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Abstract: Recognition and counting of greenhouse pests are important for monitoring and forecasting pest population dynamics.  

This study used image processing techniques to recognize and count whiteflies and thrips on a sticky trap located in a 

greenhouse environment.  The digital images of sticky traps were collected using an image-acquisition system under different 

greenhouse conditions.  If a single color space is used, it is difficult to segment the small pests correctly because of the 

detrimental effects of non-uniform illumination in complex scenarios.  Therefore, a method that first segments object pests in 

two color spaces using the Prewitt operator in I component of the hue-saturation-intensity (HSI) color space and the Canny 

operator in the B component of the Lab color space was proposed.  Then, the segmented results for the two-color spaces were 

summed and achieved 91.57% segmentation accuracy.  Next, because different features of pests contribute differently to the 

classification of pest species, the study extracted multiple features (e.g., color and shape features) in different color spaces for 

each segmented pest region to improve the recognition performance.  Twenty decision trees were used to form a strong 

ensemble learning classifier that used a majority voting mechanism and obtains 95.73% recognition accuracy.  The proposed 

method is a feasible and effective way to process greenhouse pest images.  The system accurately recognized and counted 

pests in sticky trap images captured under real greenhouse conditions. 
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1  Introduction

 

Pest management is one of the main concerns for agricultural 

scientists and producers.  Pests affect crop yield and quality and 

require substantial manpower and material resources for 

management.  The automatic recognition and counting of pests is 

an essential step toward effectively managing pests and improving 

resource utilization efficiency[1].  Typically, greenhouse pest 

recognition and counting are conducted on conventional sticky 

traps[2].  The small size of the pests and the visual complexity of 

the greenhouse sticky traps (such as illumination and impurities) 

reduce the efficiency and reliability of manual counting.  With 

the development of agricultural information technology, an 

integrated pest management system was proposed to minimize 

crop damage, environmental pollution, and economic losses[3].  

However, one of the prerequisites for integrated pest management 

is to accurately investigate pest species as well as population 

density.  Thus, this paper introduces our automatic greenhouse 

pest recognition system. 

The rapid development of computer vision technology has 
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facilitated a new pest recognition approach.  The use of an 

automated approach greatly increases efficiency and addresses 

problems such as a lack of agriculture experts and poor 

objectivity[4].  Though image processing methods are widely used 

for the automated recognition and counting of various objects in 

different fields, very few studies have been conducted on 

recognizing and counting pests on sticky traps.  The related 

literature can be grouped along several dimensions such as image 

acquisition settings, segmentation, feature extraction, and 

classification algorithms.  In terms of image sources, many 

previous methods have considered individual pest specimens[5-9] or 

pest images captured under laboratory conditions[10-13].  Thus, 

when these existing methods are applied to pest images captured in 

real-world scenarios, they may yield low recognition accuracy.  

Some previous methods have been used to perform pest image 

acquisition in a real greenhouse environment using scanners or 

wireless digital cameras.  From an image acquisition perspective, 

the light source in a scanner is consistent and the image quality is 

uniform[1,14,15].  However, scanners are mainly used indoors, and 

using a scanner in the field is inconvenient.  Pest image 

acquisition using a digital camera or a CCD camera is very 

common[16-19].  Although these methods achieve high pest 

recognition accuracy, they are not specifically suitable for 

large-scale implementation and long-term pest monitoring because 

of the high computational cost for data processing.  In addition, 

the cameras in these systems do not have data transmission 

capabilities, thereby hindering the installation of a complete 

monitoring system. 

Previous studies have suggested analyzing and counting pests  
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on only 20% of the trap surface rather than on the complete surface 

to provide an accurate estimation of overall pest density[20,21].  

Existing methods use solid-color traps to avoid noise in the digital 

images caused by gridlines or other printed marks on the sticky 

traps[15,22,23].  In contrast, our proposed segmentation algorithm 

can deal with non-uniformly colored sticky traps.  Cho et al. and 

Qiao et al. use empirical intensity thresholds to segment pests in 

the trap images, however, the empirical parameter requires manual 

adjustment if the method is used under different image acquisition 

conditions[1,22].  Solis-Sánchez et al. used the automatic 

clustering-based image threshold method proposed by Otsu (1979) 

for whitefly image segmentation from sticky trap images captured 

in the field, thereby reducing the empirical input parameters used in 

the insect identification algorithm[24].  Similarly, Xia et al. used a 

marker-controlled watershed segmentation.  A comparative 

experiment was performed to verify that our proposed algorithm 

provides better segmentation results on the pest trap images than 

the watershed segmentation algorithm[15]. 

Hand-crafted features, including the scale-invariant feature 

transform (SIFT) and histogram of gradients (HOG), have facilitated 

dramatic progress in many computer vision tasks such as object 

recognition and image matching.  These features are considered to 

be a major milestone in computer vision and perform consistently.  

Solis-Sánchez et al. identified the objects detected in the 

segmentation process using SIFT as developed by Lowe[25,26].  

Xiao et al. presented a pest classification and recognition scheme 

based on the SIFT and bag-of-words model[27].  Deng et al. 

generated saliency maps and regions of interest-based on the 

saliency-using-natural-statistics model, and then fed the invariant 

features to a support vector machine (SVM) for recognition[28].  

These methods have achieved accurate results, but they rely on the 

extraction of SIFT features, which entails a significant 

computational burden and is not feasible for our online real-time 

identification system. 

Currently, there is no unified method for image segmentation 

and recognition in greenhouse conditions.  This study using color 

and shape features to identify the pests from regions detected in the 

segmentation process.  A novel multi-decision tree ensemble 

learning method was adopted for classification, which constructs 

multiple classifications and regression trees (CART) by random 

resampling on the feature variables, and classifies the pests using 

multiple decision-tree voting.  Our study makes three main 

contributions.  First, a 4G network mobile or wireless network 

transmission solution was proposed to transmit images on a large 

scale and a set of energy storage devices were designed to run 

image acquisition devices with little manual intervention.  Second, 

an accurate recognition and counting algorithm with a low 

computational cost for pests on sticky trap images captured in a 

greenhouse environment was developed.  Third, the agricultural 

monitoring web platform was developed to monitor the function of 

the terminal device and view the recognition and counting results 

of greenhouse pests in real-time. 

2  Materials and methods 

2.1  Samples and image acquisition 

All of the images are collected from a cucumber greenhouse at 

the National Experiment Station for Precision Agriculture in 

Beijing, Jinggangshan National Technology Park in Jiangxi, and 

the Science Park in Tianjin.  Figure 1a shows the complete 

acquisition and transmission system using a T500 industrial mobile 

phone (Figure 1c), as deployed in the greenhouse environment. 

The automated image acquisition system in Figure 1a consists 

of the following components from top to bottom: 1) a solar panel: 

the power supply for the mobile phone consists of a solar panel 

combined with a storage battery; 2) a sticky trap: the trapping 

section is 20 cm×25 cm and is attached by a bracket in the middle 

of the monitoring device; 3) a camera box: the image acquisition 

device is directly in front of the sticky trap, and the image is 

captured by a T500 three-proof mobile phone and transferred to our 

monitoring service platform by setting the photo time interval in 

the 4G or wireless network environment; and 4) a battery box: a 

20000 mA·h battery combined with the solar panel facilitates quick 

electricity storage.  Figure 2 shows a schematic diagram of the 

entire system as deployed in the greenhouse environment. 

 
a. Automatic image acquisition system  b. Sticky trap c. T500 industrial mobile phone 

 

Figure 1  The automatic image acquisition device 

 
Figure 2  Schematic diagram of the entire system 
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2.2  Image segmentation and recognition algorithms 

2.2.1  Image segmentation algorithm 

The study proposed a pest image segmentation and counting 

method in hue-saturation-intensity (HSI) color space and Lab color 

space to handle the problems caused by non-uniform illumination.  

The transformation formulas from RGB space to HSI space are as 

follows[16]: 
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The RGB color space to Lab color space transformation 

formulas are as follows: 
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To further improve the pest segmentation accuracy, the study 

used two steps to preprocess pest images: 1) Target objects were 

detected by processing the region of interest of the sticky traps 

based on the distribution of the sampled areas for whiteflies and 

thrips (Figure 3).  Only the target regions between 80 and 1000 

pixels were selected.  

 
a. Thrips  b. Whitefly 

 

Figure 3  Histogram of target pest region sizes 
 

Then, a non-target object area removal algorithm was used to 

process the pest images (Figure 4).  First, the images were 

converted from RGB to the HSI and Lab color spaces.  Second, 

for components I and B of the respective color spaces, the study 

used a Prewitt operator and a Canny operator for detection, 

respectively.  Component I of the HSI color space is independent 

of color.  Component B of the Lab color space varies over the 

range from yellow to blue, forming a strong contrast with the 

yellow background of the trapped image.  Thus, these operators 

facilitate the edge segmentation of the pests.  Finally, by a 

morphological opening on each detected area, the region of pixels 

corresponding to the selected area was considered as an object of 

interest.  2) After segmenting target objects in the HSI and Lab 

color spaces, the segmented results of the two-color spaces were 

summed.  The result of this segmentation is shown in Section 

3.1. 

2.2.2  Image recognition algorithm 

2.2.2.1  Feature extraction  

The extracted color features (first and second moments) and 

shape features in the HSI, Lab, and RGB color spaces.  Then 

integrating the three-color features and the morphological features 

as a feature vector and inputting them to the ensemble learning 

classification.  The corresponding formulas are as follows: 
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The second moment signifies the standard variance of the 

image. 

The rectangularity shape feature is 
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represents the area of the pest region and SMER is 

the minimum enclosing rectangle (MER) of the pest region. 

The elongation shape feature is   

l
El

w
                    (13) 

where, l is the long axis length and w is the short axis length of the 

MER of the pest region. 
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Note: (a) Original image in RGB color space  (b) HSI color space image  (c) I component  (d) Prewitt edge detection  (e) Morphological opening  

(f) Lab color space image  (g) B component  (h) Canny edge detection  (i) Morphological opening  (j) Selection of objects with suitable areas 

Figure 4  Removal of non-target objects 
 

2.2.2.2  Ensemble learning classification 

The ensemble learning classification algorithm is a meta- 

estimator that fits a number of decision tree classifiers on various 

sub-samples of the dataset.  The algorithm steps are as follows: 

(1) Assume that the total number of samples is N.  Then, n 

(n<N) samples are randomly selected from the N samples and used 

to train a decision tree; 

(2) Each sample has M attributes.  When the nodes of each 

decision tree need to split, m (m<M) of the most discriminating 

attributes according to the Gini index are randomly selected as the 

splitting attributes of the current node; 

(3) Each node of each decision tree is split according to the 

results of step (2) to minimize the impurity of each node until the 

node cannot be further split; 

(4) The results (xi) are determined by the vote of each tree 

classifier, that is, the classification formula is as follows: 
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The majority vote function implements the majority voting 

operation and Nt denotes the number of decision trees.  Figure A1 

shows a visual decision tree architecture selected randomly from 

the trained ensemble learning classifier.  The study used Nt = 20 

decision trees for the ensemble learning classifier, which usually 

performs better than a single decision tree.  Experiments showed 

that the ensemble learning classifier obtains state-of-the-art 

performance on the pest images by comparing its results to those of 

other classifiers.  Finally, the algorithm was integrated into 

agricultural monitoring networking systems for actual agricultural 

pest control tasks. 

3  Results and discussion 

3.1  Pest image segmentation and counting analysis 

The pest images were captured in a real greenhouse 

environment, and inevitably contain some non-pest material, 

affecting the counting accuracy.  Moreover, the pest images 

include small objects as well as the gridlines and text on the sticky 

trap, further complicating the pest object segmentation.  Existing 

object segmentation methods fail to adequately extract the pest 

objects.  In particular, the study showed the results of two 

common segmentation algorithms: the watershed segmentation 

algorithm (Figure 5b) and the graph cut algorithm (Figure 5c).  

Although the watershed segmentation algorithm can remove the 

gridlines and text on the sticky trap, the object extraction accuracy 

is low.  In contrast, the graph cut algorithm can correctly extract 

the pest objects but has difficulty removing the gridlines and text.  

The proposed algorithm achieved superior segmentation and 

counting results for the pests on the sticky trap, as shown in Figure 

5d.  Figure 6 shows the counting accuracy for 25 pest images.  

The study further quantifies the counting accuracy using the 

following equation: 

1
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where, AEA represents the average extraction accuracy of the 

algorithm with respect to the pest count; N represents the number 

of pest images (N=25); Ni
total represents the actual total number of 

pests in image i; Ni
correct represents the number of target objects 

extracted by the algorithm.  Using Equation (15) over the 25 pest 

images, the algorithm obtains an accuracy of 91.57%.  The false 

positive extractions are mainly caused by the presence of granular 

objects of the same size as the pest areas in the image.  This 

problem will be addressed in future research.  

The study conducted the pest recognition experiments in three 

main steps: segmentation of individual pests from the sticky trap 

images, feature extraction, and the design of the supervised 

learning model (see Section 2).  It is crucial to select an 

appropriate classification model to maximize the final classification 

accuracy.  Figure 7 shows the confusion matrices corresponding 

to the three-fold cross-validation results of several supervised 

classification models.  Based on these results, an ensemble 

learning classification model was selected as our pest recognition 

model in this study.  The confusion matrix presents the number of 
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true positive, false positive (in which a pest is detected where it 

does not exist), true negative, and false negative (in which a pest 

exists but is not detected) pest detections[29].  The diagonal 

elements of the confusion matrix indicate the true positives and the 

rest of the elements in the rows represent the false positives.  All 

of the classifiers show reasonably high true positive and true 

negative results as well as reasonably low false positive and false 

negative results. 

 

  

a. Original image b. Watershed segmentation algorithm 
 

 

 

 

c. Graph cut algorithm d. Proposed segmentation and counting algorithm 
 

Figure 5  Comparison of image segmentation algorithms 

 
Figure 6  Statistics of pest counting results 

 

The experiment employed accuracy and recall metrics to 

evaluate the classifier recognition rate[30], and used two 

threshold-dependent measures: Fa score and accuracy: 
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3.2  Evaluation of pest classification results 

A precision vs. recall plot shows the trade-off between 

increasing the number of detected pests (true positives) and 

reducing the number of false positives.  Fa score, which is based 

on precision and recall, represents the overall performance of the 

pest recognition algorithm, including the false positives and false 
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negatives.  A larger Fa score indicates better performance.  The 

experiment sets a=1 for all of the reported results in this study.  

From the confusion matrices (true positive: true value=1, predicted 

value=1; true negative: true value=0, predicted value=0; false 

positive: true value=0, predicted value=1; false negative: true 

value=1, predicted value=0), finally the ensemble learning 

classifier achieves the highest Fa score and accuracy.  Table 1 

shows the ensemble learning classification algorithm achieves the 

best classification performance compared with the other algorithms.  

A high accuracy value indicates that the results contain a high 

percentage of correctly identified pests and a low misclassification 

percentage.  Misclassification occurs frequently overall and 

affects the recognition results; thus, the accuracy analysis measures 

the overall reliability of the classification models. 

 
Figure 7  Confusion matrix evaluation: accuracy of pest detection using various classification algorithms 

 

Table 1  Evaluation results of different classification models 

Classifiers F1 score/% Accuracy/% 

SVM (RBF kernel,gamma=0.001) 89.66 93.40 

Decision tree (criterion="gini", splitter="best") 90.67 93.86 

Logistic regression (multi_class='multinomial',  

solver='lbfgs') 
92.06 94.86 

Ensemble classification (n_estimators=20,  

max_features = 'sqrt') 
93.56 95.73 

 

3.3  Recognition results and analysis of test images 

The experiment randomly selected one sticky trap image and 

tested all of the above classifiers on this pest image.  Figure 8 

shows that ensemble learning classification achieves the best 

precision-recall results.  A precision-recall curve typically shows 

decreasing precision as the recall increases.  The ensemble 

learning classifier achieves superior AP (average precision) results 

concerning the other classifiers. 

 
Figure 8  Precision-recall curves of different classifiers 
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Figure 9 shows the final recognition and counting results.  

The labels “1” and “2” represent whiteflies and thrips, respectively.  

The backend server is a single Intel Xeon machine with two 

quad-core processors running at 2.33 GHz each and 16 GB of 

RAM.  All of the operations are handled by the server. 

 
Figure 9  Results of pest recognition and counting 

4  Conclusions 

The greenhouse environment presents particular challenges to 

automated recognition and counting.  These challenges include 

the low resolution of the images combined with the small size of 

the target pests and the presence of other materials and markings in 

the image.  This study proposed an algorithm to accurately 

identify and count pests in images of a sticky trap from a real 

greenhouse environment.  The algorithm achieved state-of-the-art 

performance.  Moreover, a complete end-to-end system was 

implemented to automate the entire process with little manual 

intervention for image acquisition, transmission, storage, 

recognition, and counting. 

The study conducted the pest segmentation in the HSI and Lab 

color spaces and summed the results to further improve the 

segmentation accuracy.  The segmentation on the HSI and Lab 

color spaces achieved better results than some classical 

segmentation algorithms.  It appeared that in the context of the 

study, the gridlines and text on the sticky traps showed much lower 

intensity values in component I of HSI and component B of Lab, 

thus facilitating the extraction of the pest objects.  The color and 

shape features of the pests in different color spaces were extracted 

and an ensemble decision trees algorithm was used to perform the 

recognition task.  Experimental results indicated that the method 

was proposed accurately recognized and counted the small-sized 

pests in sticky trap images.  The complete system including the 

hardware setup and software design will be of interest to the 

agriculture industry.  In the future, the system will be further 

improved to false positive detection, and expand the scope of its 

applicability to fields outside of the greenhouse environment.  The 

difficult problem will also be tried to be solved that locating small 

pest objects and realize automatic detection for all small pests in 

sticky traps using a deep learning algorithm. 
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Appendix 

 
Note: Each node calculates its optimal splitting criterion according to the color and shape features we extracted.  As the nodes split further, the sample class impurity 

(Gini) gradually decreases.  Finally, the samples are classified by the value shown in the leaf nod 
Figure A1  Visualization of a decision tree randomly selected from the trained ensemble learning classifier 

 


