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Abstract: Predicting the excretion of feces, urine and nitrogen (N) from dairy cows is an effective way to prevent and control
the environmental pollution caused by scaled farming. The traditional prediction methods such as pollutant generation
coefficient (PGC) and mathematical model based on linear regression (LR) may be limited by prediction range and
regression function assumption, and sometimes may deviate from the actual condition. In order to solve these problems, the
support vector regression (SVR) was applied for predicting the cows' feces, urine and N excretions, taking Holstein dry cows as
a case study. SVR is a typical non-parametric machine learning model that does not require any specific assumptions about
the regression function in advance and only by learning the training sample data, and also it can fit the function closest to the
actual in most cases. To evaluate prediction accuracy effectively, the SVR technique was compared with the LR and radial
basis function artificial neural network (RBF-ANN) methods, using the required sample data obtained from actual feeding
experiments. The prediction results indicate that the proposed technique is superior to the other two conventional (especially
LR) methods in predicting the main indicators of feces, urine, and N excretions of Holstein dry cows.
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1 Introduction

Nowadays, agricultural  environmental pollution and
management have become an important problem in the world™.
Among them, the environmental pollution caused by the discharge
of pollutants from livestock husbandry has become increasingly
severe, so it is necessary to effectively evaluate and scientifically
treat the discharge of pollutants from livestock and poultry™®®. In
particular, with the continuous increase in the scale and
intensification of dairy cows breeding, more and more excreta such
as feces and urine have been produced, and a large amount of fecal
nitrogen (FN) and urinary nitrogen (UN) have been discharged into
the environment*®. If these cannot be managed in time, the
excreta will pollute the soil, air and water sources’®®. In order to
effectively prevent and control the environmental pollution caused
by feces, urine and nitrogen (N) excrete from dairy cows, and to
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further realize the harmless treatment and resource utilization of
pollutants, it is very important to predict the excretion of feces,
urine and N of dairy cows accurately™%,

At present, there are two main methods to predict the pollutant
discharge of livestock and poultry, namely, the pollutant generation
coefficient (PGC) and the mathematical modeling*Y. Among
them, the PGC method is used to estimate the average content of
main pollutants in livestock and poultry excreta, and it is mainly
divided into the two categories: the country-wide or the
provincial-city level. Gan and Hul*? estimated the annual
pollutant productions of eight livestock and poultry species at the
country-wide level in 2005 and 2013 using the PGC. Zhou et
al.l™®! studied the optimization of the PGC aiming at the scale
composition of livestock and poultry production at provincial and
national levels from 2002 to 2010. Fu et al.* estimated the
annual discharge of livestock and poultry in Henan Province from
2000 to 2014 through an optimized PGC. In summary, the PGC
method is generally applicable to statistics for large-scale areas.
Therefore, its estimated results are relatively rough and are usually
used as a policy guidance at the macro level, while it was not
applied to accurately solve practical prediction applications at the
micro level™.  Compared with the PGC method, the
mathematical modeling is a more accurate quantitative prediction
method by analyzing and modeling the data of animal breeding
process, and is mainly applicable to the prediction of the
production of pollution in a small area such as breeding farm or
animal individual™. Generally, the mathematical modeling used
for livestock and poultry pollution prediction is mainly based on
linear regression (LR) method™. More specifically, taking dairy
cows’ pollution prediction as a case, Wilkerson VA et al.l*®
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predicted the average feces and nitrogen excretion of Holstein dairy
herds relatively early. Nennich et al.*" predicted the excretion
of feces, urine, and N from heifers, dry cows and lactating cows,
respectively. Yan et al.' predicted the excretion of feces, urine,
and N from Holstein-Friesian and Norwegian lactating cows.
Knowlton KF et al.”® predicted the excretion of feces, urine, and N
from Jersey and Holstein cows. Higgs et al.?! predicted the
excretion of FN and UN for lactating cows. Jiao et al.l??!
predicted the FN and organic matter from Holstein steers and
heifers. Basically, the aforementioned prediction models for the
excretion of feces, urine and N of dairy cows mainly adopt the
LR-based model. It is well known that the LR-based model is a
typical parametric model and usually assumes the form of the
objective function followed by the prediction data, and then
estimates the parameters of the objective function during the
training process to determine the previously proposed hypothesis
model®?4. However, since the animal body including dairy
cows is itself a complex system, it is difficult to assume an
appropriate form of the objective function in advance and thus lead
to the unsatisfactory prediction results caused by improper function
form227],

In recent years, the research and application of non-parametric
models have been a hot topic in the field of machine learning
research.  Specifically, compared with the classical parametric
models including LR model, non-parametric models usually do not
make any specific assumptions about the objective function when
modeling, and can fit the function closest to the actual by learning
the training sample data. Up to now, machine learning algorithms
based on non-parametric models have been widely used in solving
regression problems of prediction applications. Among them,
support vector regression (SVR), is a machine learning algorithm
of typical non-parametric model. In fact, SVR is support vector
machine (SVM) used to solve the regression problems, which has
been widely used in many fields such as electric power!?®,
transportation!, engineering®”, and securities®. In most of the
above cases, SVR generalization performance either matches or is

significantly better than competing methods However, to the best
of our knowledge, its application in animal husbandry environment
was seldom reported, especially in the prediction of dairy cows'
feces, urine and N excretions. In addition, for the practical
predicting the excretion of feces, urine and N of dairy cows, it is
usually difficult to obtain a large number of measured samples due
to the various constraints such as animal numbers, feeding
environment, manpower and financial conditions™, But
fortunately, compared with other non-parametric prediction models,
SVR-based prediction methods usually have the advantages of high
accuracy and fewer samples required for modeling®?, which is
very accord with the actual needs of dairy cows' feces, urine and N
excretions prediction.

In this study, a novel SVR-based prediction model was
proposed for predicting dairy cows' feces, urine and N excretions,
taking Holstein dry cows as a case. The experimental results
demonstrate that the proposed model can effectively predict
Holstein dry cows' feces, urine and N excretion indicators, and
shows better prediction accuracy in comparison with the other two
conventional (especially LR) methods.

2 Materials and methods

2.1 Experimental design

In order to accurately predict the feces, urine and N excretions
of dairy cows, in this study, the sample data needed for the
prediction algorithm are obtained through actual feeding
experiments. Twelve healthy Holstein cows in the dry period
with similar body weight were used in the experiment. They were
randomly and equally divided into three groups, and they were fed
by twelve total mixed rations (TMRs) in groups, these diets
composition and nutritional level were shown in Table 1. The
experimental cows were fed twice daily at 6:00 and 18:00 and
ensuring that there was 5% remaining diets. The water was
supplied for 24 h and they can drink freely. Each dietary feeding
pre-trial period is ten days, formal trial period is five days, and the
experimental data were collected during the formal trial period.

Table1 Composition and nutrient levels of experimental diets (DM basis %)

Experimental diets

fems No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12
Ingredients

Chinese wildrye 63.74 57.51 49.43 42.02 33.19 25.18 17.29 10.25 9.39 8.73 7.64 6.28
Alfalfa 6.21 6.26 6.73 7.22 8.98 9.36 10.24 10.79 9.33 8.62 7.37 6.16
Corn silage 13.52 14.16 15.52 16.64 17.82 19.36 20.46 20.47 17.18 12.29 8.38 521
Corn straw 8.58 9.76 10.87 11.62 12.24 13.25 14.12 1551 16.14 17.45 18.65 19.49
Corn 2.25 4.69 6.72 9.21 12.15 14.25 16.15 18.55 20.13 22.12 24.08 25.83
Soybean meal 131 1.85 2.06 2.82 3.37 4.43 5.70 6.66 7.38 8.16 9.58 10.71
Wheat bran 1.29 1.33 1.80 2.34 2.59 3.60 4.32 4.52 5.05 6.22 7.16 8.36
DDGS 1.12 1.24 1.71 2.13 2.53 3.13 3.52 4.13 5.16 5.23 5.31 5.49
Cottonseed meal 0.00 1.18 1.78 2.06 2.32 2.47 2.70 3.15 3.49 3.89 4.02 4.52
Rice bran 0.00 0.00 1.25 1.68 2.39 2.46 2.87 321 3.87 4.33 4.73 4.84
Molasses 1.08 1.12 1.23 1.36 1.42 1.51 1.63 1.76 1.88 1.96 2.08 211
CaHPO, 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.10 0.05 0.05
Limestone 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.40 0.45 0.45
Premix 0.40 0.40 0.40 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Total 100.00  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Nutrient levels
DM 82.80 82.22 81.13 80.22 79.19 77.99 77.07 76.86 78.85 81.89 84.28 86.20
oM 93.92 93.92 93.81 93.77 93.59 93.54 93.45 93.44 93.56 93.72 93.87 94.00
CP 10.11 10.65 11.14 11.67 12.21 12.84 13.57 14.22 14.79 15.28 15.85 16.46
NDF 62.11 59.76 57.00 54.16 50.84 48.10 45.22 42.52 41.02 39.44 37.66 36.01
ADF 35.34 34.04 32.45 30.81 28.99 27.37 25.74 24.17 22.93 21.63 20.27 18.99
Ca 0.57 0.56 0.54 0.53 0.53 0.52 0.51 0.50 0.48 0.51 0.50 0.48
P 0.27 0.28 0.31 0.32 0.34 0.36 0.38 0.40 0.42 0.41 0.43 0.44

Note: One kilogram of premix contained the following: Fe 1 650 mg, Cu 1 560 mg, Mn 3 590 mg, Zn 12 100 mg, 1 170 mg, Co 60 mg, VA 800 000 IU, VD 700 000 IU,
VE 10 000 IU.
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2.2 Data acquisition and measurement
2.2.1 Collection and determination of diets nutrient intake

According to the requirements of the Cornell Net Carbohydrate
and Protein System (CNCPS) standard®¥, in this experiment, the
nutrient intake of dairy cows diets were used as independent
variables to predict the excretion of feces, urine and N of dairy
cows. During the formal trial period, the daily diets and residual
samples were collected and determined, and the average intakes of
dry matter and nutrients in the diets were calculated by the
difference between the amount of inputs and residues of the daily
diets. The contents of dry matter (DM), crude ash (Ash), ether
extract (EE), crude protein (CP), and lignin (LIGNIN) were
determined by the standard method of AOACP4, neutral detergent
fiber (NDF), acid detergent fiber (ADF), acid detergent lignin
(ADL), neutral detergent insoluble crude protein (NDICP), and
acid detergent insoluble crude protein (ADICP) by Van Soest et
al.*% non-protein nitrogen (NPN) by Licitra et al.®®, crude protein
(SCP) by Krishnamoorthy et al.*"), and starch by Karkalas!®®. In
addition, According to the standards of CNCPS, the contents of
various components of carbohydrates and proteins (PA, PB1, PB2,
PB3, PC, CA, CB1, CB2, and CC) were calculated by the method
of Sniffen et al.*,
2.2.2 Collection and determination of feces, urine and N

In order to obtain the data of the predicted variables, during the
formal trial period, feces samples and urine samples were collected
and weighed daily, and the dry matter of feces and urine excretions
of dairy cows were measured and recorded every day according to
whole feces and urine collection method ¥°, the content of FN was
determined according to general Kjeldahl nitrogen method, the
content of UN was determined according to GB11891-89 method,
and the FN and UN excretions of dairy cows were measured and
recorded at the same time.
2.3 Support vector regression technique

Initially, SVM technique was developed to solve the classical
binary classification problems and usually possess excellent
generalization capabilities. ~ Another advantage is that it can
provide sparse solutions where only the most relevant samples of
the training data are weighted and thus result in low computational
cost and memory requirementsY. In addition, SVM also shows
excellent capabilities in the field of prediction, and is usually
expressed in the form of SVR when it is used to solve regression
problems. In regression, the goal is to estimate an unknown
continuous-valued function based on a finite number set of training
samples. SVR uses the principle of structural risk minimization to
simultaneously optimize empirical loss cost and generalization, and
is often able to find non-linear and unique solutions “2. In
general, SVR tries to locate a regression hyperplane with small risk
in high dimensional feature space. Particularly, the standard SVR
transforms the input data into a high-dimensional feature space
using a non-linear function, solving the final model in the
transformed feature space so that not only the training error but
also the complexity of the model is minimized™. It is worth
mentioning that, the SVR trains the model in a non-parametric
manner, and does not make any assumptions about the distribution
of the training samples, so it can often fits well for both linear and
non-linear datal®. In addition, SVR is especially suitable for
small sample prediction problemst®?. Therefore, SVR is
considered as one of the most effective machine learning method in
predicting applications.
2.3.1 SVR-based modeling

In general, a typical regression problem is learned from the

training samples and used to predict the target values of unknown
input vectors. In order to intuitively demonstrate how SVR is
used to solve the prediction problems, firstly it needs to introduce
the concept of loss function.  The loss function is a measure of the
error generated by the SVR model during the learning process and
is generally selected before the SVR model is learned. In this
case, we choose the e-insensitive loss function proposed by
Vapnik™, as shown in Figure 1.

L, A

|-

I y @
Figure 1 e-insensitive loss function

The e-insensitive loss function L,(f(x), y) is defined as:
L(f(x), y) = max{0, ly—f(x)|-¢} )
In Equation (1), f(x) is a regression function constructed by
learning the training sample set and is used to fit the training
sample set (x;, yi), i=1,2,...,n, where x;eRY represents the i th
sample value of the input vector, y;eR denotes the output value for
a given value of the input variable, n is the number of training
samples, >0 is insensitivity loss coefficient and is used to control
the fitting accuracy. When solving the regression problem, SVR
needs to find an appropriate function f(x) to minimize the error
between the observed y and the predicted f(x), and the fitting error
can be expressed by the ¢-insensitive loss function (also known as
the e-pipeline), as shown in Figure 2, when the training sample
points are located in the pipeline represented by two dotted lines in
the figure (the training sample points in the pipeline are indicated
by hollow dots, and the outside of the pipeline is represented by

solid dots), the fitting error of f(x) is considered to be zero.

¥ y=fwte

0 X
Figure 2 Prediction curve with e-pipeline
For predicting of dairy cows’ feces, urine and N excretions,
under ideal conditions, we assume that all training samples are
linearly distributed, and then SVR can use linear regression
functions to fit the training sample data:
fX)=w'x+b )
where, @ denotes the weight vector and b stands for the bias term,
and the appropriate @ and b can be determined by learning the
training samples. In order to ensure the flatness of the Equation
(2) and thus improve the generalization ability of the fitting
function, it is necessary to find an optimal @ by taking the

L 1 .
minimization of the norm m|n5||a)||z of the Euclidean space.

Next, according to the e-insensitive loss function, the fitting error
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accuracy of all training samples is assumed to be ¢. In addition,
considering the data that cannot be estimated under the error of ¢,
the relaxation factors ;>0 and ¢ >0 are introduced. Then, the
minimization problem with respect to w can be transformed into a
convex optimization onet?:

.1 n .

mmgllwll2 +CY LG+ ®)

meanwhile, the corresponding constraints conditions are as follows:
Vi —a)TXi —bSS-Fé/i

o X +b-y <e+(

¢G>0

where, C>0 is the penalty factor used to balance the complexity of
the sample and algorithm beyond the error range. In general, the
larger value of C usually indicate the greater the penalty for data
points beyond the e-pipeline. Equation (3) and Equation (4)
belong to convex quadratic programming problem with linear

inequality constraints, and usually solved by the Lagrange function
method, that is, we need to establish the Lagrange equation:

uaquiaaixﬁvzguww+czﬁgg+gv—

U alsite-yito xi+b]-Y" allS re—yi+ ()
o'x +b]= 3" [Gn +i7)
where, a;, o >0, 3, 71 >0, i=1,2,...,n, are the Lagrange multipliers
and the partial derivatives of Equation (5) for parameters w, b, ¢, «,
o, v should be equal to zero. Then, the condition is brought into

the Lagrange equation and the dual form of the convex quadratic
programming problem is obtained:

i=12,...,n )

Wea') =3 3 (—ai)e—ai)xx)+ o

Z::l(ai —a;)Yi _Z::1(ai +a;)e
meanwhile, the corresponding constraints conditions are as follows:
n *
Zizl(ai -)=0
0<a, o <C

In addition, the above equation is also a quadratic
programming problem. According to the necessary and sufficient
condition (KKT conditions) of the optimization, at the saddle point,

the product of the Lagrange multiplier and the constraint is zero,
namely:

ale+&i—yi+ f(x)]=0

i=12,...n @)

aile+& —yi—F(x)]=0

¢i7=0 &y =0 ®
then, it can be obtained by Equation (8):
ai-o =0
(C-a)gi=0 ©)
(C-a)¢ =0

In this case, as can be seen from Equation (9), if ¢; is not 0,
then o will be 0, and vice versa. When ¢; and ¢; are not both 0,
the corresponding x; sample is called Support Vector (SV), and
only SVs can contribute to w. In particular, if ¢;=C or a;=C, then
[f(x;)—y;| may be greater than ¢, and the corresponding x; sample is
called Boundary Support Vector (BSV), corresponding to the solid
points outside the dotted line in Figure 2; In addition, if ¢;=0,
a; €(0,C) or ¢;=0, a;€(0,C) then [f(x;)-yi|=¢, and the corresponding
x; called Normal Support Vector (NSV) , corresponding to the
points falling on the & pipe in Figure 2; if ¢;=0, ¢=0, the
corresponding X; is a non-support vector, corresponding to the

hollow points in the ¢ pipe Figure 2, and they have no contribution
to w. Therefore, the larger the ¢, the smaller the number of SVs.
For the NSV, the parameter b can be obtained from equation (8),
namely:

b=yi—zxjesv(aj—a;)xj-xi—g (10)

Next, calculate the value of b for all the NSVs, and then
calculate the average value, namely:

b= Nl { Z {yi— Z (a,——a})xj-xi—g}L
NSV (11)

0<@i<C XjeSV

where, Nysy is the number of the NSVs. Therefore, the SVR
linear fitting function obtained from the sample point (x;, y;) is:

f(x):lees\/(ocj — o)X - X+b (12)
However, in reality, the samples are not necessarily linearly
distributed. In order to solve this problem, SVR usually maps the
input vectors to a high-dimensional feature space (Hilbert space) by
a pre-determined non-linear mapping, and then perform linear
regression in this high-dimensional space to obtain the effect of
non-linear regression in the original space. To do this, the input
quantity x is first mapped into the high-dimensional feature space H
through the mapping ®:R"—H, next, using f(x)=e"-®(x)+b instead
of Equation (1) to fit the training sample set (x;, yi), i=1,2,...,n.
Then the convex quadratic programming Equation (6) becomes:
Wiaa) =¥ > (a-a)ei-a)(@(x)-o(x;)) +
i=1,j=1 (13)
Yola—a)yi =2 (@ +a)e
Equation (13) involves dot product operation ®(x;)-®(x;) in
high-dimensional feature space, while function @ is unknown.
Fortunately, the SVR theory will replace the point product
operation in the high-dimensional feature space with the kernel
matrix K(x;, X;)=®(x;)-©(x;) instead of using the function @ directly.
There are several types of kernel functions such as polynomial,
sigmoid, and Gaussian kernel function. In particular, Gaussian
kernel function is one of the most commonly used modeling and
was selected in this case. The Gaussian kernel function is defined
as:

k(xi, ;) = exp(xi—x|*/26%) (14)
where, ¢ indicates the Gaussian kernel width.  Therefore,
Equation (13) becomes:

W)=Y 3 (o —a) e —a))-K(x, %)) +
i=1,j=1 (15)
Zin:1(ai —a))y; —Z::l(ai +o)e
Finally, the expression of the SVR non-linear fitting function is:
f(x):ZXESV(ai—a{)K(xi,x)+b (16)

where, b is calculated as follows:

b= Nl { > {Yi— > (aj_a;)K(Xj.Xi)_8i|+
NSV | 0<ai<C Y (17)

Zo<a]<c|:yi _legsv (a; _a;)K(Xj 'Xi)_“f}}

2.3.2  SVR model parameter selection

When applying SVR technique to predict the cows' feces, urine
and N excretions, it is also necessary to determine some parameters
of the SVR model. These parameters that need to be determined
usually include penalty factor C, Gaussian kernel width ¢, and
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insensitivity loss coefficient ¢. Specifically, the penalty factor C
can control the tradeoff between the generalization ability of the
model and the samples fitting degree; the Gaussian kernel width o
affects the number of SVs, and the insensitivity loss coefficient ¢ is
used to control the fitting accuracy. In this case, for four
predictive indicators of feces, urine, FN, and UN, the parameter
sets {C, o} are determined by 5-fold cross-validation grid search in
c={22 2% 1, 2, 2% 23, 25 28 2'% and 4={0,1, 0.5, 0.7, 1.0, 1.2,
1.5, 2, 2.5, 3}. The final determined parameter sets {C, ¢} are {26,
1.5}, {23, 1.2}, {22 1.0} and {23, 0.7} for feces, urine, FN, and UN,
respectively.  The insensitivity loss coefficient of the four
predictive indicators are empirically set to be ¢=0.01.
2.3.3 SVR model training and testing process

The whole process for predicting Holstein dry cows’ feces,
urine FN, and UN excretions using SVR technology is shown in
Figure 3.

| Select loss function |

v

| Select kernel function

Set up initial value of
model parameter

v

| Calculate SVR model |

Determine the SVR
model parameter

Training sample set }—’

SVR prediction model training

v

SVR prediction model

v

| Prediction results I

Actual data to be predicted H

Figure 3 SVR modeling and testing process

In this study, the whole process for predicting four excretions
indicators of Holstein dry cows based on the SVR technology can
be categorized into training phase and testing phase, and both
phases require a certain amount of experimental data for model
training and testing.  In order to make the model more suitable for
the practical needs, the sample data needed for training and testing
SVR model are obtained by elaborate experimental design, actual
digestion experiments and standard measurement methods. Next,
in the training phase of the SVR prediction model, we first select
the loss function and kernel function as e-insensitive loss function
and Gaussian kernel function, respectively. Moreover, we set up
initial value of corresponding parameters such as C, o, and e.
When actually starting to calculate the SVR model, it is necessary
to input the training set sample data into the established SVR
algorithm. In this case, according to the requirements of the
CNCPS standard®, the intakes of CNCPS components (PA, PB1,
PB2, PB3, PC, CA, CB1, CB2, and CC) in the diet of dairy cows
were taken as the input x;, meanwhile, the excretions of dairy cows
(feces, urine, FN, and UN) were taken as the predicted f(x),
respectively. Next, through the calculation of the training set
samples, the parameters such as ¢, C and ¢ of SVR prediction
model are determined, in addition, the value of the parameter b can
be calculated according to Equation (17), thereby, the trained SVR
model is obtained and can be used for actual prediction. Finally,
in the testing phase, the testing set sample data is input into the
SVR prediction model and calculated according to Equation (16),
and the corresponding predicted result can be obtained ultimately.

3 Results and discussion

In the experiment, sixty samples were obtained during the
whole formal trial period, as shown in Table 2. For clarity of
presentation, the samples data listed in the table were the average
of the daily experimental results for each group of dairy cows
during the formal trial period.

Table 2 Samples of experiment results

Dietary nutrient intake/g d™

Feces, urine and N excretions

N PA PB1 PB2 PB3 PC CA CB2 cC Feces/kg d* Urine/kgd™ FN/gd™ UN/gd™
1 25028  182.97 22478 23823  99.75 143069 92525 448022 1414.13 468 7.95 73.75 74.65
2 255.14  189.01 23743 24305 10327 144954  940.80  4506.92  1436.02 4.38 8.83 76.68 82.24
3 25346  186.14 23274 24032 10135 144030  934.09 449583  1426.23 451 8.56 74.82 80.13
4 26318 19118 24023 24642 10521 145972 95454  4517.30  1438.34 4.24 9.59 78.36 85.33
5 25487  187.22 23321 24262  102.80 144520 938.98  4499.46 1428.24 4.46 8.67 75.28 81.39
6 28350  207.79 29230 26024 11491 165052 111845 459926  1477.05 430 9.27 83.37 9151
7 27524 20225 28509 25956  111.37 163518 1100.32 4590.60  1466.58 4.38 9.13 82.79 88.08
8 28428 20942 29756  271.07  117.01  1656.07 112152 4606.97 1481.73 413 9.57 84.45 93.10
9 27919 20472 28731 26286 11343 164567 110590 4592.47  1476.29 432 9.21 83.10 89.30
10 27416 20042  280.78  257.72  109.92 162823 1091.37 458364  1459.97 4.46 8.87 82.24 87.33
11 30699 21809  336.82 27540  121.06 184524 1296.09 4590.73  1489.50 437 9.64 89.92 96.59
12 31110 22502 35844 28359 12619 187173 1317.49 461260 1503.50 4.45 1051 92.02 101.03
13 307.13 22003  340.67  276.08 12290 185152 130856 4597.05 1495.10 441 9.61 90.20 99.76
14 30240 21516 32872 26855  118.80 1832.29 128475 4587.61 1484.56 427 9.35 88.26 94.90
15 31033 22125 34701  278.09 12453 1864.30 1311.87 460450 1499.95 4.40 10.14 90.64 100.12
16 32989 23267 40257  287.98 13121  2052.31 1504.45 451892  1480.39 424 10.61 97.16 108.41
17 31903 22860 380.85  283.07  127.58 2031.93 147420 452854  1486.21 4.38 10.20 94.62 101.93
18 33096 23577 41429 28831 13252 2059.89 1509.90 451247  1477.75 421 10.89 97.68 109.47
19 32564 23165 39440 28655  130.36 2044.46 149344 452559  1483.25 4.30 10.41 96.26 102.90
20 33377 23984 41693 29072 13331 2071.80 1523.24 4488.17 147233 418 11.04 98.15 110.04
21 34531 23853 45535  290.48  134.85 226846 1699.14 435655 1465.97 423 11.28 102.47 11179
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Dietary nutrient intake/g ™

Feces, urine and N excretions

e PA PB1 PB2 PB3 PC CA CB2 cc Feces/kg d* Urinelkgd™ FN/gd™ UN/gd™
22 34879 24010  467.96  292.07 13696 2279.41 1712.38 434341 1461.16 413 11.39 10330  112.29
23 34931 24316  469.40 29358 13873 228390 172810 4337.05 145458 4.10 11.48 10312 114.29
24 35566  247.15 48836 29592 14383 230823 1742.02 432425 144554 3.92 12.09 104.82 11931
25  351.80  246.09 47115 20499  139.04 229364 1730.66 433547  1453.09 402 12.06 10338 115.83
26 37032  259.83 55621  300.22  149.10 245201 1944.74 414961 1386.38 3.76 13.20 11221 12573
27 36541 25513 54257 29817 14662 243663 1922.61 4167.05 1407.05 3.82 12.23 109.63  123.87
28 366.22  256.04  549.72 29941  147.81 244210 1930.21 4156.72  1399.78 3.79 12,51 11013 12457
29 35867 24984  529.00 29429 14281 241482 1896.27 418632 141522 3.94 11.34 108.09  117.22
30 36245 251.32 53593  207.50 14409 242111 191450 418255 141368 3.93 11.96 109.12 12147
31 38479 26957 63777 30317 15562 260131 2124.97 3947.12  1350.30 3.59 11.72 11827  133.42
32 37931 26374  611.06 29862 15098 2577.97 208339 397232 137152 3.73 12.47 11512 127.26
33 38529 27049 64176 30511  157.85 262629 213587 3943.99 134502 3.49 11.50 119.09 13439
34 38290 26551  617.34 29956 15190 258628 2103.54 3965.32  1363.83 3.67 12.14 116.10  129.80
35 38346  266.07 62027 302.22  153.04 259425 2116.14 3956.15 1357.70 3.65 11.77 11722 132.95
36 38840  269.92  697.83  302.25 15868 270391 227812 371121 1296.30 3.65 11.40 12158  136.90
37 38098 27148 70437  301.36 15044 271030 228828 370481 128751 3.62 11.21 12276 137.09
38 38550 267.15 68336  303.62 15725 2695.85 2260.08 3719.35 1304.03 3.67 11.70 121.10  135.96
39 39121 27262 71012 29853  161.91 271329 2297.37 3692.24  1280.83 3.59 11.01 12325  139.40
40 39273 27465 71212  297.86  162.80 2723.60 231362 368533 1272.41 352 10.94 12377 14121
41 37598 28381 76297 31154 16860 2748.99 2397.12 3498.93 1211.91 3.44 10.54 127.86  145.19
42 37936 28030 74120 30892 16457 2728.88 236429 3528.37 1231.43 3.56 11.18 12456  141.35
43 37805 28122 75135  309.17 166550 273153 237056 352516 1226.18 3.50 10.98 126.12 14238
44 38194 27632 72928  307.60  161.88 272416 235153 3531.58 1242.10 3.59 11.23 12395  138.36
45 37713 28241  757.82 31055  167.10 2733.16 237854 3516.03 1222.42 3.46 10.82 127.46  144.78
46 369.64 29331 81893 32240  170.08 281354 254319 342654 1207.76 351 11.25 131.64  148.97
47 36862 29543 82804 32816 17518 2829.08 2578.85 3410.77  1200.93 3.48 11.96 13201  151.88
48 37017 29289 79578 31657  169.46 2801.08 2532.98 343520 121758 353 10.61 129.81  142.99
49 36613 29748 84843  329.98  177.88 284147 259467 3400.14 1185.12 3.43 12.04 13413 154.74
50  368.64 29414  822.88 32458 17493 2822.08 2554.34 3416.84 1205.39 3.49 11.49 131.72 14952
51  366.00 31633 92257 34414 18422 2968.60 2807.42 3349.32 1189.36 3.70 12.27 140.63  159.60
52 363.02 319.21 94314 34937  188.07 297659 2847.01 3331.04 1174.65 3.83 12.91 142.98  164.09
53  366.34 31550 90823  343.70  183.06 2964.82 2790.30 3361.29  1190.67 3.66 12.12 139.22  158.06
54 36497 31674 93219  347.10 18506 297458 2814.45 3337.03 1181.39 3.76 12.56 14169  162.88
55  367.47  309.71  899.33  339.86 18271 295832 2769.96 3370.26 1196.16 351 11.69 137.80  156.28
56  351.07 31694 97207 34470  183.61 2957.09 2920.71 316691  1139.17 3.63 12.48 14857  162.49
57 34617 32378  990.71  351.09  189.01  2989.49 294525 315029 112592 3.86 13.00 14348  164.04
58  344.64  327.24 1001.89  353.23 19055 299150 2957.17 314439 1121.72 3.87 13.18 14303  166.87
59 35010 321.23  982.80 350.70  186.85 2965.86 2928.10 3163.73 113155 3.80 12.78 14598  163.46
60 34301  329.34 100533 35510  191.60 3002.14 2889.10 313456  1100.84 3.91 13.61 14132 168.70

In order to evaluate the overall prediction performance of the
SVR-based technique and facilitate comparison with other
prediction algorithms, the two metrics, root mean square error
(Ermse) and normalized root mean square error (Enxrmse) Were used
to evaluate the prediction accuracy, the Egyse and Engwse Were
defined as follows*!:

1 N 2
Erwse = \/Eziﬂ(y(l) - y(J)) (18)

Evarse =y 2, (VD) — V() 120, (v(D) - YD) (19)
In Equations (18) and (19), Y(j) is the predicted value of y(j),
and Egyse indicates the average relative deviation of the predicted
value Y(j) relative to the real value y(j), which reflects the

accuracy of the prediction. Enawse 1S a  standardized
representation of Egysg, Which can eliminate the dimensional

impact between indicators and is suitable for comprehensive
comparative evaluation. In general, the smaller values of these
two metrics usually indicate the better predictive performance.

In order to effectively validate SVR-based prediction technique,
two conventional prediction methods, LR and artificial neural
networks (ANN) were utilized for comparison. Among them, the
LR method is relatively simple and can be implemented according
to [18]. For the ANN method, the radial basis function artificial
neural network (RBF-ANN) model is selected here, and the
RBF-ANN model can be established according to [45].
Especially, it is necessary to pre-specify the number of hidden
nodes in each hidden layer. In this case, the number of hidden
nodes is determined as the integer number closest to log (n),
where n is the number of training samples.

In this study, All prediction methods (SVR, LR, and
RBF-ANN) for comparison are implemented using MATLAB
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R2010b software platform. Multiple training and testing were
conducted for four predictive indicators of feces, urine FN, and UN,
respectively. Ten testing samples were randomly selected for
prediction each time, and the rest were used as training samples for
learning. The prediction results of different indicators are shown
in Figures 4-7, respectively.
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Figure 4 Results obtained by different methods for feces
excretions prediction
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Figure 5 Results obtained by different methods for urine
excretions prediction
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Figure 6 Results obtained by different methods for FN excretions
prediction
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Figure 7 Results obtained by different methods for UN excretions
prediction

The Eguse and Enruse Of the SVR model prediction results
were compared with those of the LR and RBF-ANN methods, as
shown in Tables 3-6. In order to eliminate the influence of
randomness, each algorithm was run 20 times independently and
the mean value of the prediction error was taken.

Figure 4 and Table 3 present the prediction results of the feces
excretions indicator. It can be observed that for training samples,

the Egmse and Enguse Of the SVR method are slightly higher than
the values of the RBF-ANN method, but lower than those of the
LR method. However, for the testing samples, the Eryse and
Enrvse Of the SVR method are lower than those of other two
methods, thus showing higher prediction accuracy. Especially,
compared with the LR method, the prediction accuracy of the feces
excretions indicator is improved by 66.01%.

Table 3 Comparison of feces excretions prediction results in
terms of metrics

Prediction Training Training Testing Testing
method Ermse Enrmse Erwvise Enrmse
LR 0.288 0.807 0.343 0.962
RBF-ANN 0.096 0.268 0.264 0.741
SVR 0.104 0.291 0.117 0.327

Table 4 Comparison of urine excretions prediction results in
terms of metrics

Prediction Training Training Testing Testing
method Erwmse Enrmse Erwvise Enrmse
LR 1.556 1.179 2.331 1.338
RBF-ANN 1.168 0.885 1.082 0.621
SVR 1.113 0.843 1.322 0.759
Table 5 Comparison of FN excretions prediction results in

terms of metrics

Prediction Training Training Testing Testing
method Erwmse Enrmse Erwvise EnrmsE
LR 11.985 0.553 12.931 0.597
RBF-ANN 7.872 0.363 9.501 0.438
SVR 2.538 0.117 4.127 0.190
Table 6 Comparison of UN excretions prediction results in
terms of metrics
Prediction Training Training Testing Testing
method Ermse Enrmse Ermse Enrmse
LR 12.580 0.471 14,511 0.543
RBF-ANN 6.213 0.233 7.654 0.287
SVR 2.863 0.107 3211 0.120

Figure 5 and Table 4 present the prediction results of the urine
excretions indicator. Compared with the other two methods, the
Ermse and Eynruse Of the SVR method are slightly inferior to those
of the RBF-ANN method. Nevertheless, the SVR method also
shows excellent performance on both training samples and testing
samples, and its two prediction accuracy metrics are significantly
better than the LR method. In particular, its prediction accuracy is
improved by 57.90% compared with the LR method.

It can be seen from Figures 6-7 and Tables 5-6 that the
prediction accuracy of the SVR method is superior to other two
methods for both training samples and testing samples in predicting
FN and UN excretions indicators. Among them, the best
predictive accuracy is the UN excretions indicator, reaching the
testing samples Egyse value of 3.211 and Eyguse Value of 0.120,
which is 77.89% higher than that of the LR method.

Through comparison with LR, and RBF-ANN methods, it can
be seen that all the methods can capture the tendency of the real
data, but the developed SVR technique can fit slightly better to the
real data in most cases. In view of the fact that most of the current
predicted excretions indicators for dairy cows are still based on the
LR method, the prediction accuracy of the developed SVR
technique in terms of Eyguse are 2.94, 1.76, 3.14 and 4.53 times
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that of the LR method in prediction of feces, urine, FN and UN
excretions indicators, respectively. It is worth mentioning that,
due to the limitations of actual conditions, the experiment in this
case is carried out under the condition that the total number of
training samples and testing samples does not exceed 60, which is a
typical small sample prediction but is often the case in the
prediction of dairy cows' feces, urine, and N excretions. The
results demonstrated that the proposed SVR-based prediction
technique can effectively predict Holstein dry cows' feces, urine
and N excretions, and shows better prediction accuracy especially
with small samples.

In addition, it should be noted that the depth optimization of
the SVR algorithm is not discussed in this paper. Better
performance would be expected if some factors such as hyper
parameters are further optimized and multiple techniques are
effective integrated, which is the focus of our future research.

4 Conclusions

In this study, a prediction technique of feces, urine and N
excretion from Holstein dry cows based on SVR was proposed.
Unlike the traditional parametric prediction models such as LR,
which requires the assumption of parametric model form, our
proposed technique based on non-parametric machine learning
model does not require any special assumptions about the predicted
model but merely by learning the training samples to predict
unknown data, and thus is more suitable for some complex system
prediction cases such as cows' feces, urine and N excretion
prediction.  For the evaluation of the proposed SVR-based
prediction technique, we obtain the required sample data through
actual feeding experiments, where, a small part of the recorder data
were used to train the prediction model and the rest were used for
testing. By comparison with the conventional LR and RBF-ANN,
the SVR-based prediction technique shows more excellent
accuracy in most cases of predicting the main indicators of feces,
urine, and N excretions of Holstein dry cows. In particular, under
the conditions of sixty sample points, the prediction accuracies of
SVR are significantly higher than that of LR in terms of Egyse and
Enrmse for both training samples and testing samples.  Therefore,
it can be concluded that the proposed SVR-based prediction
technique is an effective way to improve the prediction accuracy of
feces, urine, and N excretions of Holstein dry cows. In addition, it
is worth mentioning that the SVR-based prediction technique is
more suitable for the prediction problems with small samples,
which is often the case in the prediction of feces, urine, and N
excretions of dairy cows, and then more coincide with actual needs.
Finally, we hope that the present study has provided motivation for
further study of machine learning technique applied to dairy cows'
excretion indicators prediction.
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