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Abstract: Using machine vision to identify and sort scattered regular targets is an urgent problem to be solved in automated 

production lines.  This study proposed a three-dimensional (3D) recognition method combining monocular vision and machine 

learning algorithms.  According to the color characteristics of the targets, to convert the original color picture into YCbCr mode 

and use the 2D Otsu algorithm to perform gray level image segmentation on the Cb channel.  Then the Haar-feature training 

was carried out.  The comparison of feature training and Haar method for Hough transform showed that the recognized time of 

Haar-feature AdaBoost trainer reached 31.00 ms, while its false recognized rate was 3.91%.  The strong classifier was formed 

by weight combination, and the Hough contour transformation algorithm was set to correct the normal vector between plane 

coordinate and camera coordinate system.  The monocular vision system ensured that the field of camera view had not 

obstructed while the dots were being struck.  It was measured and calculated angles between targets and the horizontal plane 

which coordinate points of the identified plane feature.  The testing results were compared with the Otsu and AdaBoost trainer 

where the prediction and training set have an error of no more than 0.25 mm.  Its correct rate can reach 95%.  It shows that 

the Otsu and Haar-feature based on AdaBoost algorithm is feasible within a certain error ranges and meet the engineering 

requirements for solving the poses of automated regular three-dimensional targets. 
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1  Introduction

 

Visual algorithm technology includes object shape recognition, 

velocity sensing, distance recognition and image pattern 

recognition technology[1,2].  Among those applications, the 

technology of 3D recognition is most prominent, especially in the 

actual industrialization pipeline.  The detection of small targets 

has always been the hotspots and difficulties in the research field of 

image processing and its methods are more diverse[3-5].  With the 

development of industrial automation technology and the detection 

of targets on the production and logistics transmission line, due to 

the fast running speed, many types of targets and large distance 

changes, current machine vision recognition technology seems to 

be powerless[6], especially for the complex background 

environment, the diversity of color targets and the complicated 

segmentation algorithm between the small targets of the pipeline.  

Although the target can be accurately identified, running speed is 

slow resulting in low efficiency of the robot, which directly affects 

the pipeline and the production efficiency[7]. 

In order to improve the recognition rate of targets on the 

pipeline, some of simple, high real-time performance and fast 
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running speed algorithms become the hotspots of target image 

exploration.  The Otsu method is a classical threshold 

segmentation algorithm proposed by Otsu in 1979[8,9].  It has 

attracted widespread attention due to its good segmentation effect, 

wide application range, and simplicity and effectiveness.  This 

paper proposes to use Otsu to segment pipeline targets with its high 

segmentation accuracy and strong adaptability[10,11].  This 

improved Otsu search threshold mode can quickly calculate the 

target segmentation threshold and theoretically optimize the 

iterative efficiency.  The algorithm designs a new threshold 

recognition function to replace the traditional two-dimensional 

segmentation threshold by the threshold of two one-dimensional 

Otsu methods.  To ensure maximum integrity within the 

classification, a minimum dispersion within the class is 

introduced[12].  This method not only considers the grayscale 

variation and distribution information of pixels but also considers 

the domain space information around the pixels[13].  In general, the 

search ability of Otsu in the global scope is very powerful.  In the 

actual working scene, after the work-piece is visually segmented by 

the monocular, it is necessary to solve the posture of the plane of 

role target to determine the relative normal vector on the camera 

plane. 

The AdaBoost algorithm is iterative.  Its core idea is to train 

different weak learners for the same training set, and then combine 

the weak learners to form and create a strong learner[14,15].  The 

AdaBoost algorithm based on Haar-feature training has the 

advantages of high prediction accuracy and strong generalization 

ability.  It has wide use in neural networks and machine learning 

feature classification[16].  This study used it to classify the pose of 

the regular three-dimensional target in the actual working 
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conditions, and also proved the feasibility and effectiveness of the 

algorithm. 

2  Materials and methods  

2.1  Improved Otsu segmentation threshold method 

     Otsu derives the optimal segmentation threshold based on the 

gray histogram[17,18] and constructs a two-dimensional histogram 

using the applicable original image and its domain smooth image.  

When the target image segmentation with bimodal histograms, the 

gray histogram is divided into two parts with optimal threshold and 

variance between two parts will be maximized[19].  Method of 

maximal inter-class variance selection used to gradually take 

optimal threshold k from [0, 255] and select k-value that maximizes 

the variance between classes as the threshold.  Figure 1 shows two 

examples of threshold segmentation of Otsu in a noisy background 

which with a global threshold (v=127) and Gaussian filter 

comparison. 

 
a. Simple background target  

 
b. Complicated background target 

Figure 1  Otsu performance with global threshold (v = 127) and 

Gaussian filter comparison 
 

Otsu algorithm generalized from a single threshold to a 

multi-threshold, but the essence of the algorithm is still an 

exhaustive method with very high time complexity.  When the 

traditional multi-threshold Otsu method calculates the optimal 

threshold, it takes a long time to find the optimal threshold for the 

LN sub-exhaustive traversal calculation of the gray space[20,21].  

Therefore, if the threshold search range can be reduced, the 

segmentation efficiency can be improved.  Suppose that the 

optimal threshold T (T1, T2, T3, ···, Tn-1) has a mathematical 

correspondence with the mean value of the divided N types: μ0, 

μ1, ···, μn-1 with 1 0 1

1
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.  In the process of finding this optimal 

threshold, it is then exhaustive to calculate the inter-class variance 

corresponding to all thresholds but to find a set of thresholds that 

satisfy the multi-threshold Otsu criterion as the optimal threshold.  

However, the multi-threshold criterion requires the number of 

iterations LN, and the efficiency of the algorithm iteration improves 

as LN/(T1, T2, T3, ···, Tn).  As the number of thresholds increases, 

T1, T2, T3, ···, Tn will become closer and lower to grayscale, and 

greater efficiency improvement[22].  Let the gray levels of target 

images have L levels, and the number of pixels in i-th level is ni, 

the distribution interval in level i is [0, L–1], and the total number 

of pixels is counted as: 
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Among them, the statistical probability of i-th level is: 
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Threshold k was set to divide the pixel into two categories: 

Target A and background B.  The gray level distribution of targets 

is [0, k−1], and the gray level distribution interval of the 

background is [k, L−1].  The average gray level of images can be 

calculated as: 
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A class and B class pixel average gray is 
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For an image with a gray level of L, when calculating the 

average gray value of a domain matrix of N*N at each pixel, a 

definition function of the domain smooth image with respect to x, y 

is defined.  Assuming function L(x, y), let Fij represent the number 

of pixels in the image whose gray value is i, and the pixel whose 

field average gray value is j appears in the same spatial position.  

K is the square field width of the pixel, and the gray level function 

Fij (m, n) can be expressed as: 
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It is assumed that the grayscale segmentation threshold is 

minimum variance p obtained from the average threshold of the 

pixel points, and the domain grayscale means segmentation 

threshold is the value of the two-dimensional joint probability 

distribution q[23,24].  Then the algorithm uses the ratio to express 

the background and the detected target. 
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In summary, can get the equation as follows: 
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Its derivation formula for variance between classes is: 
2 2 2 2
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It is assumed that there is only one threshold TX each time 

image segmentation is performed so that the intra-class variance is 

minimized.  For any TX, here have T≠Tx and σ2(T)<σ2(Tx).  

According to Equation (11), after the first threshold segmentation, 

the images are classified into two categories based on the class 

variance and the gray mean.  The first split threshold is Tx, and the 

two gray scales are μ1 and μ2 respectively.  Making 

1 2 1 2( )x

q
T

p
    , for any TN, when NL(m+1, ···, m+n, 

m+n+j), can be derived: 
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When two or more peak sets are close in distance, the peak set 

can be expressed as:      
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where, h(l) original value of the histogram and L is the number of 

gray levels, which θ is the scale factor.  Assuming that the gray 

levels of the two peaks are i and j, when its valleys satisfy a certain 

value, it can be considered that the thresholds of the two valleys in 

the histogram can be combined, and the calculation between the 

two valleys can be expressed as: 
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According to Equation (10), in general N and 
p

q
 are 

unknown, the pixel gray mean is only the maximum likelihood 

estimate of the class variance prediction set.  Can be drawn: 
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It can be proved from the above formula that for any threshold 

of the grayscale division value T, the intra-class variance is  

greater than or equal to the two types of average values.  When 

T≠Tx and σ2(T)<σ2(Tx), multiple thresholds are minimized within 

the class.  The variance is a measure of the degree of data 

dispersion if the edge data of the two types of variance is closer to 

the Otsu threshold, and this threshold is closer to the center 

distance of the two classes, then two types of the variance of the 

Otsu threshold segmentation are also close.  The Otsu 

improvement method proposed in this paper will make the 

threshold point as close as possible to side with large variance, and 

divide the pixels of the detection target into classes with the 

smaller variance within the class according to maximum 

likelihood estimation.  If the gray level of the detection target has 

been close to the pixel gray value of the background, the improved 

Otsu method performs a threshold search within a limited range 

until the maximum class spacing variance and the segmentation 

threshold have been found.  

2.2  AdaBoost classifier based on Haar-feature 

AdaBoost cascade classifiers have achieved good application 

value in face recognition, vehicle detection and pedestrian 

detection.  Its core idea of the algorithm is to attach importance to 

the sample with large prediction error and the weak learner with 

good performance, and to improve the weight of the sample with 

poor training effect and the weak learner weight with weak learning 

ability[25,26].  In the initial state, the weight of each sample is the 

same, and a basic learner Q1(x) is trained under this sample 

distribution.  The weight of learner Q1(x) and the weight of each 

sample in the training set are determined according to the predict 

error of the trained learner on the training set, and its corresponding 

sample weight should be added to the sample with a large Q1(x) 

prediction error.  For samples with small prediction errors, here 

weight is reduced.  Under new sample distribution, the weights Wj 

corresponding to the basic learners Q2(x) and Q2(x) are obtained 

again.  After n cycles, n basic learners and corresponding weight 

vectors Wn are obtained.  Finally, the n basic learners are 

combined according to the weight vector W to obtain a strong 

learner[27,28].  Figure 2 shows the framework of the AdaBoost 

algorithm. 

 
Figure 2  Framework to construct weaker and stronger learners 

 

Haar-feature combined with AdaBoost is often used to extract 

the structural features when making face detection of humans.  It 

was known that each element of the image contains all pixels and 

this allows Haar-like feature to compute the sum of rectangular 

areas in the image[29,30].  Haar features are divided into three 

categories, edge features, linear features, and specific directional 

features, combined into feature templates, as shown in Figures 

3a-3c. 
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a. Edge features 

 

 
b. Line features 

 

 
c. Special diagonal line 

Figure 3  Classification of Haar-features 
 

AdaBoost algorithm forms a stronger classifier by weighting a 

group of weak classifiers.  The purpose is to train a batch of 

weaker classifiers based on samples and then perform the weighted 

combination to form a strong classifier[31,32].  The construction 

process of the weak classifier is as follows: Construct a training 

sample set {(x1, y1), (x2, y2), ···, (xN, yN)}, where is x={l1, l2, …lk} 

and k-dimensional Haar-feature vector extracted from samples, y 

represents targets or non- targets and takes a value of 1 or –1.  Set 

the number of samples belonging to target to m, and the number of 

samples not belonging to target as n.  A weaker classifier is 

trained for each dimension in feature vector extracted from samples, 

and the corresponding formula is as follows: 
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where, li(x) representing the i level dimension of Haar eigenvector.  

Refer to error formula defined by AdaBoost algorithm[33,34]: 
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where, J is subscript of the element in a feature vector; N is the 

number of samples, and Wj is the jth sample weight.  Then there is 

1 1min( ,  )                   (19) 

where, li(x) representing the i level dimension of Haar eigenvector, 

the value Pi of the formula is 1 or −1, and the definition is as follows: 
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The a1 indicates the average of i-dimensional features of the 

target, and the a2 represents the average of i-dimensional features of 

the non-target samples.  The judgment of pi is as follows: 
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Therefore, the construction process of the weak classifier is 

expressed as, when a1 and li(x) is less than or greater than θi 

simultaneously.  The predicted sample can be judged as the target, 

otherwise, it is determined to be the non-target[35,36].  The training 

process for the strong classifier is as follows: 

(1) Prepare a training set D={(x1, y1), (x2, y2), ···, (xN, yN)} 

where x={l1, l2, ···, lk} represents the k-dimensional feature vector 

extracted from the training sample, and y is the category label of 

the sample, and its value set as 1 or –1.  Corresponding to target 

and non-article, the number of target samples is n1, and the number 

of non- targets is n2. 

(2) The weight of each sample in the training set is initialized as: 
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(3) Setting T to the maximum number of training rounds, in 

each round of training, the sample weights are normalized first.  

For each feature L, a weak classifier is constructed as fL(x) and its 

error rate εi is calculated.  From which the weak classifier with the 

smallest error rate is selected as the optimal classifier ft(x) of the 

round, and the error rate εt is calculated.  And the weight of the 

optimal classifier is derived according to the error rate: 
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According to the classification of the optimal classifier, the 

training set sample update distribution is: 

1
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Among them, when the training samples are classified 

correctly, the equation ei
 = 1 holds; when classified incorrectly, the 

equation ei
 = 0 holds. 

(4) Repeat each round of training and continuously update the 

weights until the number of training rounds reaches T.  The final 

strong classifier formula is as follows:      

    
1

( ) sign( ( ))
T

t tH x f x               (26) 

2.3  Construction of training sets and extract contour features 

In this experiment, to collect 600 background images 

containing interfering objects into a training set, part of them 

showing in Figure 4 and Figure 5.  Here contained target images 

with various poses for weaker classifier training.  True positive 

rate (tp) and false positive rate (fp) were used as predicted indicators 

to evaluate the target recognition rate.  The first step is to 

calculate the anti-interference error rate of targets in different 

contexts, and the second step is the recognition integrity rate of the 

target in the case that it can be identified[37,38].  Figure 5 shows the 

samples of targets at different angles.  It should be noted that our 

goal is to input 3D-pose images of the targets and output its 

mathematical parameters of 3D-pose, such as the plane normal 

vector and Euler angle in the world coordinate system.    

 
Figure 4  Complex background training 
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Figure 5  Strong classifier classification results 

 

In summary, we implement image binarization processing with 

Otsu segmentation and tracking target contours.  It was able to 

identify the shape, the texture of the target[39,40].  At this stage, we 

introduce the Hough transform for pyramid search and region of 

interest extraction.  Then output a rough outline of the target.  

Finally, the dimension reduction of the target is input to the 

AdaBoost classifier for training (Figure 6). 

 
Figure 6  Improved Otsu with generalized Hough transform 

algorithm framework 

3  Results and discussion 

3.1 Otsu threshold segmentation effect and AdaBoost 

classification accuracy analysis 

The target image acquisition device is composed of four parts, 

acquisition hardware, bracket, light source, laser range finder and 

image processing system[41,42].  The image acquisition system was 

assembled by a CCD camera-Vie MV-EM200C (resolution 

1600×1200, frame rate 40 fps).  The illumination source consists 

of four OPT-LI9022 24V-2.7W LED lamps.  Laser range finder 

use BOSCH-GML25.  Experimental targets are wooden carcass, 

which its length is 49.32 mm, width is 17.00 mm and height is 

23.40 mm; the side small cylinder diameter is 7.80 mm.  The 

image processing system uses VS2013+OpenCV3.0 and MATLAB 

graphics modules.  Measuring the lens distortion parameters at 

different positions before each experiment, it can be seen that most 

of the parameters can negligible according to the accuracy 

requirements of the experiment[43,44].  Suppose the geometric 

coordinates of point (x, y) on the image plane under the camera 

coordinate system are εx(x, y) and εy(x, y).  Due to the camera 

calibration accuracy considering nonlinear distortion, here need to 

avoid too many nonlinear parameters to cause the instability of the 

equation solution.  So when calculating the polynomial of the 

distortion model, such as εx(x, y) = x*(k1r
2

 + k2r
4) and εy(x, y) = 

y*(k1r
2

 + k2r
4), radial distortion generally takes first or two 

parameters, so only two parameters k1 and k2 need to be 

considered in the calculation.  Here k1 and k2 are the radial 

distortion parameter that needs to be calibrated, and r is the 

distance of the point from the imaging center.  The target image 

converted from the RGB model to the YCbCr model.  When there 

is no overlap and the discrimination is obvious, the OSTU 

segmentation algorithm can be used to calculated better detection 

results.  After the original color picture is converted into the 

YCbCr mode, the background and the target have a large difference 

in the Cb mode.  The color of the surface of different targets is 

different[45,46].  It is difficult to meet the requirements of actual 

detection by using a fixed threshold.  The visualization of the 

three channels is shown in Figure 7.  The threshold split 

histogram is shown in Figure 8. 

There can easily get a conclusion from Figure 8b that its 

histogram has distinct peaks between background and detected 

targets and a distinction between the thresholds and valleys.  

Although Figure 8a and Figure 8c also have two peaks, the 

histogram threshold segmentation is not obvious enough.  The 

distance between the two peaks is too close will make the image 

noise affect the segmentation effect. 
 

 
a. Original image                 b. Y channel image 

 

 
   c. Cb channel image                d. Cr channel image 

Figure 7  Three-channel visualization of the YCbCr of the target 

image 
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a. Cr component histogram (b) Cb component histogram (c) Y component histogram 

 

Figure 8  Threshold split histogram 
 

   Therefore, the Otsu algorithm with or without Hough transform 

was used to automatically extract the threshold and segment the Cb 

channel image.  The experimental results show that the algorithm 

has a good segmentation and localization effect for 

non-overlapping scenes.  In the absence of a non-target 

background, the specific process of threshold segmentation based 

on the Cb channel is shown in Figure 9.  
 

 
a. Morphological processing 

 

 
b. Minimum circumscribed rectangle 

 

 
c. Map back to color image 

Note: Original image of the target is acquired, then converted to grayscale image.  

The Cb channel is extracted by the Otsu algorithm, and appropriate segmentation 

threshold is set according to the histogram.  Then calculate the minimum 

boundary pitch and return the image to RGB mode 

Figure 9  Threshold segmentation process 
 

After the AdaBoost classifier had been trained, scanned 

detection was performed on the test image.  The multi-scale 

strategy is used to detect the image so that the positioning results 

are more accurate, and the region merging technique is needed to 

solve the detection window coincidence problem.  The image 

acquisition platform is used to capture 600 sample images of the 

target, covering different rotation angles as much as possible[49,50,51].  

With the 2000 sheets of non-targets samples, those samples are as 

diverse as possible.  The data sets contain scenes such as animals, 

trees, landscapes and roads.  Configuring Microsoft Visual Studio 

2013+Opencv3.0 experimental platform under Windows, then 

training AdaBoost cascade detector based on Haar feature[47,48].  

The training layer is set to 18, the minimum hit rate is set to 0.95, 

and the maximum false detection rate is set to 0.5.  Multiple 

targets are randomly placed, but they do not intersect with each 

other.  

3.2  Complex background without overlap testing  

It can be seen from Table.1 that there are three different 

algorithms which include hough contour recognition, cascade 

AdaBoost and Haar-feature training based on identifies results of 

targets.  In this step, our testing operating system of the computer 

is windows 10 and its processor model is Intel(R) Core(TM) 

i5-8250U@1.60GHz.  The recognition efficiency of Hough 

contour transform in the complex background is low, only 87.44% 

and its false recognition rate reach 10.94%.  In the CB and FB 

backgrounds, the training times for the cascade-based Adaboost 

method are 52.17 h and 32.71 h, respectively.  Based on the Haar 

feature training method, better model test results were obtained.  

Its training time was 55.83 h and 28.44 h, respectively, and the 

recognition time was relatively shortened to 52 ms and 31 ms.  

The correct sample identification rate reached 97.13% and 98.42% 

and the misrecognition rate corresponds to 4.48% and 3.91%.  

Experiments show that AdaBoost based on Haar-feature training is 

an ideal target classification mathematical model and can meet the 

target positioning test proposed in this study. 
 

Table 1  Model test results 

Algorithm Sample 
Training 

Tx/h 

Recognition 

Ti 
tp fp 

Hough Contour  

Recognition 

CB / 45 ms 87.44% 10.94% 

FB / 1 min 32 ms 90.75% 8.87% 

Cascade 

AdaBoost 

CB 52.17 1 min 02 ms 94.18% 7.11% 

FB 32.71 39 ms 93.53% 5.34% 

Haar-feature 

training 

CB 55.83 52 ms 97.13% 4.48% 

FB 28.44 31 ms 98.42% 3.91% 

Note: CB: complex background; FB: the background that does not contain 

non-target. 
 

3.3  Overlap and Non-overlap testing  

In order to verify the effectiveness of the proposed method,  
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AdaBoost training samples are divided into overlapping 

backgrounds and no overlapping background for weak trainer 

debugging.  The algorithm can separate overlapping artifacts one 

by one.  However, the color difference between the targets is 

small and overlaps each other.  Compared with the Otsu 

segmentation algorithm, the AdaBoost algorithm is better for the 

segmentation test of complex scenes.  Simulate the target gripping 

process and manually grip the one that is placed the easiest to get 

normal vectors.  The recognition effect before or after the 

gripping action is shown in Table 2.  It can be seen from the 

experimental data that the different threshold division ratios do not 

affect the recognition target time of the algorithm.  A 

non-overlapping target training set has a significant accuracy 

advantage.  The training time is fastest at 30.50 ms, and the 

accuracy rate is 98%.  In the classification recognition scene with 

overlapping targets, according to rectangular area statistics when 

the target is recognized, its accuracy of the recognition by the 

training algorithm is lower for the target with the larger inclination 

angle.  For example, the quadrilateral area in Table 2 is only 

309.88 mm2, which only achieves an accuracy of 79%.  In the 

identifying process and clamping the target one by one process, 

manually clamping the flattest part which changed from a complex 

scene to a simple scene.  The overlap of the target will be 

gradually reduced, and the original occlusion is not identified 

targets will be exposed, making the segmentation performance 

better, and the recognition rate will be higher. 
 

Table 2  Overlap and non-overlapping background test results 

Algorithm Fraction threshold Grayscale threshold Recognition Ti LS/mm WS/mm LS*WS Accuracy 

Overlap scene 

0.45 125 50.34 ms 38.17 17.22 657.28 87% 

0.32 167 45.11 ms 27.55 12.31 339.14 92% 

0.47 181 45.05 ms 42.15 22.08 996.91 96% 

0.26 132 1 min 32 ms 16.54 8.85 146.37 89% 

0.44 137 1 min53 ms 21.64 14.32 309.88 79% 

0.38 166 57.31 ms 28.96 17.41 504.19 90% 

Non-overlap 

scene 

0.27 152 34.4 1ms 45.21 20.17 911.88 91% 

0.53 137 35.09 ms 37.64 21.66 815.28 95% 

0.49 180 47.28 ms 13.20 4.98 65.73 87% 

0.31 140 30.50 ms 27.41 7.92 217.08 98% 

0.22 188 1 min 11 ms 10.33 6.09 62.90 90% 

0.48 193 48.54 ms 18.59 13.22 245.75 95% 
 

3.4  Classification verification experiment based on normal 

vector and monocular system 

The target identified by AdaBoost needs to be solved using 

mathematical geometry modeling and transfer the target’s 

three-dimensional orientation parameters to the computer.  The 

camera coordinate system is shown in Figure 10a.  The red line in 

the figure below represents the laser rangefinder light, and those 

points had been marked.  After the coordinate system established, 

let point A and point B be the original position of two laser range 

finder, A1B1 is the position after the middle rail rotates by a certain 

angle, and the corresponding points of the two laser range finder hit 

the target are a, b, a1, b1.  It is assumed that the angle of rotation of 

the middle rail of A to A1 is β (Top view in Figure 10b), and the 

deflection angles of the laser range finder corresponding to the four 

points A, A1, B, B1 are α, α1, α2, and α3. 

Establishing the coordinate system and making assumptions 

about each parameter, we can obtain the coordinates corresponding 

to each laser spot in the coordinate system.  Take the two points 

A1 and A2 as an example.  Firstly, solving the coordinates of point 

A, L is the measured result of the laser range finder, α is the 

deflection angle of the alpha laser range finder, H is the vertical 

distance of laser point to the coordinate system, or can be 

understood as the z coordinate corresponding to point A.  Point M 

is the X coordinate of point A.  Since point A is the original 

position, y coordinate of point A was zero.  Showing by the graph, 

the left side of point A(x, y, z), Z equal to H, and H=L*sinα, 

X=R–L*cosα, Y=0 can be found. Solving the A1 coordinate, L1 is 

the measured result of the laser range finder.  α1 is the deflection 

angle of the laser range finder, and H1 is the vertical distance from 

the laser point to coordinate system, that is, the Z1 coordinate 

corresponding to the A1 point.  Due to the rotation angle of point 

A to the middle rail of A1 was β, and let A1 take the other 

coordinates x1, y1.  As shown in the figure, solving the A1 point 

coordinates (x1, y1, z1) according to the trigonometric function 

relationship.  The coordinates of Z1 can be calculated according to 

equation Z1=L1sinα1.  The X1 and Y1 can be calculated according 

to their trigonometric relationship. 

 
a. Experiment platform 

 
b. Experimental monocular system design 

Figure 10  Monocular vision and laser experiment system 
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In summary, by analyzing the laser spot, the coordinates of 

each laser spot on the coordinate system can be obtained.  It is 

assumed that the coordinates corresponding to the four points A, A1, 

B, and B1 are as follows: A(x, y, z), A1(x1, y1, z1), B(x2, y2, z2), B1(x3, 

y3, z3).  Assuming that the spatial coordinates of the four laser 

points A, A1, B, B1 in the coordinate system are A(x, y, z), A1(x1, y1, 

z1), B(x2, y2, z2), B1(x3, y3, z3).  The four laser spots are on the 

target plane, so two vectors on this plane can be obtained.  

Finding the angle between two planes can be indirectly obtained by 

finding the angle between two plane normal vectors, and the plane 

normal vector is innumerable.  Therefore, the normal vector n of 

the surface can be set as (x0, y0, 1), and have the quantitative 

relationship of n∙AA1=0, n∙AB=0.  Solving the equation, it can be 

found the specific coordinates of x0 and y0 as shown in the 

following Equation (27). 
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0 2 0 2 2

0 1 1
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1

1 2 2 1
0

2 1 2 1

( ) ( ) ( ) 0

( ) ( ) 0
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       (27) 

From this, the normal vector n(x0, y0, 1) of the target surface 

can be worked out.  Therefore, the normal vector of the horizontal 

plane can be set as a (0, 0, 1).  If the angle between the two planes 

is θ, then 

sin asin
n a n a

n a n a
 

 
 ，            (28) 

The inverse trigonometric function (28) can be used, and the 

angle between the target and horizontal plane is θ.  Figure 11 

shows the distribution statistics of the four sets of experiments at 

different angles of the target.  During the experiment, four points 

are used as a set of data, and ten sets of data are respectively 

measured, BC represents before correction, and AC represents 

after correction.  The data is as in Table 3.  Combining with 

Table 3 and Figure 11, it is obvious that in the training set, the 

target of this paper is more likely to produce errors when the tilt 

angle is larger, and the statistical result is less close to the 

prediction set.  However, AdaBoost feature training can get 

correction errors close to 1.076 and 1.045.  This shows that 

Haar-based feature training has a very high accuracy rate with 

actual measurement results. 

 
Figure 11  Statistics of target 3D attitude detection experiment results with error lines 

 

Table 3  Four kinds of proposed methods for angle prediction 

Test 

No. 

Otsu Algorithm Improved algorithm Otsu Hough transform AdaBoost Classifier 

θ (BC) θ (AC) EBC EAC θ (BC) θ (AC) EBC EAC θ (BC) θ (AC) EBC EAC θ (BC) θ (AC) EBC EAC 

1 15.183 16.259 2.640 1.507 18.532 19.245 2.064 1.507 22.986 24.152 2.640 1.491 28.307 28.622 1.726 1.384 

2 7.939 8.624 2.071 1.380 22.453 21.138 2.456 1.138 12.911 13.952 22.099 1.103 33.286 33.954 1.723 1.045 

3 43.121 43.502 1.885 1.487 38.100 38.827 1.904 1.183 16.778 16.745 1.423 1.491 40.786 40.572 1.523 1.076 
 

It can be seen from the above table that the algorithm error 

range was within 1.48 to 1.88 units, the angle between the target 

and horizontal plane was θ and its error not exceeded 0.8 units.  

Reading angle accuracy was within 0.05°.  Through measurement 

data after Hough transform, the normal vector of the regular target 

in the camera coordinate system and its positional relationship in 

space can be calculated.  The existence of error may be related to 

the positional relationship between the laser range finder and 

camera.  The Center axis of the camera does not coincide with the 

center of the annular guide.  Since the camera may have some 

defects during the production process, the center point of the 

camera lens may not be on the optical axis with the center point as 

a whole.  Even if we performed camera calibration during the 

experiment, the parameters of the camera are recognized, but 

during the installation process.  It is still difficult to ensure that the 

center axis coincides with the center point of the ring guide, 

resulting in a certain error.  10 sets of different data were used to 

measure the accuracy of SPSS detection.  As shown in Figure 12 

below, the black line is an accuracy fitting curve of improved 

detectors that Otsu combined with Haar-feature in AdaBoost.  

Under normal enhanced training, the black one of the accuracy of 

angular standard deviation is obviously better than the red and blue 

dotted line.  The Otsu algorithm can accurately segment the 

thresholds and perform variance-like statistics, but in many modern 

classification methods, relative loss problems occur even if 

optimized to better classifiers.  When the algorithm performs 

learning and efficient feature selection, AdaBoost can make up for 

this shortcoming.  At the same time as the weaker classifier was 

preferred, the high detection rate of the stronger classifier is 

improved, and the goal of each classifier in the cascade is not a low 
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error.  Therefore, the AdaBoost classifier of Otsu class variance 

segmentation and Haar feature training can be used in monocular 

visual 3D pose recognition. 

 
Figure 12  Algorithm accuracy prediction curve 

4  Conclusions 

(1) The Otsu class variance threshold derives the optimal 

segmentation value based on the gray histogram of regular targets, 

and divided the gray histogram into two parts with the optimal 

threshold or maximizes the variance between detection targets. 

(2) Using Haar-feature exaction in training can improve the 

accuracy of AdaBoost, the N basic learners and the corresponding 

weight vector Wn are inferred through n cycles.  The weight vector 

W combined n basic learners to obtain a strong learner and 

achieved a classification effect of 98%. 

(3) Comparing a number of different methods, the designed 

monocular system test results showed that the 3D pose detection of 

the rule target could use the machine learning training algorithm to 

obtain the superior effect.   

(4) Experiments have shown that even if there was distortion in 

the lens, the calculation error of no more than 1.48 was obtained.  

This study systematically combined machine learning algorithms 

and 3D geometric mathematical models and proposed a complete 

monocular visual 3D orientation recognition algorithm. 
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