustness[1,9], and the result is still accurate[10].  The 
kinematic-wave model further simplifies Saint-Venant long wave 
equations by assuming that the water surface slope deviates little 
from the bed slope.  Some experiments verified the model can be 
used to simulate the advance and recession curves[11].  However, 
the kinematic-wave model accuracy is limited by the field slope 
and soil textures[10].  The volume balance model is the simplest 
model.  The momentum equation is neglected, and the amount of 
irrigation water usually approximated by flow and infiltration depth 
at the key points of field, the shape factor and the advance 
distance[12].  However, the volume balance model is rarely used, 
because it is hard to guarantee its accuracy.  

The zero-inertia model has been widely used for simulation in 
surface irrigation systems and proved to be accurate when inflow 
discharge is constant[13].  However, with the development of 
automatic irrigation technology, such as the self-adaptive control of 
surface irrigation[14], inflow discharge is not always constant, and 
the inflow discharge may also be suddenly adjusted.  Saint-Venant 
long wave Equations is not strictly fit to rapidly varied unsteady 
flow[15].  Szydtowski and Zima[16] investigated rapidly varied open 
channel flow due to dam-break effect and pointed out that 
Saint-Venant long wave Equations can simulate dam-break water 
flow although they cannot well describe the flow near the local 
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hydraulic effects.  However, the surface irrigation system is more 
complex and microscopic than open channel transportation system, 
which means that the errors caused by rapidly varied inflow are 
likely to amplify.  In this case, the applicability of zero-inertia 
model, which is derived from the simplification of Saint-Venant 
Equations need to be verified by field measurements.  At present, 
there are few studies on the surface irrigation system with rapidly 
varied inflow, and related field experiments are also lacking.  
Hence, the objectives of this study were as follows: (1) to validate 
the applicability of the zero-inertia model (23 border irrigation 
experiments were conducted for this purpose); and (2) to analyze 
the sensitivity of system inputs to provide recommendations for 
future experimental measurement in rapidly varied inflow irrigation 
system. 

2  Materials and methods 

2.1  Field measurements 
2.1.1  Study area 

Experiments were carried out in a wheat field at the CAS 
Ecological Agricultural Experiment Station in the town of Nanpi in 
Hebei Province, China (116°40′E, 38°06′N).  The region is in a 
warm temperate zone and has a semi-humid monsoon climate.  
The annual rainfall ranges from 500 mm to 600 mm, and generally 
occurs during the summer (about 73% of the whole year).  The 
annual evaporation is between 1500 mm and 1800 mm.  The 
groundwater depth is below 2 m.  The surface soil is a silt loam, 
and the dry bulk density is 1.48 g/cm3 at depth of 1 m.  The 
farming in study area is carried out according to the local perennial 
crop.  Winter wheat is the main crop and planted in October, and 
generally harvested in next June.  
2.1.2  Experiment design and measurement 

A total of 23 border irrigation tests were conducted.  The 
tested borders were divided into two groups (Group A: A1 to A12 
and Group B: B1 to B11).  Group A was carried out in 2016, and 
each border in this group was designed to be 80 m in length and  
3.7 m in width.  Group B was carried out in 2018, and each border 
in this group was designed to be 100 m in length and 3 m in width.  
Similar to the border used by local farmers, all test borders were 
closed-ended.  In order to be comprehensive, the inflow discharge 
for borders A1 to A3 and for borders B1 to B4 was constant.  And 
the inflow discharge for borders A4 to A12 and for borders B5 to 
B11 was rapidly varied. 

To better cover the wide range of irrigation practices, the 
inflow rate ranged between 2-7 L/s·m[17,18].  Hence, the inflow 
rates within or slightly larger than this range were arranged at the 
study area.  The irrigation pipe system of Group A is designed 
with a valve to regulate inflow rate.  However, it is very difficult 
to control the inflow rate with the valves.  This resulted in 
inconsistent inflow rate for almost every border.  In order to make 
the experiment better controlled, an improvement was implemented 
in Group B.  Three independent irrigation pipe systems were used, 
and the inflow rate is fixed in each of them at 2.4 L/s·m,      
4.17 L/s·m and 6.5 L/s·m.  During the irrigation events, the 
irrigation pipe systems were all opened to ensure that the inflow 
rates were stable.  When the inflow discharge needs to be changed, 
the corresponding irrigation pipe was linked in.   

According to local farming practices, the machine levels the 
land while sowing.  There is no professional machine to level the 
land, so the field is not well leveled.  For each border, longitudinal 
slopes were measured with 5 m interval.  All border slopes were 

generally downward, except a few intervals in some borders are 
inclined upward. 

Soil was classified as a silt loam based on particle size 
(65.53% silt, 21.75% sand, and 12.72% clay on average).  
Irrigation inflow rates were measured by electromagnetic flow 
meters (accuracy of ±1.5%).  The infiltration parameters k and α 
of the Kostiakov Equation were derived by the soil moisture before 
and after irrigation at two observation points, and the equations can 
be written as Equations (1) and (2).  The roughness coefficient of 
border was determined by the zero-inertia model and the trial and 
error approach[17,19], since it is difficult to measure or calculate it 
directly.  The different values of roughness coefficient were fed 
into the zero-inertia model.  Then, the simulated advance and 
recession trajectories of the model were compared with the 
observed data, and when a good fit between them was achieved, the 
actual roughness coefficient was established. 
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where, z1 and z2 are the cumulative infiltration of observation 
points 1 and 2 respectively, m; t1 and t2 are the infiltration times of 
observation points 1 and 2 respectively, s. 
2.2  Computational schemes  

The zero-inertia model are composed of a mass conservation 
equation and a simplified momentum equation, and these equations 
can be written as: 
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where, x is the distance from the upper end of the channel, m; t is 
the time from the beginning of inflow, s; q is the discharge per unit 
width, m3/(s·m); h is flow depth, m; z is the cumulative infiltration, 
m; s0 is the border slope; sf is the friction slope, and it can be 
written as: 
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where, Q is volume flow rate, m3/s; A is the cross-sectional area of 
flow, m2; n is roughness coefficient. 

Kostiakov Equation is the most frequently used infiltration 
equation in the numerical simulation of surface irrigation: 

Z = ktα                     (6) 
where, k (m/sα) and α are empirical coefficients. 

The numerical solution follows the finite difference method, 
similar to that presented by Mcclymont[1].  The time-space 
computation grid is a rectangular grid system as depicted in Figure 
1.  The time step is invariant, and the space step is variable.  The 
subscript referencing J, M, L and R represent the variable’s grid 
cell representation and the basic equations (Equations (3) and (4)) 
can be transformed into finite difference form and written as: 
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where, θ and φ are the space-averaging and time-averaging 
coefficients, and these values are typically equal to 0.6[1]; RC and 
RM are residuals from the continuity and momentum equations 
respectively, and these values should theoretically be equal to zero.   

 
Figure 1  Time-space computation grid 

 

The solution is implicit, so the basic equations should be 
solved simultaneously for all cells at each time step.  The 
following is illustrated by an example of the calculation of period 
of tk-1 (known) to tk (unknown).  Assuming that the number of 
cells at tk is N (the number of unknown points at tk is N+1).  Each 
call can establish two equations, together with the boundary 
conditions, so the total number of equations is 2N+2.  There are 
two variables at each unknown point (q and h), so the total number 
of variables is also 2N+2.  The double-sweep method described 
by Walker and Skogerboe[20] and Mcclymont[1] was used to solve 
these implicit equations. 
2.3  Statistical analysis 

The accuracy of the modified model could be evaluated by the 
coefficient of determination (R2), root mean square error (RMSE) 

and coefficient of residual mass (CRM)[21].  R2 varies from zero to 
one, and the larger it is, the more valuable simulation results are.  
The RMSE has minimum value of zero, and the closer it gets to 
zero, the more accurate the simulation results are.  CRM can be 
negative or positive, and it indicates the underestimation or 
overestimation amounts of predictions.  R2, RMSE and CRM can 
be written as: 
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where, tp is the calculated advance/recession time, min; tm is the 
measured advance/recession time, min; t

 
is the mean of the 

measured advance/recession time, min; n is the number of stations 
along the border length. 

3  Results and discussion 

3.1  Experimental data 
Table 1 provides the longitudinal slopes of every border each  

5 m.  Although the average slope of each border was about 0.002, 
the field was not very flat.  This indicates that local traditional 
farming methods did not perform very well in field levelling.  
Table 2 provides details of the inflow rate, inflow change time, 
cut-off time, Kostiakov infiltration parameters and roughness 
coefficient.  These were used as input parameters of the 
zero-inertia model for each irrigation event to simulate the advance 
trajectories, recession trajectories and flow depths. 

 

Table 1  Observational slope of each border 

Average slope of each 5 m Border 
number 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-100

Average 
slope

A1 0.0020 0.0008 0.0054 –0.0010 0.0010 0.0030 –0.0014 0.0026 0.0018 0.0016 0.0100 –0.0020 0.0042 0.0018 0.0060 0.0062 -- -- -- -- 0.0026 

A2 0.0044 0.0032 0.0010 0.0000 0.0004 0.0006 0.0014 0.0018 0.0070 –0.0030 0.0034 0.0042 0.0046 –0.0044 0.0118 –0.0022 -- -- -- -- 0.0021 

A3 –0.0106 0.0028 0.0052 –0.0018 0.0020 –0.0004 0.0042 0.0022 0.0014 0.0024 0.0072 –0.0020 0.0014 0.0046 0.0088 0.0005 -- -- -- -- 0.0017 

A4 –0.0020 –0.0024 0.0102 –0.0038 0.0042 0.0046 –0.0040 0.0036 0.0050 0.0034 –0.0002 0.0052 –0.0038 0.0044 0.0096 –0.0066 -- -- -- -- 0.0017 

A5 0.0020 0.0030 0.0020 –0.0034 0.0040 0.0078 0.0000 0.0016 0.0016 –0.0008 0.0038 0.0066 –0.0028 0.0024 0.0050 –0.0010 -- -- -- -- 0.0020 

A6 0.0024 0.0006 0.0064 0.0034 0.0008 0.0032 0.0018 0.0008 0.0014 0.0046 0.0040 0.0002 0.0012 0.0010 0.0038 0.0046 -- -- -- -- 0.0025 

A7 0.0000 0.0018 0.0016 0.0012 0.0040 0.0030 0.0012 0.0000 0.0058 –0.0004 0.0034 0.0048 –0.0016 0.0060 0.0058 0.0020 -- -- -- -- 0.0024 

A8 0.0004 0.0114 –0.0024 0.0022 0.0020 0.0010 0.0006 0.0034 0.0050 0.0058 –0.0034 0.0032 0.0046 0.0004 0.0038 0.0014 -- -- -- -- 0.0025 

A9 -0.0006 0.0012 0.0030 –0.0008 0.0020 0.0044 –0.0020 0.0030 0.0038 0.0022 –0.0040 0.0038 –0.0005 0.0030 0.0024 0.0010 -- -- -- -- 0.0014 

A10 -0.0016 0.0024 0.0030 –0.0025 0.0017 0.0020 –0.0008 0.0024 0.0026 –0.0012 0.0038 –0.0016 0.0012 0.0042 0.0058 –0.0024 -- -- -- -- 0.0012 

A11 -0.0014 0.0008 0.0052 –0.0010 0.0012 0.0088 0.0062 –0.0018 0.0014 0.0004 0.0082 0.0032 0.0008 0.0056 0.0022 0.0040 -- -- -- -- 0.0027 

A12 -0.0042 0.0014 0.0012 0.0000 –0.0048 0.0088 0.0074 –0.0004 0.0002 –0.0004 0.0048 0.0048 0.0036 –0.0014 0.0050 0.0080 -- -- -- -- 0.0021 

B1 0.0040 0.0015 0.0010 0.0017 0.0018 0.0010 0.0017 0.0015 0.0021 0.0010 0.0010 0.0011 0.0010 0.0010 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030 0.0016 

B2 0.0016 0.0013 0.0013 0.0039 0.0014 0.0001 0.0017 0.0033 0.0019 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0021 0.0046 0.0038 0.0042 0.0018 

B3 0.0024 0.0027 0.0015 0.0021 0.0034 0.0010 0.0021 0.0011 0.0030 0.0007 0.0005 0.0005 0.0008 0.0005 0.0002 0.0006 0.0005 0.0041 0.0045 0.0043 0.0018 

B4 0.0025 0.0013 0.0010 0.0031 0.0010 0.0017 0.0011 0.0008 0.0026 0.0005 0.0013 0.0015 0.0011 0.0018 0.0015 0.0015 0.0044 0.0047 0.0037 0.0030 0.0020 

B5 0.0018 0.0010 0.0019 0.0020 0.0025 0.0009 0.0021 0.0011 0.0013 0.0002 0.0001 0.0002 0.0001 0.0002 0.0000 0.0003 0.0013 0.0030 0.0045 0.0057 0.0015 

B6 0.0023 0.0004 0.0017 0.0031 0.0020 0.0021 0.0006 0.0010 0.0029 0.0013 0.0006 0.0003 0.0000 0.0004 0.0003 0.0013 0.0017 0.0029 0.0029 0.0045 0.0016 

B7 0.0009 0.0019 0.0009 0.0029 0.0018 0.0011 0.0007 0.0023 0.0025 0.0010 0.0002 0.0011 0.0003 0.0003 0.0017 0.0022 0.0033 0.0026 0.0017 0.0032 0.0016 

B8 0.0013 0.0009 0.0028 0.0010 0.0026 0.0001 0.0008 0.0026 0.0039 0.0011 0.0011 0.0015 0.0005 0.0007 0.0010 0.0020 0.0023 0.0039 0.0015 0.0023 0.0017 

B9 0.0009 0.0011 0.0001 0.0027 0.0031 0.0004 0.0018 0.0016 0.0005 0.0019 0.0023 0.0003 0.0019 0.0001 0.0013 0.0029 0.0049 0.0051 0.0017 0.0028 0.0019 

B10 0.0017 0.0013 0.0038 0.0005 0.0013 0.0001 0.0016 0.0014 0.0030 0.0009 0.0010 0.0006 0.0033 0.0010 0.0030 0.0050 0.0020 0.0057 0.0031 0.0023 0.0021 

B11 0.0024 0.0044 0.0020 0.0005 –0.0010 0.0010 0.0020 0.0009 0.0015 0.0019 0.0009 0.0002 –0.0017 0.0030 –0.0020 0.0007 0.0055 0.0020 0.0029 0.0032 0.0015 
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Table 2  Observational data of border irrigation tests, Kostiakov parameters and Roughness coefficient 

First change inflow Second change inflow Kostiakov parameters Border  
number 

Initial 
inflow rate 
/l s-1·m-1 Time of flow rate 

varying/min 
Inflow rate after 
varying/l s-1·m-1

Time of flow rate 
varying/min 

Inflow rate after 
varying/l s-1·m-1

Cut-off
distance

ratio k (mm·min-α) α 

Roughness 
coefficient 

n 

A1 3.00 — — — — 0.90 6.651 0.69 0.1 

A2 5.38 — — — — 0.85 7.176 0.71 0.1 

A3 

constant 
inflow 
borders 6.40 — — — — 0.80 6.549 0.69 0.1 

A4 3.04 6.0 4.20 14.4 5.71 0.85 6.568 0.69 0.1 

A5 2.79 6.0 4.09 15.3 7.02 0.80 6.924 0.70 0.1 

A6 3.10 5.4 5.55 11.4 7.16 0.80 6.782 0.70 0.1 

A7 3.09 5.4 3.73 13.8 4.80 0.85 6.534 0.69 0.1 

A8 3.11 6.0 4.12 13.8 7.16 0.80 6.747 0.70 0.1 

A9 2.42 6.6 5.91 14.4 7.33 0.80 7.567 0.72 0.1 

A10 2.97 6.0 4.04 14.4 8.37 0.80 6.305 0.67 0.1 

A11 3.16 5.4 4.91 13.2 5.44 0.85 6.927 0.70 0.1 

A12 

varied 
inflow 
borders 

2.93 6.0 5.22 12.6 7.14 0.80 6.466 0.68 0.1 

B1 2.40 — — — — 0.90 13.466 0.45 0.14 

B2 4.17 — — — — 0.85 14.100 0.45 0.14 

B3 6.50 — — — — 0.75 13.942 0.45 0.14 

B4 

constant 
inflow 
borders 

4.17 — — — — 0.85 15.585 0.42 0.14 

B5 6.50 10.2 4.17 — — 0.85 14.259 0.45 0.14 

B6 6.50 10.2 2.40 14.7 4.17 0.85 13.322 0.46 0.14 

B7 6.50 10.8 2.40 19.8 4.17 0.85 14.331 0.42 0.14 

B8 2.40 23.4 4.17 — — 0.85 14.143 0.46 0.14 

B9 2.40 22.8 6.50 33.6 4.17 0.85 15.674 0.42 0.14 

B10 2.40 27.6 6.50 39.0 4.17 0.85 13.731 0.48 0.14 

B11 

varied 
inflow 
borders 

2.40 23.4 6.50 34.2 4.17 0.85 13.942 0.45 0.14 
 

3.2  Validation 
The applicability of the zero-inertia model in the border 

irrigation system with rapidly varied inflow was validated by 
comparing the predicted advance time, recession time and flow 
depth with observed field study data. 

The predicted advance and recession trajectories by the 
zero-inertia model were compared with the field measured data and 
the result are presented in Figures 2 and 3.  The results showed 
that the simulations were in good agreement with field data.   

For details, in borders with constant inflow discharge (borders 
A1 to A3 and borders B1 to B4), the relative error was mostly 
within 10% for simulated advance times and 15% for recession 
times, and the average relative error was 6.36% and 9.46% for 
advance and regression times, respectively.  In borders with 
varied inflow discharge, the relative error was mostly within 15% 
for simulated advance times and 20% for recession times, and the 

average relative error was 7.24% and 10.32% for advance and 
regression times, respectively.  The relative errors were similar to 
other results of the border irrigation simulation.  For examples, 
Zhang et al.[22] simulated the border irrigation system by Roe 
finite-volume method and improved hybrid numerical method, the 
average relative error of simulated advance and recession times 
was 4.9% and 7.38% for the improved hybrid numerical method, 
6.88% and 9.45% for the Roe finite-volume method.  Mahdizadeh 
Khasraghi et al.[13] simulated the cultivated closed-end border 
irrigation system by the zero-inertia model and full hydrodynamic 
model in the SIRMOD software.  Except for the abnormal 
experimental data (ROTH-16 test), the average relative error of 
simulated advance and recession times was 7.49% and 14.09% for 
the zero-inertia model, 7.49% and 15.36% for the full 
hydrodynamic model.  Therefore, the simulation results in this 
study are acceptable. 

 
a. Border A12  b. Border B11 

 

Figure 2  Comparison of simulated and measured advance and recession trajectories for border A12, border B11 
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a. Advance time in constant inflow borders  b. Recession time in constant inflow borders 

 
c. Advance time in varied inflow borders  d. Recession time in varied inflow borders 

Figure 3  Observed versus predicted advance and recession times for the total data of borders with Zero-inertia model  
 

Several statistics indicators were computed to further verify the 
accuracy of the zero-inertia model.  The results showed that the 
zero-inertia model have a fair degree of accuracy (Table 3).  In the 
irrigation events with constant inflow discharge, the values of R2 
were between 0.993 and 0.999 for simulated advance times, and 
between 0.874 and 0.940 for simulated recession times.  And in 
the irrigation events with rapidly varied inflow, the values of R2 
were between 0.960 and 0.998 for simulated advance times, and 
between 0.852 and 0.961 for simulated recession times.  Although 
the values of R2 for the irrigation events with rapidly varied inflow 
was slightly smaller, it still showed a high correlation of the 
zero-inertia model with the measured data[23].  The values of 
RMSE and CRM have the same tendency.  In the irrigation events 
with constant inflow, the values of RMSE were between 0.496 and 
1.793 min for simulated advance times, and between 1.852 and 
15.757 min for simulated recession times respectively.  The 
values of CRM were between –0.032 and 0.043 for simulated 
advance times, between –0.104 and 0.029 for simulated recession 
times respectively.  And in the irrigation events with rapidly 
varied inflow, the values of CRM were between –0.103 and 0.047 
for simulated advance times, between –0.103 and 0.014 for 
simulated recession times respectively.  In the irrigation events 
with rapidly varied inflow, the values of RMSE were between  
0.729 min and 2.317 min for simulated advance times, between 
4.343 min and 17.280 min for simulated recession times 
respectively.  These results agreed with other researches of the 
constant-discharge surface irrigation simulation.  Mahdizadeh 
Khasraghi et al.[13] used SIRMOD software to simulate 22 sets of 
border irrigation with constant inflow discharge, and the average 
value of RMSE was 1.11 min for simulated advance times and 
10.93 min for simulated recession times.  Sayari et al.[24] used the 
SIRMOD software and a zero-inertia finite element model to 
simulate the flow in surface irrigation with constant inflow 

discharge, and the RMSE values of simulated recession times were 
between 2.80 min and 12.58 min for the zero-inertia finite element 
model, between 2.26 min and 17.89 min for SIRMOD.  Hence, 
the zero-inertia model is satisfactory to simulate the advance and 
recession phase in border irrigation with rapidly varied inflow 
discharges. 

 

Table 3  Goodness of fit of Zero-inertia model 

Advance time Recession time 
Border  
Number R2 RMSE 

/min CRM R2 RMSE
/min CRM

A1 0.999 0.496 –0.004 0.904 1.852 0.017
A2 0.993 0.616 0.035 0.908 2.298 0.009
A3

constant 
inflow 
borders 0.994 0.515 –0.006 0.893 5.438 –0.046

A4 0.960 1.963 –0.103 0.866 7.681 0.014
A5 0.983 1.275 –0.062 0.873 6.933 –0.044
A6 0.990 0.781 –0.035 0.892 6.282 –0.041
A7 0.992 0.862 –0.040 0.878 4.343 –0.062
A8 0.992 0.830 –0.052 0.865 4.792 –0.088
A9 0.984 1.180 –0.036 0.852 5.303 –0.003

A10 0.980 1.351 –0.020 0.909 6.203 0.007
A11 0.967 1.634 –0.091 0.894 5.510 –0.038
A12

varied 
inflow 
borders

0.988 0.898 –0.030 0.900 6.471 0.004
B1 0.995 1.793 0.043 0.874 11.506 –0.022
B2 0.998 0.630 –0.018 0.930 14.391 –0.104
B3 0.993 0.937 0.010 0.878 14.849 –0.095
B4

constant 
inflow 
borders

0.996 1.000 –0.032 0.940 15.757 0.029
B5 0.997 0.729 0.031 0.917 11.698 –0.014
B6 0.995 1.066 0.036 0.918 13.718 –0.103
B7 0.996 0.904 –0.030 0.961 15.138 –0.080
B8 0.995 1.407 –0.018 0.889 17.280 –0.090
B9 0.993 1.307 0.047 0.932 15.318 –0.022
B10 0.985 2.317 –0.061 0.897 17.248 –0.016
B11

varied 
inflow 
borders

0.998 0.740 –0.001 0.877 16.261 –0.029
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As water enters the border from the upper boundary, the flow 
depth fluctuates near the upper boundary.  The flow depth 
observation points are designed at a quarter distance (20 m in Field 
A and 25 m in Field B) from the upper boundary of the border.  
Flow depths were measured by capacitance water level logger 
(resolution: 1 mm).  The observation time interval of Field A (in 
2016) was too long (about 2 min) to understand how the water 

depth changes with the change inflow.  Therefore, the observation 
time interval of Field B (in 2018) was set to 30 s.  The 
comparisons of simulated and measured flow depths are shown in 
Figures 4 and 5.  The simulated flow depths are closely matched 
with the experimental data with small relative error values.  At the 
same time, Figure 5 also shows that the flow depth obviously 
changes with the variable inflow.  

 
a. Border A7  b. Border A11 

 

Figure 4  Comparison of simulated and measured flow depths for border A7, and border A11 

 
a. Border B7  b. Border B10 

 

Figure 5  Comparison of simulated and measured flow depths for border B7, and border B10 
 

3.3  Sensitivity analysis 
Because of the uncertainty of the model input parameters (bed 

slope, Kostiakov infiltration parameters (α and k), roughness 
coefficient), systematic sensitivity analyses must be conducted to 
investigate the sensitivity of the performance to changes in these 
input parameters.  The sensitivity analysis of α was only 
conducted because there is a certain correlation between α and k[25].  
Based on the input parameters of B5 (irrigation event with rapidly 
decreased inflow) or B8 (irrigation event with rapidly increased 
inflow), change only one input parameter equal (±50%) while 
keeping all other parameters unchanged to perform sensitivity 
analysis[26].  The sensitivity index (SI) was used for this purpose, 
and it can indicate the percentage change in the output resulting 
from an input parameter changing[26,27]. 

-1
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= ⋅ Δ∑

            

(12) 

where, tp is the simulated advance/recession time, min; tn is the new 
value of simulated advance/recession time with a changed input 
parameter, min; Δ is the absolute value of change in the input 
parameter; n is the number of stations along the border length. 

The sensitivity of the zero-inertia model in B5 (rapidly 
decreased inflow) and B8 (rapidly increased inflow) is illustrated in 
Figure 6.  In general, the infiltration parameter (α) was the most 
sensitive input variable of the zero-inertia model.  In addition, the 
effect of model input (bed slope in particular) on the recession 

phase was more than the advance phase.  For -50% change in 
border slope, the output of advance times increased by 10.3% in B5 
and 8.4% in B8, and that of recession times increased by 94.5% in 
B5 and 81.1% in B8.  These results agreed with the research of 
Maheshwari et al.[27] who studied the sensitivity analysis of slope 
for six border irrigation models in the border irrigation systems 
with constant inflow discharges.  Their results also showed that 
the effect of the slope change on the recession phase is much 
greater than the advance phase. 

 
Figure 6  Sensitivity analysis of the zero-inertia model 
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4  Conclusions 

The zero-inertia model is a suitable and simple tool to simulate 
surface irrigation event with constant inflow discharge.  
Nevertheless, this model performance with rapidly varied inflow 
discharge was not verified.  In this study, the zero-inertia model 
was solved using the finite difference method to verify the model 
with rapidly varied inflow discharge.  The simulation results were 
compared with the experimental data.  The evaluation of the 
model in simulating the advance and recession phases revealed that 
the zero-inertia model is also a good model for the surface 
irrigation system with rapidly varied inflow discharge.  Sensitivity 
analysis of the input variables indicated that the infiltration 
parameter (α) was more influential than bed slope and roughness 
coefficient.  Therefore, more attention should be paid to the 
measurement of infiltration parameters in rapidly varied inflow 
irrigation system.  Moreover, for all input, especially bed slope, 
the recession phase was more sensitive than the advance phase.  
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