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Abstract: With the development of smart agriculture, the accumulation of data in the field of pesticide regulation has a certain 
scale.  The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million 
records daily.  However, due to the backward technical means, the existing pesticide supervision data lack deep mining and 
usage.  The Apriori algorithm is one of the classic algorithms in association rule mining, but it needs to traverse the transaction 
database multiple times, which will cause an extra IO burden.  Spark is an emerging big data parallel computing framework 
with advantages such as memory computing and flexible distributed data sets.  Compared with the Hadoop MapReduce 
computing framework, IO performance was greatly improved.  Therefore, this paper proposed an improved Apriori algorithm 
based on Spark framework, ICAMA.  The MapReduce process was used to support the candidate set and then to generate the 
candidate set.  After experimental comparison, when the data volume exceeds 250 Mb, the performance of Spark-based 
Apriori algorithm was 20% higher than that of the traditional Hadoop-based Apriori algorithm, and with the increase of data 
volume, the performance improvement was more obvious. 
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1  Introduction  

Smart agriculture is a modern agricultural mode supported by 
Internet of Things technology and data science.  It is the outcome 
that combines information technology and agriculture compared 
with precision agriculture, smart agriculture focuses on how to 
make the most efficient use of various agricultural resources and 
minimize agricultural energy consumption, including smart 
production, smart circulation, smart sale, smart community and 
smart management.  As of 2018, Chinese digital economy[1] ranks 
second in the world and Chinese agriculture has entered the age of 
digitalization.  China has gradually achieved that information 
perception, quantitative decision-making, intelligent control and 
personalized service in the whole process of agricultural production.  
In this context, agricultural operators have a huge demand for 
agricultural-related information services in order to achieve the 
accurate investment of agricultural inputs[2].  Pesticide is an 
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important agricultural input.  China's pesticide application ranks 
first in the world, far higher than the average level of pesticide 
application in the world, posing a serious threat to wildlife, soil and 
water resources[3].  At present, the agricultural supervision data of 
China has accumulated a certain scale, and the pesticide transaction 
data collected by the pesticide national data center only produces 
more than 10 million records daily.  In order to solve the problem 
of pesticide abuse, it is urgent to mine the hidden relationship in the 
pesticide circulation data.  In turn, so as to provide data support 
for the supervision and management and healthy development of 
the pesticide industry.  

Spark is a parallel computing framework based on In-memory 
cluster computing, which has a one hundred times better 
performance than the popular Hadoop MapReduce algorithm.  It 
ensures the real-time performance of data processing in the big data 
environment with high fault-tolerance and high scalability.  Thus, 
this framework is commonly used for analyzing mass data because 
of its excellent performance[4].  Spark’s memory computing is 
based on a new distributed memory abstract resilient distributed 
dataset (RDD).  For RDD, Spark has many built-in operations that 
can convert one RDD to another.  Memory calculations are made 
up of this series of RDD operations.  In particular, the RDD 
persistence operation can cache the RDD in the memory of the 
working node[5], so that when the subsequent operations reuse the 
data, they can be directly read from the memory.  This is another 
factor affecting the computing speed of Spark.  In addition, 
Spark's fault-tolerant approach is also very different from Hadoop, 
which is fault-tolerant through multiple copies of data.  Spark 
does not need to back up data.  It records a series of operations 
performed on the RDD and constructs a directed acyclic graph 
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(DAG).  If the data is in error or lost, it is recalculated according 
to the DAG. 

Spark was originally developed as a cluster-computing 
framework by University of California, Berkeley in 2009, then 
became open-source next year.  There was a lack of data mining 
framework at that time, and most of these frameworks available 
were insufficient in optimization.  Apriori algorithm, which was 
proposed by Agrawal in 1993, is mainly used for association 
analysis.  The algorithm is able to obtain frequent itemsets by 
generating candidate itemsets and testing downward closure 
lemma[6].  

Some modifications were proposed to develop Apriori 
algorithm.  Lin et al.[7] proposed an improved Apriori algorithm 
based on array vector, which reduces the number of connection and 
unnecessary traversing, improves the utilization efficiency of 
memory.  Similarly, the improved Apriori algorithm based on 
vector matrix was proposed by Cao et al.[8]  Zhao et al.[9] used 
orthogonal linked list to improve the storage process of Apriori 
algorithm.  This algorithm simplifies the Scala process and the 
pruning process, thus simplifying the generation process of 
frequent itemsets and improving the time efficiency of Apriori 
algorithm. 

TF-IDF is another Association Rules Mining algorithm.  It is 
used for feature extraction in text based on Vector Space Model by 
calculation the weight of each feature item for the text, to extract 
the key words and core content in the article.  In addition, TF-IDF 
is able to be used of dimension reduction of features for text 
preprocessing[10].  Therefore, based on the existing research, this 
paper proposed an optimal Apriori algorithm and implemented 
parallelization based on Spark.  From the experiments on data sets 
of millions of orders and analysis of the algorithms idea and 
performance, we find that there are three deficiencies in the Apriori 
algorithm.  (1) The method of filtering out non-frequent itemsets 
in processing of generating the Lk+1 needs further improvement.  
(2) There is simplified margin for excessive connections in itemsets 
during the processing of Lk connection.  (3) Apriori algorithm will 
access many redundant data items and transactions when traversing 
the database.  In view of the weakness of Apriori algorithm 
mentioned above, the corresponding improvement methods, and 
more efficient algorithm ICAMA were proposed in this paper.  
The ICAMA algorithm uses the idea of MapReduce to improve the 
two stages of Apriori.  The first stage: the data structure is 
changed while reading the data set to be processed from the HDFS, 
and the first frequent item set is filtered, and the finally obtained 
data set is stored in the RDD form in the memory of each node of 
the cluster.  The second stage: frequent k itemsets are directly 
generated based on frequent k–1 item sets.  Repeat this process 
until no more frequent itemsets are generated[11] 

They all include the processing that data transformation and 
statistics.  A comparison experiment between ICAMA algorithm 
and MapReduce based Apriori algorithm shows a result of 20% 
performance improvement for B-Apriori.  And the high 
performance is maintained even dealing with a million-level dataset.  
In addition, this paper implements ICAMA algorithm based on 
Spark framework, which fills the gap that there is no algorithm for 
Association Rules Mining in Spark's scalable machine learning 
library (MLlib) [12]. 

2  Design and implementation 

2.1  Introduction of Spark framework 
Spark is a parallel computing framework originally developed  

by the Berkeley AMP laboratory, which is based on In-memory 
cluster computing.  This framework has the advantage of 
in-memory computing based on Resilient Distributed Dataset 
(RDD), so it is faster than Hadoop MapReduce computing 
framework.  In-memory computing is the key to the high 
efficiency of Spark framework, which refers to loading useful data 
onto the database into the memory of the computing node when 
Spark is working.  RDD is the implementation of in-memory 
computing.  Persist operation and fault tolerance are two 
significant characters of RDD[13].  The effect of persist operation 
is to cache the RDD to memory of the computing node.  So, 
persist operation provides more inefficient procession in reuse data.  
Unlike Hadoop, Spark builds DAG by recording historical 
operations on RDD to improve fault tolerance instead of data 
backup.  When data is wrong or lost, Spark gets correct RDD by 
original RDD and tracing the DAG. 

Spark improves performance by 100 times compares to 
traditional Hadoop MapReduce method.  The architecture of 
Spark shown as figure 1can be divided into four modules: Spark 
SQL-RDD (for unit of data execution), MLlib (for Machine 
leaning), Graphx (for graphs computation) and Spark Streaming 
(for real-time processing).  Meanwhile, Spark is highly efficient 
because it’s able to store intermediate results of iterations in 
memory rather than in hard disk.  The modules of Spark will be 
described in following[14].  

 
Figure 1  Architecture of Spark 

 

2.2  Algorithmic details of Apriori 
It only requires traversing the data set twice for Spark to 

implement the matrix-based Apriori algorithm.  Combining with 
technological architecture, Spark improves the efficiency of 
Association Rules Mining by using global and local support-based 
pruning.  Its transaction data sets and frequent itemsets are stored 
in HDFS file system based on Hadoop.  In order to save memory 
space and reduce traversing times, the matrix stores Boolean values, 
and each row as a transaction, each column as a differential item.  
The support counts of itemsets can be got by doing “and’ 
operations between corresponding matrices[15]. 

Apriori is an important algorithm for Association Rules 
Mining.  It can be divided into two steps: the first step is to find 
all the frequent itemsets and the second step is to generate 
association rules based on frequent itemsets.  When the number of 
sets is greater than 0, a list of candidate itemsets consisting of k 
items is generated, and then to keep frequent itemsets and generate 
a list of candidate itemsets consisting of k+1 items[16]. 
2.3  Implementation of distributed Apriori based on Spark 

This paper implements a distributed Apriori algorithm using 
Scala programming language, which mainly combines Spark 
framework and RDD operator.  The implementation of the 
algorithm is divided into the following two parts. 

The first part is to generate frequent itemsets L1, which is 
shown in Figure 2.  Including:  
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1) Use flatMap to let transaction set T be distributed to parallel 
computing system in the form of RDD<String and Number>. 

2) Accumulate number of items with reduceByKey. 
3) Use filter to filter down the item set less than the support. 
The second part,is to get LK from LK+1.  Including: 
1) LK Self-join to CK+1. 
2) Traverse the database, compare CK by the method in first 

part. 

 
Figure 2  Flowchart of distributed Apriori 

3  Improvement of ICAMA algorithm 

3.1  The idea of improving the algorithm 
In the first phase of the classic Apriori Spark-based 

implementation YAFIM, the data set to be processed directly into 
the HDFS[17] in the first stage is stored in the RDD form in the 
memory of each node of the cluster, and then each map task reads 
in and processes several rows.  Each item contained in these lines 
is transmitted with a value of 1, and the reducer sums and filters all 
the value values of each item to obtain an item whose number of 
occurrences is not less than the minimum support.  Since the data 
set is read directly from HDFS, its organization in memory remains 
the same: each row represents a transaction T, and T consists of the 
TID[18] and all the items contained in the transaction T.  Therefore, 
it is necessary to calculate the number of occurrences of an item set, 
and only the data set can be traversed as a whole to count the 
results.  This process is repeated for each iteration, which is a 
considerable time consumption. 

In order to solve the above problems, ICAMA adopts a data 
structure conversion method to read data sets from HDFS and 
realize data structure conversion[19].  Each map task reads in and 
processes several rows.  The processing method is different from 
YAFIM[20], but is included in the transaction.  All items emit the 
key-value pairs of the item and the corresponding transaction 
number, and the reducer combines each corresponding transaction 
number.  The transaction number is then counted and filtered to 
obtain a converted data set F containing only a frequent set of 1 
items.  The structure conversion process of the data set[21]. 

Axy in F represents whether Ix is included in TIDy.  If it is 
included, axy is 1, otherwise it is 0.  At this time, if you need to 
calculate the number of occurrences of a k item set in the entire 
data set, you only need to find the value corresponding to the k 
items in data set F.  The result of the operation is all the 
transaction numbers containing the k item set, and the count of 
occurrences can be obtained. 

The ICAMA algorithm uses the idea of MapReduce to improve 
the two stages of Apriori algorithm.  (1) ICAMA proposed a 
suitable data structure for simplify the number of occurrences of 

the item set from traversing the entire data set to summing the bit 
set of the corresponding item.  And then discarded the generation 
process of the candidate to further improve the efficiency of the 
algorithm[22].  (2) ICAMA make the frequent k–1 item sets stored 
in Fk–1 are directly connected to the same two types as YAFIM[23].  
If they are connectable, their corresponding Bit Sets are summed, 
and the Bit Set operation and operation are performed.  The 
processing will be terminated while the transaction number of all 
connected k itemsets is recorded in the Bit Set.  Next, it is 
determined whether the number of transaction numbers in the Bit 
Set is greater than the minimum support degree.  If it is greater 
than, the connected item set is a frequent k item set, and the result 
Bit Set is stored as a key value pair in Fk.  The first stage start 
with convert each row of the dataset into multiple (item, TID) 
key-value pairs by flat Map(), then reduce By Key() to connect the 
TIDs of the same key into a string and filter the string at the same 
time using filter() The number of transaction numbers included in 
the transaction number is less than the minimum support value[24], 
and then map() is used to construct a string of each TID into a Bit 
Set, so the first frequent itemsets will be stored in the form of (item, 
Bit Set) key-value pairs. 

The second stage is to obtain k-item sets through the iterative 
process which is start from k–1 item sets.  First, the candidate k 
item set is obtained from the frequent k–1 item set self-joining and 
pruning.  In order to make the search candidate set faster, YAFIM 
stores the candidate k item set in the hash tree.  Then start the map 
task, each map task processes several transactions, to obtain all k 
pairs in the transaction and searches the hash tree and determine 
whether it is a candidate set.  If it is a k candidate set, it is 
transmitted as a Key (key, 1) key-value pairs, the reducer counts 
and filters the parts of the frequent k-item set.  This is the 
implementation of the most classic Apriori algorithm, but it is often 
because the most time-consuming process of generating candidate 
sets in this process makes the efficiency of the algorithm 
constrained. 
3.2  Time complexity 

It is necessary to make assumptions about some values and 
then express the analysis results in this form in the form of 
mathematical expressions.  Suppose T represents the number of 
transactions in the data set to be processed, M represents the 
number of map tasks in the work, and f represents the number of 
frequent 1 item sets[25].  The asymptotic time complexity of 

YAFIM is 2 2( )TO f a
M

+ × ; the asymptotic time complexity of 

ICAMA is ( )TO f
M

× . 

4  Experiment 

4.1  Experimental data 
The experimental data is the transaction information of 

agricultural inputs products collected by the Institute for the 
Control of Agrochemicals in China Pesticide Digital Supervision & 
Management Platform[26].  Every day, more than 100000 pesticide 
operators across the country upload their business information to 
this platform[27], including price, trading location, the varieties of 
agricultural products inputs and scale of transactions.  The 
supervision platform generates more than 10 million data records 
per day, so we took one day’s data generated from this platform for 
analysis and testing the performance of the spark-based Apriori 
algorithm[28]. 
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4.2  Pseudo-code of the experiment 
Input:  

The Dataset D, which stored in HDFS in the form of data 
blocks.  The minimum threshold of supports min_sup. 
Processing: 

1) Get L1 

Instans=sc.tectfile(D) 
L1=instans.map( _, 1) 
instans.map( _, 1).reduceByKey( _+ _ ).filter( _ >min_sup) 

2) Construct local matrix G 
Matrix G=The initialized matrix of H×(J+2) 
foreach (l in L1) 
 foreach (t in Di) 
  if (l in t) 
   G.add(1) 
  else 
   G.add(0) 

3) Get local candidate itemsets 
for (1<k<maxL){ 
 for (0≤m<maxL){ 
  count=0 
  for (m<n<maxL){ 
   while (count<k){ 
    if (G[m][maxL–1]<k) 
     break 
    else 
     count++ 
   } 
   Loscal_sup_count = [use “AND” operation on
‘kcolum items’ of G] 
   Cx.add(<kcolumn_items, local_sup_count>) 
  } 
 } 
} 

4) Calculate global support, get frequent itemsets 
Gck = Ck.reduceBykey(_ + _).filter(_.2 < min_sup) 
L = instans.map(_, gCk).reduceBykey(_ + _).filter(_ > min_sup) 
L += ck.reduceBykey(_ + _).filter(_.2 > min_sup).add(kitems, 
sup_count) 
return L 

Output:  
Frequent itemsets L derived from data set D. 

4.3  Holistic description of the experiment 
1) Experimental environment 
The computer cluster of the experimental platform consists of 

eight servers.  Each server installs two same Linux systems 
(Ubuntu, Version.12.04) with exception of computing framework, 
and the computing frameworks they install respectively are Spark + 
YARN, Spark + Mesos and Hadoop[29].  

2) Experimental steps 
The Spark based parallel computing is implemented by Mesos.  

So, it is necessary that set the host and port of the Spark-Mesos 
before the experiment.  Deploying Spark on YARN to deploy 
Spark frameworks on YARN requires first installation of 
Maven3.0.4[30] and configuration of its environment variables.  
Subsequently, Maven is used to compile and package the Spark 
kernel separately into an independent jar package.  Copy the jar 
package into the other machines in the cluster complete 
configuration[31,32]. 

3) Results 
The experiment compares among the performances of single  

machine Apriori algorithm, Hadoop based parallel computing 
Apriori algorithm and Spark based parallel computing Apriori 
algorithm on different size data sets.  The results are shown in 
Figures 3 and 4. 

 
Figure 3  Running time of different data block 

 
Figure 4  Running time of different algorithm 

 

4.4  Analysis 
Experiments show that the scale of dataset to be processed is 

positively related to computation.  So single machine cannot 
complete Association Rules Mining for large amounts of data 
limited by computing resources[33].  Although the ICAMA 
algorithm described in this paper consumes additional running time 
due to process communication and data transmission, this 
consumption will not increase greatly due to the expansion of 
datasets.  The larger the amount of data, the smaller the 
consumption ratio is.  Besides, the algorithm has the advantages 
of parallel computing, such as making full use of computing 
resources on different machines[34] and reducing the demand for the 
performance of a single machine[35]. 

5  Conclusions 

This paper briefly summarizes the performance bottlenecks of 
the classic Apriori algorithm, and improves these aspects, 
especially the candidate set generation process, and obtains a more 
optimized algorithm.  Then, based on the Spark platform's 
efficient support for the iterative algorithm, it will improve.  The 
Apriori algorithm is parallelized on Spark and implemented.  
Then, the detailed analysis and comparison of the existing classic 
Apriori Spark implementation YAFIM and the improved Apriori 
algorithm Spark implementation ICAMA are described, and how to 
improve the algorithm is described.  Finally, the efficiency of 
ICAMA is fully proved theoretically and experimentally.  
Especially when the amount of data continues to increase, the 
ICAMA performance improvement will be more obvious.  
Therefore, the algorithm described in this article has the effecter 
clustering and has better computational performance on large-scale 
data.  In summary, this algorithm can effectively mine agricultural 
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inputs information, provides the basis for the market regulation of 
agricultural inputs product markets, and realizes the precise 
investment of agricultural inputs.  And then it provides algorithm 
basis for achieving the supervision and traceability management of 
the agricultural inputs market. 
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