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Abstract: MODIS time-series imagery is promising for generating regional and global land cover products.  For Brazil, 

however, accurate fractional cropland covers (FCC) information is difficult to obtain due to frequent cloud coverage and the 

mixing-pixel problem.  To address these problems, this study developed an innovative approach to mapping the FCC of the 

Mato Grosso State, Brazil through integrating Linear Spectral Mixture Analysis (LSMA) and Seasonal Dynamic Index (SDI) 

models.  With MOD13Q1 time-series EVI imagery, a SDI was developed to represent the phenology of croplands.  

Furthermore, fractional land covers (e.g., vegetation, soil, and low albedo components) were derived with the LSMA algorithms.  

A stepwise regression model was established to estimate the FCC at the regional scale .  Finally, ground truth cropland cover 

information was extracted from Landsat TM imagery using a hybrid method.  Results indicated that the combination of 

multiple feature variables produced better results when compared with individual variables.  Through cross-validation and 

comparative analysis, the coefficient of determination (R
2
) between the reference and estimated FCCs reached 0.84 with a Root 

Mean Square Error (RMSE) of 0.13.  This indicates that the proposed method effectively improved the accuracy of fractional 

cropland mapping.  When compared to the traditional per-pixel “hard” classification, the sub-pixel level maps illustrated 

detailed cropland spatial distribution patterns. 
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1  Introduction 

Croplands play an essential role in the process of land use and 

cover changes at both regional and global scales
[1,2]

.  During the 

past decades, the geographic areas of croplands have increased 

sharply thanks to population growth and technological 

improvements.  Information of cropland area and spatial 

distribution is essential for land use analysis, crop yield estimation, 

soil and water conservation, farmland protection, and agricultural 

planning
[3-5]

.  For cropland detection and mapping at small scales, 

medium- and high-spatial resolution satellite remote sensing 

imagery (e.g., Landsat TM (Thematic Mapper), ETM+ (Enhanced 

Thematic Mapper P lus), and SPOT HRV (High Resolution Visible) 

have been successfully employed.  However, due to their low 

temporal resolutions, it is difficult to timely obtain large scale 

cloud-free images during the crop growing season.  Due to this, 

researchers have resorted to coarse-resolution satellite imagery 

with high temporal resolutions (such as AVHRR (Advanced Very 

High Resolution Radiometer), MODIS (Moderate-resolution 

Imaging Spectro-radiometer), etc.) for region-scale cropland 
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detection
[7]

.  MODIS data, in particular, have great potential in 

regional and global land cover surveys thanks to its high-temporal 

and moderate-spatial resolutions
[6,8-10]

.  Continuous time-series 

MODIS data have been widely applied for regional scale 

agriculture landscape surveys and subsequent applications
[10–13]

.  

A summary of cropland mapping methods based on MODIS 

imagery is listed in Table 1.   

These methods can be generally divided into two categories: 

pixel level “hard” classification and subpixel level “soft” 

classification.  It has been noticed that previous methods 

primarily relied on pixel level “hard” classifications.  These 

methods are able to identify cropland qualitatively; however , they 

have the disadvantage of not being able to extract cropland 

fractions accurately and quantitatively because the mixed pixel 

problem is unavoidable in coarse spatial resolution imagery (e.g., 

MODIS), resulting in poor area estimation and inaccurate s patial 

patterns
[26]

.  Therefore, sub-pixel level “soft” classification and 

fractional cropland information extraction has attracted more 

attention
[22-26]

.   

In the Brazilian Amazon, many studies have illustrated the 

value of using MODIS time series imagery for mapping cropland 

change and expansion at the regional scale
[11,16,19,25,27-29]

.  

Although these studies have confirmed the importance of using 

MODIS data for cropland mapping, how to extract fractional 

cropland cover (FCC) remains a great challenge due to mixed 

spectral properties and other problems such as coarse resolution, 

cloud contamination, pure pixels selection and etc.  Although 

linear spectral mixture analysis technologies present an effective 

way to decompose the spectral reflectance of a pixel into different 

components, which has proven valuable in medium spatial 

resolution images such as Landsat or MODIS NDVI (Normalized 
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Difference Vegetation Index) time series data
[22,30,31]

, the 

application of this approach is limited in this area.  These 

difficulties can be summarized as follows:  

1) In the Brazilian rainforest areas, the crop growth period 

occurs in the rainy season.  It is difficult to obtain time series data 

without cloud cover during the growing season, resulting in the 

difficulty of composing a continuous time series enhanced 

vegetation index (EVI). 

2) With the conventional pixel-based ‘‘hard’’ classification 

methods, each pixel is assigned into one category.  The mixed 

pixels problem leads to high uncertainty for cropland covers with 

small parcel sizes, resulting in information loss of spatial patterns. 

3) Unfixed crop sowing time and vertical intensification (e.g., 

double cropping, triple cropping) have increased the difficulty of 

automatic cropland extraction. 

As the crop growth period occurs in the rainy season, it is 

difficult to obtain time series EVI data without cloud contamination.  

Therefore, the LSMA (Linear Spectral Mixture Analysis) technique 

is limited due to the difficulty of deriving time series EVI pure 

pixels.  To address this issue, we developed the seasonal dynamic 

index (SDI) model to construct a relationship between the FCC and 

crop phenomenon fluctuations of EVI.  However, due to the 

inconsistency of crop sowing and harvest time, the SDI model has 

some uncertainty in different crop sowing time without considering 

fallow land.  Therefore, from this perspective, the LSMA 

components in the dry season are effective supplementary 

information for the FCC estimation.  For 500 m×500 m coarse 

spatial resolution imagery, the traditional “hard” classification 

results in the loss of cropland information (e.g., underestimation).  

Therefore, considering the heterogeneous environmental conditions, 

agricultural phenology cycles, and mixed pixels problems, this 

paper proposed a new approach to estimate FCC by integrating 

multiple feature variables including components developed using 

the LSMA and the newly developed SDI model. 
 

Table 1  Summary of major algorithms for cropland extraction by MODIS data  

Scale level Algorithm Description Advantages Disadvantage References 

Pixel 
level 

MCDC (MODIS crop 
detection algorithm) 

Uses thresholds of EVI image in sowing and 
maximum crop development period. 

Simple and easy to implement. 
Optimal threshold selection and 
mixed pixel problems, 

[14] 

Fourier 

& Wavelet analysis 

Employs the Fourier analysis to map cropland 

based on time-series MODIS NDVI data 

Computation in frequency domain 

and  clear physical meaning. 

Mixpixel problem and best 

threshold selection issue. 
[15,16] 

Spectral similarity 

Judges the similarity of the 2 curves by the 

WCD (Dynamic Time Warping) and others 
algorithm. 

Reckons irregularly sampled 

spectrum. 

mixed pixels problems and 

vulnerable to environment noise 
[17,18] 

Traditional Classifiers 

Maximum likelihood (ML) 
Spectral angle mapper (SAM), Decision tree 

(C5), ANN: artificial neural network and 
SVM: support vector machine. 

Traditional classification methods 

and accuracy controllable. 

Needs prior knowledge and 

Human intervention 
[11,19-21] 

Sub-pixel 
level 

Spectral unmixing 
Linear spectral mixture analysis (LSMA), 
spatially constrained phenological mixture 

analysis (SPMA). 

Clear physical meaning and being 
able to estimate fractional 

distribution. 

Hard to find a proper 
endmember in larger scale. 

[22-25] 

 

2  Study area and materials  

2.1  Study area 

The study area is located in the state of Mato Grosso, Brazil 

(see Figure 1) (longitude 50°-65°W and latitude 10°-20°S).  This 

area is the main soybean producing region in Brazil
[19,32]

.  

Depending on the region and the onset of the rainy season, the 

sowing calendar for soybeans goes from mid-September to late 

December
[19,32]

.  The conversion rate of wetlands, pasture, and 

forests to cropland has increased sharply during past few decades
 

[29,33]
, because of the intensive agriculture.  According to IBGE 

2015 (The Brazilian Institute of Geography and Statistics), the 

soybean planting area has increased by 5.59 million hm
2
 from 1995 

(2.34 million hm
2
) to 2013 (7.93 million hm

2
).  Meanwhile, 

intensification practices such as double cropping have been widely 

adopted in this state
[20]

. 

2.2  Data collection and preprocessing  

MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m 

SIN Grid (MOD13Q1) for the period 2011–2012 was acquired for 

this study (h12v10).  The MOD13Q1 product provides two 

vegetation Index (VI) layers including the Normalized Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index 

(EVI), the two quality assess (QA) layers and surface reflectance 

bands 1 (Red), 2 (NIR), 3 (Blue), and 7 (MIR), as well as four 

observation layers.  The data composite criteria are low clouds, 

low view angle and the highest EVI value from all acquisitions 

between the 16 d periods.  All the images were obtained from the 

United States Geological Survey (USGS) website for free
[34]

. 

 
Note: Images are from LANDSAT 5 TM data acquired date 2011/02/24, color 

composite 4/3/2 

Figure 1  Study area and the two validation sites  
 

Because NDVI is easily saturated in high biomass regions and 

EVI is more sensitive to dense vegetation conditions
[19]

.  This 

study utilized the enhanced vegetation index (EVI), which is less 

affected by atmosphere and soil and more suitable for cropland 

extraction
[35]

.  But, the EVI uses the blue band to removal residual 

atmosphere contamination caused by smoke and thin cloud.  

Lacking a 250 m blue band, the EVI algorithm uses the 500 m blue 
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band to correct for residual atmospheric effects.  The MODIS EVI 

is defined in Equation (1)
[19,35]

: 

1 2

NIR R
EVI G

L NIR C R C B


 

    
    

      (1) 

where, R, NIR, and B is the red, near infrared, and blue bands, 

respectively; G = 2.5 (the gains factor); and L = 1, C1 = 6, and C2 = 

7.5 are the adjusting parameters used to minimize aerosol effects.  

The entire MODIS EVI time-series, comprised of images every 

eight days from 2011 to 2012 were filtered using the 

Savitzky-Golay (S-G)
[19,36,37] 

filter to remove noise and artifacts 

caused by thin clouds. 

2.3  Shuttle Radar Topographic Mission (SRTM) 

The SRTM DEM (digital elevation model) data with a spatial 

resolution of 90 m were downloaded from the website of USGS 

(United States Geological Survey)
[38]

.  The DEM data will be 

further employed for calculating the SDI index. 

2.4  Landsat image  

The Landsat TM imagery (path/row: 227/68 and 228/69, 

acquired in 2011/02/24) was downloaded from USGS Global 

Visualization Viewer
[34]

.  Data preprocessing and classification 

proceeded with ENVI software.  Landsat TM classification data 

were used as the reference data source for regression and validation 

cropland.  The cropland imagery with 30 m spatial resolution was 

aggregated into a new image with a cell size of 250 m for 

generating fractional cropland data to match the cell size of 

MODIS EVI data using the mean algorithm. 

All datasets where projected to the Lambert Azimuthal   

Equal Area Projection in order to standardize the cropland area 

estimates.   

3  Methodology 

The framework of the proposed integrative method for FCC 

estimation from MODIS and Landsat TM imagery is illustrated in 

Figure 2.  The entire process consists of three major steps: (1) 

generating the SDI indices to represent key growth stages of 

croplands; (2) calculating the fractions of vegetation, soil, and low 

albedo (V-S-L) components from the MODIS dry season image 

through employing LSMA; and (3) estimating FCCs by 

constructing regression equations of FCCs and SDI, vegetation 

fraction, soil fraction, and low albedo fraction, and validating 

estimation accuracy. 

 

 
Figure 2  Framework of FCC (Fractional Cropland Covers) estimation from MODIS and Landsat data 

 

3.1  Key identification stage and seasonal dynamic index  

The seasonal dynamic index (SDI) assumes that the variation 

value of EVI is positively related to the proportion of cropland area 

in a pixel.  For Mato Grosso, six of the largest crop type classes 

(soy-corn, soy-cotton, soy-millet, soy-soy, cotton, and pasture) 

account for 91.5% of the reported agricultural land area in Mato 

Grosso.  The EVI profiles in the cropland area vary drastically 

with regularly changing characteristics in a year due to the sowing, 

growing, and harvest stages in a year (single cropping and double 

cropping).  In contrast, the EVI profiles of forest have almost no 

changes throughout the year at all and the EVI profiles of 

Grassland changes are relatively small.  In summary, the EVI 

values fluctuate significantly for croplands, and are relatively stable 

for grassland and forest areas. 

The key identification stage selection is fundamental for 

constructing a seasonal dynamic index, which is critical for 

cropland mapping in the Brazilian Amazon region.  As almost all 

images are contaminated by clouds in the rainy season, a feasible 

means is to use slices of discrete time series data instead of entire 

continuous time series data for a year for crop mapping
[26]

.  As the 

EVI profiles in cropland area vary regularly at different stages (e.g., 

the sowing, growing, and harvest stage), three key identification 

stages: the sowing (Stage 1, DOY:225-289), growing (Stage 2, 

DOY:305-001), and harvest (Stage 3, DOY:017-081) seasons are 

the key identification stages for cropland mapping
[26]

.  The 

seasonal dynamic index (SDI) model was proposed by Zhu et al..  

The model can be elaborated by Equations (2)-(8)
[26]

: 

SDI=MAX(SDI1, SD2)×Mask             (2) 

g d

1

g d

EVI EVI
SDI abs

EVI EVI

 
  

  

              (3) 

g h

2

g h

EVI EVI
SDI abs

EVI EVI

 
  

  

              (4) 

EVId = MIN(EVI225, EVI241, EVI257, EVI273, EVI289)     (5) 

EVIg = MAX(EVI305, EVI321, EVI337, EVI353, EVI001)    (6) 

EVIh = MIN(EVI017, EVI033, EVI049, EV065, EVI081)    (7) 

Mask = Pasmask×Slpmask                 (8) 

where, SDI represents the seasonal dynamic index; and SDI1 and 

SDI2 correspond to the seasonal dynamic index at different stages; 

EVId, EVIg, and EVIh are cloud-free EVI composites from the dry 

to wet season transition, the growth, and the harvest season, 

respectively; EVI225, EVI241, …, EVI353, are the multi-temporal 

MODIS EVI products, and the number subscript is the acquired 

day of the year (DOY); Slpmask is the topographic factor mask 

where the slope is derived from STRM data; Slpmask is a slope mask; 
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Pasmask is a pasture mask. 

3.2  Linear spectral mixture analysis  

Linear spectral mixture analysis (LSMA) assumes that any 

spectrum measured by the sensor is a linear combination of the 

spectra of pure uniform targets called endmembers
[31,39,40]

.  It 

presents a method to decompose the spectral reflectance of a pixel 

into different proportions
[22,31,41-44]

.  Within a pixel, the spectral 

proportion of endmembers represents a fraction of the area covered 

by distinct features on the ground, as shown in Equation (9).  

0

n

i ii
A


              (9) 

where, ρ is the sensor acquired pixel reflectance; Ai is the i-th 

component (distinct feature or endmember) cover area; ρi is the i-th 

component reflectance; and ε is the error of residual. 

Among the pixel decomposition algorithms, the V-I-S 

(vegetation, impervious, and soil) conceptua l model is considered 

to be a classic method.  It provides a guideline for decomposing 

low-resolution images of urban landscapes and linking these 

components to spectral signatures
[45,46]

.  Inspired by the V-I-S 

model, a V-S-L (vegetation, soil, and low albedo objects) model 

was explored and developed in this paper.  In the V-S-L model, a 

constrained least-squares algorithm was applied to decompose six 

reflective bands into three fractional images and one error 

distribution image.  The endmembers (vegetation, soil, and other 

low albedo) were selected from the scatterplot in spectral space
[47]

. 

ρ = Cv×ρv + Cs×ρs + C0×ρ0 + ε            (10) 

where, ρ is pixel reflectance; Cv, Cs, and C0 are components of 

vegetation, soil, and other low albedo objects, respectively; ρv is 

the endmember of vegetation; ρs is the endmember of soil; ρ0 is the 

endmember of low albedo objects , and ε is the error of residuals.   

In this paper, the V-S-L was used for unmixing MODIS surface 

reflectance in dry season.  The spectral band inputs are 

MOD13Q1 surface reflectance band 1 (Red), band 2 (NIR), band 3 

(Blue), and band 7 (MIR) with 250 m spatial resolution. 

3.3  Cropland classification from Landsat TM imagery 

The TM derived FCC was a standard dataset for regression and 

validation.  In this paper, an unsupervised classification algorithm 

(i.e., ISODATA) was used.  The Landsat TM image was first 

classified into 50 clusters.  An analyst assigned each cluster into 

cropland or non-cropland through visual interpretation on the TM 

nature color composites images.  Therefore, the initial classified 

image was a binary thematic map with 1 representing cropland area 

and 0 representing non-cropland area.  The binary image was then 

aggregated to FCC with a spatial resolution of 250 m×250 m by the 

means algorithm.   

3.4  Fractional cropland mapping and accuracy validation 

The SDI and LSMA components were employed as multiple 

independent variables.  The TM derived FCC was used as a 

dependent variable.  One thousand samples were randomly 

selected between the dependent variable and the linked independent 

variables.  Half of them were employed for developing regression 

models and the rest for validation.  The coefficient of 

determination, R
2
, was applied to measure the percentage of 

variances explained by the regression model.  The F test was 

employed to examine whether the regression model was significant 

or not, and the t test was utilized to examine whether the constant 

and beta values were significant or not.  The highest R
2
 value and 

the significant F and t tests were selected for a further established 

regression equation.  Finally, the regression equation was applied 

to estimate the FCC in the whole area.  In this study, regression 

models were significant based on the F test at the 95% confidence 

level.  

4  Results  

4.1  FCC distribution mapping 

Table 2 presents the all regression models with SDI and the 

LSMA components.  It shows that the two single feature linear 

regression models had similar RMSE and R
2
, where the RMSE was 

0.15 and 0.14, and the R
2
 was 0.78 and 0.76, respectively.  From 

the regression models listed here, it seems that the SDI based linear 

model was slightly better than the LSMA based, but the result was 

not significant.  However, the multiple features regression model 

provided a higher R
2
 (0.89) and lower RMSE (0.13) than any of the 

single variable models.  The model accuracy was improved 

greatly by integrating multiple feature variables. 
 

Table 2  Regression models developed from the combination of different feature variables  

Regression method Variables 
Best regression model 

(Y = ax1 + bx2 + c) 
RMSE R

2
 F test 

t test 

a b c 

Linear Regression 
Cs Fa = 1.79 Cs – 0.05 0.15 0.76 4891.23 69.93 - –5.43 

SDI Fa = 1.19 SDI – 0.03 0.14 0.78 5210.27 72.18 - –3.65 

Stepwise Regression Both SDI and Cs Fa = 0.99 SDI + 0.28 Cs – 0.45 0.13 0.89 2767.09 27.77 6.09 –5.29 

Note: Fa is fractional cropland, Cs is the soil component of LSMA, R
2
 represents the coefficient of determination for the evaluation of the regression model performance.  

RMSE represents the root mean square error. 
 

Figure 3 presents the comparative analysis between the 

reference and estimated data at the two sites.  In these two areas, 

the TM derived FCC data were used for comparison with the 

estimated FCC by MODIS data.  Figures 3(1)-(3) show the 

comparison of the estimated FCC with the TM derived FCC at 

validation Site 1.  Figures 3(4)–(6) are the comparison of the 

estimated FCC with the TM derived FCC at validation Site 2.  

From Figure 3, the estimation results showed a good performance 

of the proposed integrative model.  The FCC estimated by the 

integrated method were highly similar to the TM derived FCC on 

the whole.   

4.2  Accuracy assessment 

Figure 4 shows the residual errors distribution of estimated 

FCC by SDI and LSMA.  Figure 4a is the residual errors of the 

estimated FCC at Site 1.  Figure 4b is the residual errors of the 

estimated FCC at Site 2.  From the residual errors maps, errors 

were randomly distributed and concentrated on the zero line.  The 

residual plots mainly fluctuated from –0.2 to 0.2.  That implies 

that the model can externalize the relationship between the 

explanatory variables and the dependent variable.  The cropland 

distribution information can be explained by the estimated FCC 

rationally. 
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Note: (1) is a TM7/4/2 composite at Site 1; (2) is a referenced fraction derived from TM; (3) presents the estimate results; (4) is a TM7/4/2 composite at Site 2; (5) is a 

referenced fraction derived from TM; (6) also presents the estimated results.  The legend number represents the proportion of cropland cover 0.0%, 10%, 20%...100%. 

Figure 3  Local comparative analysis between the estimate of FCC and TM derived reference data 

 
Figure 4  Residuals distribution maps at two test sites 

 

 

2D scatter plots are a conventional method for testing the 

effectiveness of the estimate algorithm.  Figure 5 shows the 

scatterplots between the reference and estimate with different 

methods.  In Figure 5, the X axis is the estimated FCC, and the Y 

axis is the reference data.  For each site, 100 samples were 

selected randomly.  Figures 5a-5c show the scatterplots 

comparison among the SDI, LSMA, and the hybrid method for Site 

1.  Figures 5d-5f are the scatterplot comparisons among the 

different models for Site 2.  From Figure 5, we found that the 

estimated FCC products were in good agreement with the reference 

data overall by different methods.  The integration of SDI and 

LSMA, however, had a much higher coefficient of determination 

(R
2
=0.84).  This implies that more than 80% of the variances 

could be explained by the estimation model.  Larger estimated 

errors occurred with an FCC less than 0.2 or more than 0.8.  For 

an FCC lower than 0.2, the SDI model slightly overestimated the 

FCC as a number of points were located on the X-axis.  Similarly, 

the SDI model slightly underestimated the FCC values when they 

were close to 1.0.  This may be a defect of the model in the 

estimated FCC on a coarse resolution image at the sub-pixel level.  

When a mixed pixel was less than 20% of the cropland, the 

dominant property was non-cropland.  This was easily 

underestimated as both the elemental spectrum and the phenology 

had no significant difference with noncropland.  Similarly, a pixel 

component of more than 80%-90% was cropland that was easily 

overestimated as it was indistinguishable from pure pixels (100%) 

in both the spectrum and the phenology. 

4.3  FCC mapping from 2002–2012 

More tests were employed to explore the transferability and 

feasibility of this proposed approach.  Time series MODIS images 

from 2002 to 2012 at two-year intervals were collected.  We 

applied this approach to other years of MODIS data in the same 

study area for estimating the FCC and monitoring cropland 

dynamic changes.  Figure 6 shows the gradient of FCC maps 

between 2002 and 2012.  To better illustrate the spatial 

heterogeneity of croplands on the coarse spatial resolution image, 

we divided the fraction image into four grades using the threshold 

segmentation technique based on the scatterplots analysis.  In 

particular, a pixel was assigned to non-cropland with an FCC lower 

than 0.2, to low fraction cropland with an FCC between 0.2 and 0.4, 

to moderate fraction cropland with an FCC between 0.4 and 0.6, 

and to high fraction cropland with an FCC larger than 0.6. 
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a b c 

 
d e f 

 

Figure 5  Comparison of the FCC from MODIS estimated and TM derived among different methods 
 

 
a. Cropland 2002 b. Cropland 2004 c. Cropland 2006 

 
d. Cropland 2008 e. Cropland 2010 f. Cropland 2012 

 
Note: Non-cropland (FCC lower than 0.2), low fraction cropland (FCC between 0.2 and 0.4), moderate fraction cropland (FCC between 0.4 and 0.6), and high fraction 

cropland (FCC bigger than 0.6). 

Figure 6  Cropland Grade Maps in 2002, 2004, 2006, 2008, 2010 and 2012 
 

On the FCC maps, croplands were largely distributed in the 

southern (along the BR-163 road) and eastern (Parecis plateau) 

regions of the study area, where many large farms are distributed.  

In the northern and western areas, croplands are relatively rare and 

their patches were small with an FCC less than 50%.  Most of 

these areas are newly reclaimed regions.  It was also observed that 

the main agricultural areas had higher cropland fractions than those 

in new colonization areas.  By the area statistics, cropland areas 

changed significantly between 2002 and 2012.  Specifically, the 

geographical area of high fraction croplands increased from     

0.2 million hm
2
 in 2002 to 1.18 million hm

2
 in 2012.  Similarly, 

the low fraction cropland area rose from 2.32 million hm
2
 to   
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3.94 million hm
2
, and the moderate cropland area expanded from 

1.09 million hm
2
 to 1.83 million hm

2
.  Consequently, the no 

cropland area decreased from 2.88 million hm
2
 to 2.54 million hm

2
.  

This reflected that Mato Grosso had been undergoing rapid 

cropland expansion during the process of Brazil’s agricultural 

intensification. 

5  Discussion 

The traditional per-pixel “hard” classification method has not 

considered the mixture pixel problem.  On a coarse resolution 

remote sensing image though, mixing pixels is a common 

phenomenon.  Arbitrarily classified land covers into cropland or 

non-cropland are inappropriate and result in small cropland parcel 

information loss.  Therefore, it is not suitable for accurate 

cropland area statistics.  The potential errors associated with the 

classification of mixed pixels have been widely recognized as a 

problem that affects the accuracy in image classification
[48-50]

.  

Therefore, cropland mapping at the sub-pixel level with “soft” 

classification is a promising method in the future
[19,22,24,26,51]

.  

More cropland classification research has focused on fractional 

mapping using MODIS datasets
[22-26]

. 

Estimated errors mainly come from the following aspects.  (1) 

Unfixed crops calendar.  The sowing calendar for crops goes from 

mid-September to late December, depending on agricultural zoning 

for different soils, regions, and the onset of the rainy season
[19,32]

.  

At the same time, vertical intensification such as double cropping 

has been widely adopted in Mato Grosso, which is an additional 

challenge for accurate cropland area mapping
[20]

.  (2) Poor image 

quality.  Even though the SDI model used the time spare 

resampling algorithm to composite multi-temporal data to one 

period of data, the inconsistency of crop time information increased 

the estimation errors of the model
[26]

.  (3) Geometric errors.  The 

difference of spatial resolution between MODIS and Landsat 

imagery is more than the size of two Landsat pixels (60 m).  The 

mis-registration between Landsat and MODIS can reach a 

minimum of 50 m (NADIR)
[52,53]

.  In the middle of uniform 

regions, the cropland proportion tend to be maintained in the same 

level and similar to the estimated proportion by the regressions, 

while the borders from one side tend to be lower proportion and the 

other side of the possible mis-registered map side higher proportion.   

Validity and sensitivity of the model, the number of the 

negative values of residuals is small when FCC is in the range of 0 

to 0.2.  The number of the positive values of residuals is small 

when FCC is in the range of 0.8 to 1.0.  These residuals can be 

explained by the imaging mechanism.  As we all know, mixed 

pixels are a common phenomenon on coarse resolution MODIS 

imagery.  Furthermore, the spectroscopy and phenology 

characteristic of a pixel was determined by the dominant land cover.  

Thus, the overestimation and underestimation of the model by 

MODIS data was inevitable.  A pixel component more than 80% 

was cropland that was easily overestimated as its spectral property 

was indistinguishable from the pure pixels.  Similarly, if a pixel 

was less than 20% of the cropland, it was easily underestimated 

because both the elemental spectrum and the phenology 

characteristics were dominated by non-cropland.  In the subpixel, 

20% is a threshold, as less or bigger than the threshold cannot be 

significantly manifested in a mixed pixel.  So far, there are no 

better ways to improve the model’s sensitivity as the method relies 

heavily on the time series, a suitable task for MODIS type data. 

Moreover, with the constrained LSMA model, it is assumed  

that the summation of the fraction of each composition (e.g., 

vegetation, soil, and low-albedo objects) equals to one 

(sum-to-one), and each of them is nonnegative (non-negativity).  

Therefore, although the constrained LSMA model has been widely 

applied due to its physical soundness, the model overestimated the 

fractions when the FCC was close to zero, and overestimated the 

fractions when FCC approached one.  That is, negative residuals 

existed with low FCC values, and positive residuals were dominant 

with high FCC values.  Although this problem may obviously 

affect the estimation accuracy in low and high FCC areas, it is very 

difficult to address.   

Chang et al.
[54]

 proposed an unconstrained LSMA model to 

address this issue, and pointed out that the unconstrained LSMA 

was better for object identification, and the constrained LSMA was 

ideal for quantifying land cover fractions.  Recently, Wang et 

al.
[55]

 integrated LSMA and classification and regression tree 

(CART) to address this issue.  The developed method, however, is 

ad hoc, and is difficult to apply to such a large study area.  

Therefore, although with the bias of estimation with low and high 

FCC, the constrained LSMA was still employed in this study, and 

the estimation results were still acceptable with an RMSE of 0.13.  

Moreover, the multivariate regression analysis did help to reduce 

the bias.   

However, the combination method just used a linear regression 

model.  The algorithm structure needs be further improved and 

enhanced.  With the development of artificial intelligence, a large 

number of intelligent nonlinear algorithms have been proposed, i.e., 

ANN (Artificial Neural Network), SVM(Support Vector Machine), 

Deep Learning, and Deep convolutional neural network
 [11,19-21,56-60]

.  

These nonlinear intelligent algorithms have a better performance in 

fitting multiple sets of variables.  Furthermore, it needs to explore 

and mine more feature variables expression.  This new feature can 

be better expressed in decimals (the range of value 0.8+ and 0.2-) 

sensitively.   

Nevertheless, this research has shown that the integrative use 

of feature variables with SDI and LSMA can successfully estimate 

fractional cropland from MODIS imagery. 

6  Conclusions 

This research developed a seasonal dynamic index (SDI) using 

phenological information, as well as a linear spectral mixture 

analysis technique, and further applied a multivariate regression 

analysis to estimate fractional cropland coverage (FCC).  Because 

the SDI and LSMA have a different theoretical basis and 

hypothesis, these two methods can complement each other for 

generating better FCC products.  Experiments also show 

integrating LSMA and SDI technology effectively improved the 

accuracy of FCC mapping.  Comparing the estimation results with 

the reference data, the coefficient of determination (R
2
) rose from 

0.76 to 0.84 with a much lower RMSE value.  Therefore, we can 

come to the conclusion that a combination of SDI and LSMA 

provided a better estimation performance than any of the individual 

feature models.  This method may serve as a better alternative for 

regional FCC mapping for Brazil due to the weather condition. 
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