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Abstract: The problems related to agricultural structure engineering for crack simulation and reliability analysis are 

complicated because its variables contain wide ranges of mean and standard deviation.  This paper describes an integrated 

model to perform crack simulation and reliability analysis of a continuum structure.  The structure is assumed to be under a 

two-dimensional plane stress and the deformation is infinitesimal.  A truss structure model that has the same behaviour as a 

continuum structure was developed using irregular triangle truss components where each element consists of two hinges with an 

axial degree of freedom at both of their ends.  A Monte-Carlo simulation (MCS) was adopted for the reliability analysis.  If 

the length of one side of the irregular triangle mesh is shorter than the thickness of the structure, the slenderness associated with 

compressive failure needs to be examined only for the short column.  For that reason, the failure criterion suitable for the 

equivalent truss structure model was established by checking only axial stresses acting on truss members.  Since nodes of the 

equivalent truss structure model for the structural analysis in this study consist of hinges, development of plastic hinges that 

occurred during crack propagation were not considered in this model.  To simulate the development of crack, truss members 

over allowable stresses of tension or compression among truss members with the largest amount of stress at each completed 

structural analysis time step were sequentially removed.  Since irregular triangle meshes have an uncertainty in themselves to 

compare with regular meshes, the equivalent truss structure model could describe crack propagation more realistically.  The 

failure probabilities of structures under various loads and boundary conditions had good agreement with the analytical solutions 

directly solved from the limit state equations expressed in the form of moments. 
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1  Introduction  

Various materials used for constructions of structures  
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have different probability distributions with regard to 

mean and variance of random variables.  Particularly, 

concrete (mixture of aggregate, sand and cement) has a 

relatively wider range of variance than steel
[1,2]

.  

Because structure has its own inherent uncertainty, 

probabilistic approaches such as structural system 

reliability analysis and stochastic structural analysis were 

introduced to evaluate structural safety under a variety of 

circumstances.  Depending on how variables are related 

to loads and resistances are handled, current methods can 

be classified into the first-order second-moment (FOSM) 

method, second-order second moment (SOSM) method, 

probabilistic finite element method (PFEM) and 

stochastic process (SP)
[3]

. 
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The mean-value first-order second-moment (MVFOSM) 

method is based on a first-order Taylor series expansion 

of the performance function linearized at the mean values 

of the random variables.  The failure probability can be 

estimated from the reliability index based on the means 

(first-order) and variances (second-moment) of the 

random variables.  However, all variables should follow 

a normal distribution and the approach is not invariant 

because the failure probability may change depending on 

the definition of the limit state equation
[4]

.  The 

reliability index geometrically means the shortest distance 

from the origin to the failure region
[5]

.  The contact point 

on the failure surface is called the most probable failure 

point (MPFP)
[6,7]

.  To obtain the MPFP from the 

nonlinear limit state equation, the advanced FOSM 

(AFOSM) which linearizes the equation around the 

MPFP was suggested by introducing iterative methods for 

optimization
[4]

.  Because most engineering problems are 

related to non-normal distributions, it is necessary to 

transform them into normal distributions.  If probability 

density functions (PDFs) are given, the Rackwitz-Fiessler 

equivalent normal transformation can be used
[8,9]

.  The 

Rosenblatt transformation is used when joint probability 

density functions (JPDF) for random variables can be 

transformed into standard normal distributions for 

variables
[10,11]

. 

Because the FOSM method does not reflect the 

curvature characteristics of each limit state equation, the 

SOSM method based on a second-order Taylor series 

expansion of the performance function linearized at the 

mean values of the random variables was introduced
[12]

.  

In the most cases, limit state equations could be 

approximated by the curvature fitting of second-order 

reliability method (SORM)
[13-16]

.  However, the method 

could sometimes leave noises on the curvature. In this 

case, the point fitted SORM is an alternative
[17]

. 

The FOSM and SOSM methods are limited in their 

applications because there is no way to know how an 

external force applied at a point of a structure affects the 

whole system when the structure consists of many 

elements.  To overcome this weakness, a finite element 

method (FEM) was combined with probabilistic 

approaches.  However, because there is a weakness in 

which failure modes associated with limit state equations 

are subject to the opinions of designers, the analysis could 

produce different results of failure probability.  

Therefore, the analysis was mainly applied to simple 

structures rather than complex structures
[18-20]

 or static 

frame structures in which the materials have less variance 

than the components of bulky structures
[4,21]

. 

On the other hand, efforts to find dominant failure 

modes that affect the entire collapse of a structure have 

been ongoing.  Ang et al.
[22]

 suggested the basic concept 

of failure modes and Ishizawa
[23]

 provided a more rational 

basis for determining appropriate safety margins.  

Stevenson et al.
[24]

 executed system reliability analysis of 

frame structures using the principle of virtual work and 

plastic collapse mechanism.  Gorman
[25]

 suggested 

algorithms to automatically calculate the collapse modes 

of perfectly elasto-plastic structures.  However, the 

applications of these ideas were limited because the 

number of failure modes increased exponentially 

depending on the degree of structural complexity.  Ma 

and Ang
[26]

 researched the failure modes of frame 

structures and truss structures using nonlinear 

programming (NLP), and Moses et al.
[27,28]

 introduced the 

incremental loading method (ILM) which would 

determine failure modes and limit state equations by 

gradually increasing loads.  The branch and bound 

method to detect the upper bound of failure modes under 

a failure event tree was suggested.  However, the 

method could not handle simultaneous failure modes 

because it assumed only gradual failures
[29,30]

.  A β 

unzipping method to find failure modes while gradually 

removing elements with high failure probability was 

developed
[30]

.  This method identified the important 

failure modes very quickly but there was always the 

possibility of missing out on some important failure 

modes.  Other researchers developed an optimization 

technique using lower bound theory, and the differences 

between the upper and lower bound methods were 

compared
[31]

.  Simulation based methods
[32-35]

, linear 

programming (LP) for detecting failure modes of frame 

structures
[36]

, and matrix-based system reliability (MSR) 

to find important failure modes by using genetic 

algorithms (GA)
[37]

 were executed. 
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Monte-Carlo simulation (MCS) was introduced as an 

alternative to PFEM approaches which are limited to only 

simple frame structures.  The MCS method, which was 

developed for nuclear weapon researches in the USA in 

the 1940’s, creates pseudo-random numbers, simulates 

real situations and finds exact solutions.  It is a useful 

method for those situations where the limit state 

equations could not be defined in the PFEM or multiple 

integration methods are required due to an excessive 

number of probabilistic variables.  Most various MCS 

approaches are carried out to reduce the number of 

iterative calculations.  The important sampling method 

(ISM) to move the locations of sampling to the boundary 

regions between safety and failure was suggested by 

Shinozuka
[7]

 and Melchers
[38]

. 

Although large-scale complex structures have been 

constructed, PFEM as a representative method cannot 

give an accurate evaluation of structural safety.  

Therefore, additional safety margins are left to the 

structures.  The equivalent truss structure model 

combined with MCS was developed to directly calculate 

the failure modes and probabilities, and to significantly 

reduce computational time. 

2  Mathematical model 

The equivalent truss structure model was developed 

to substitute solid structure components based on a 

continuum mechanism that could not explain failure 

phenomena effectively.  The basic unit of this model is a 

triangular element consisting of three truss elements with 

a rotational hinge at both ends of the element.  It was 

assumed that the mesh density and quality are high 

enough to produce a uniform stress distribution within the 

triangular domain and to create an equilateral triangle, 

respectively.  

2.1  Stress and strain relationship of triangular plane 

element 

Figure 1a shows the relative locations of the nodes of 

a triangular plane element under plane stress before and 

after deformation.  If the size of the element is 

infinitesimal, it can be assumed that the stress distribution 

within the domain is uniform.  If all sides of the element 

maintain a straight line after the element is deformed, all 

displacements within the domain will exhibit a linear 

relationship between them.  Figure 1b shows the 

displacements of nodes before and after deformation. 

Based upon the linear assumptions, the displacements u 

and v can be expressed as: 

 
1 2 3u a a x a y           (1) 

 
4 5 6v a a x a y         (2) 

where, a1, a2, a3, a4, a5, and a6 are the coefficients; x and 

y are the horizontal and vertical directions of the 

coordinate system, respectively; u and v are the 

displacements of the x- and y-axes, respectively. 

 
          a. Coordinates                 b. Displacements of nodes  

Figure 1  Two-dimensional geometric deformation of a triangular 

solid element exposed to plane stress 
 

Second order approximation as an expression for the 

displacements can be used to obtain high quality solutions; 

however, first order approximations, the results of which 

are accurate enough for the analysis of the in-plane 

deformation dealt with in this research, were adopted. 

By obtaining the coefficients a2, a3, a5, and a6 as a 

form of the coordinates and displacements of nodes 1, 2, 

and 3 from Equation (1) and (2), the strain-displacement 

relationships can be rewritten as: 
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   (5) 

where, x1, y1, x2, y2, x3, y3 and u1, v1, u2, v2, u3, v3 are the x 

and y coordinates and displacements of nodes 1, 2, and 3, 

respectively. 

2.2  Internal energy of a triangular plane element 

Assuming that the thickness of the solid structure in 

the state of the plane stress is t and the area of the element 
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is A, the total internal energy of the element can be 

derived as: 

2 2 2

2
( 2 )

2 1
P x y x y xy

At E
U ε ε νε ε Gγ

ν

 
     

  (6) 

where, UP is the internal energy of the plane element; E is 

the Young’s modulus; v is the Poisson’s ratio; G is the 

shear modulus. 

By substituting Equation (6) with Equations (3)-(5), 

expressed as the coordinates and displacements of each 

corresponding vertex of a triangular plane element, the 

total internal energy of the element against the external 

forces can be represented as: 
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(7) 

2.3  Internal energy of triangular truss element 

There exists a triangular truss element that has the 

same behaviour as the triangular plane element, as shown 

in Figure 2.  

When the cross-sectional areas of members of a 

triangular truss element are assumed to be A1, A2, and A3, 

the internal energy of the element in the state of a 

two-dimensional plane stress can be obtained with 

following equation: 

2 2 2

1 1 1 2 2 2 3 3 3

1 1 1

2 2 2
TU Eε A Eε A Eε A     (8) 

where, UT is the internal energy of the triangular truss  

element; ε1, ε2, ε3, and A1, A2, A3, and 
1
, 

2
, 

3
   

are the deformed strains, and cross-sectional areas, and 

lengths of the triangular truss members 1, 2, and 3, 

respectively. 

 

Figure 2  Triangular truss element 
 

To determine the relationship between the 

cross-sectional area of each member and the weighted 

area associated with each member, and to find the 

conditions where the discretized truss element has the 

same behaviour as the continuum solid element, weighted 

areas (with regard to their center of gravity ‘G’) are 

introduced, and the weighted areas (A′1, A′2, and A′3) are 

identical to each other. Therefore, the following 

relationship can be induced as: 

 
1 2 3A A A nA            (9) 

where, n is any multiple. 

 

Figure 3  Weighted areas of triangular truss element 
 

Finally, the internal energy of the triangular truss 

element can be obtained by substituting Equation (8) with 

the deformed strains of each truss member induced 

geometrically from Figure 2. 
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2.4  Relationship between continuum and discretized 

structures 

The internal energies of triangular plane (solid 

structure) and triangular truss (discretized structure) 

elements can be calculated using Equations (7) and (10), 

respectively.  If the geometries of both structural 

elements resisting external forces are deformed in the 

elastic range, and both the internal energies have the same 

value, it is possible to substitute the solid element with 

the discretized element.  To apply the equivalence 

principle for the internal energies of the solid and 

discretized elements, it is necessary to rearrange the 

equations in terms of arbitrary variables: displacements u 

and v.  However, since the displacements of the 

triangular truss element in the internal energy equation 

are represented as square roots, it is required to continue 

to square both sides of the energy equivalence equation 

until the square roots disappear. 

Because this repeated process to eliminate the square 

roots is complicated, the Runge-Kutta method, which is 

generally used to find approximate solutions, was adopted 

instead.  This analysis method found the volume ratio n 

that makes the two internal energy equations equal for 

any variables u and v under a fixed Poisson’s ratio v.  

When Poisson’s ratio is 3
-1

 for ideal materials of isotropic 

and homogeneous nature, and 0.2 for materials with a 

brittle nature (such as concrete), the volumetric ratios n 

were determined to be 2.79036 and 2.79168, respectively. 

Because the equivalent truss structure model used in  

this study originates from the Laplace equation 
2 0  , 

and the variables belonging to it are governed by a linear 

relationship, the regression equation between Poisson’s 

ratio (v) and the volumetric ratio (n) should follow a 

linear relationship.  In the regression analysis, the 

volumetric ratio and Poisson's ratio showed an exact 

linear-relationship, as shown in Table 1. 
 

Table 1  Poisson’s ratio (v) vs. volumetric ratio (n) of the 

triangular truss element to the triangular solid element 

v n 

0.2 2.79168 

0.3 2.79069 

1/3 (0.33) 2.79036 

0.4 2.78970 

0.5 2.78872 

Note: n = –0.00987v+2.79365. 

3  Criteria 

The model needs to determine special failure criteria 

and numerical procedures to apply to crack propagation 

and reliability analysis.  Detailed explanations of the 

model are included in the following sections. 

3.1  Loads 

Only static loads such as weights loaded on the 

surfaces of a rigid body or very slowly moving loads 

acting on a sample laid on a universal testing machine 

(UTM) for a long time were assumed. 

3.2  Tension 

Because structural elements generally have material 

uncertainties, a safety factor for taking uncertainties of 

material into account should be considered.  The 

allowable stress of an element is given by the following 

equation. 

 
allow

c

P
σ n σ n

A
              (11) 

where, σallow is the allowable stress; n is the safety factor 

(safety margin); σ is the internal stress; P is the external 

load; Ac is the internal cross section area of the material.  

A safety factor was not included in this study because it 

made the structural analysis method too complex.  It is 

also assumed that the characteristics of variables are 

given as a type of distribution with average and standard 

deviation.  When a static tension load is applied to ideal 

materials such as steel, for which Poisson’s ratio is 0.3, a 

typical stress-strain curve is shown in Figure 4.  Each 

node of the equivalent truss structure element for 

structural analysis in this study already consists of a hinge; 

therefore, it is supposed that the structural materials to 

resist the tension yield when the internal stresses of the 

elements reach a proportional stress limit.  

 

Figure 4  Typical stress-strain curve of material with Poisson’s 

ratio of 0.3 
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3.3  Compression 

If the element loaded axially in compression is a 

relatively slender structure, the structural component may 

buckle due to bending or lateral deflection before the 

internal stress reaches its allowable compressive stress.  

To check the slenderness (λ) which refers to the eccentric 

ratio between the effective length (l) of a column and the 

least radius of gyration (r) of its cross section, it is 

necessary to classify the structural members into long and 

short columns before applying the criteria for 

compression.  The slenderness can be expressed by 

Equation (12). 

 

k A
λ

r I
            (12) 

where, k is the effective length factor; A is the cross 

sectional area; I is the moment of inertia of the area. 

The effective length factor k is 1 because each node of 

the equivalent truss structure model consists of a hinge.  

If the qualities of irregular triangle meshes consisting of a 

whole domain are high enough for three sides of the 

triangle meshes to have the same length, the areas of the 

triangle meshes can be calculated by Heron’s formula as 

follows (Figure 5). 

23
( )( )( )

4
A s s a s b s c a            (13) 

where, A' is the area of irregular triangle mesh; s is 

( )

2

a b c 
 and a is the length of one side of the 

triangular mesh. 

 

Figure 5  Irregular triangle mesh with side lengths of a, b and c 
 

The volume ratio (n) is based on the assumption that 

the ratio is the volume of each truss element consisting of 

the triangular mesh to the volume of each triangular solid 

element divided by the gravity center of the whole solid 

element (Figure 6). 

If the thickness of the solid element is t and the length 

of one side of the sectional area of each truss element is h,  

the h can be expressed as follows. 

3 3

3 3 4 3 2

A t n n
h n at at

a


    (14) 

 

Figure 6  Truss element vs. solid element 
 

Using Equation (14), the slenderness of the equation 

(12) can be obtained as follows. 

2

3

3 4 3 2
12

31 3

12 3 4

n
at

A a
λ a

I n tn
at

 
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 
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 
  
 

 (15) 

The compatibility condition of the equivalent truss 

structure model implies that the volume ratio (n) is over 2 

(Table 1).  If the length (a) of one side of the triangular 

mesh is shorter than the thickness (t) of the solid element, 

the range of slenderness is given below. 

 6 45λ .                (16) 

3.4  Examination of short and long columns 

According to the design criteria of the American 

Concrete Institute (ACI), the critical slenderness ratio of a 

column not braced against a side sway can be expressed 

as follows. 

 
22ukl

r
              (17) 

where, lu is the length of the column not braced against 

the side sway. 

According to the design criteria of the American 

Institute of Steel Construction (AISC), the critical 

slenderness ratio of a column not braced against a side 

sway can be defined as the ratio corresponding to 50% of 

the yield stress in Euler’s curve when residual stress is 

considered as shown below. 

 

22

c y

k E

r





 
 

 
         (18) 

where, E is the elastic modulus, MPa and σy is the yield 

stress, MPa. 

The critical slenderness ratio of ideally elastic 
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material such as steel with an elastic modulus of 200 GPa 

and yield stress of 1000 MPa can be calculated as follows: 

 

35
c

k

r

 
 

 
          (19) 

Therefore, if the structure consists of practical 

construction materials such as concrete and steel, the 

equivalent truss structure model always satisfies the 

conditions of the short column.  

3.5  Structural stability 

If the global stiffness matrix, which is established by 

assembling the local stiffness matrices, has an inverse 

matrix while the structural topology is transformed from 

stable state to unstable state, the structure is either a 

statically indeterminate or determinate structure and there 

should be a unique solution to satisfy the relationship 

between the global stiffness matrix and the displacements 

of nodes.  Therefore, the determinant of the structure 

can be used as a failure criterion to determine if the 

structure will collapse or not. 

3.6  System collapse 

It takes numerous computations to verify the stability 

of the collapsing structure by calculating the determinant 

of the global stiffness matrix whenever some cracks 

propagate during each time step.  If the original structure 

has various boundary conditions, each structure separated 

from the collapsing structure could be an independent 

structure depending on some cases such as the situations 

shown in Figure 7.   

 
a. Non-collapse (failure)                      b. Collapse 

Figure 7  Non-collapse and collapse of statically indeterminate 

structure according to load conditions 
 

The designer decides that those independent 

structures are statically indeterminate or determinate 

structures because the determinants of the structures are 

still positive.  If there are no induced loads on the 

separated structures, the displacements of the structures 

will be zero and then the structure will be regarded as 

stable. 

Therefore, newly defined criteria to determine the 

systematic collapse were made on the assumption that the 

displacements at some nodes of the original structure are 

suddenly larger than the displacements that occurred in 

the previous step or become zero. 

4  Probability analysis 

4.1  Sampling 

If the virtual experiments are repeated often enough to 

replace the probability variables with a normal 

distribution and the structural stability is determined by 

checking the limit state equations which define the 

collapse conditions of structure, the collapse probability 

can be calculated approximately.  The Monte-Carlo 

sampling technique is a representative method.  It is 

generally suggested that the total sampling number might 

be over 10-100 of the reciprocal of the expected collapse 

probability as shown in Equation (20) or should be large 

enough to guarantee the accuracy of the expected collapse 

probability.  

10 to 100

f

N
P

           (20) 

where, N is the total sampling number and Pf is the 

collapse probability. 

Because the minimum sampling numbers can vary 

depending on the situation, such as the shape of the 

structure, the condition of the loads and boundary 

conditions, the relative errors between previous and 

current values of collapse probability were also checked. 

4.2  Random variables 

It was assumed that the characteristics of variables 

related to materials (resistances) and forces (loads) 

followed a standard normal distribution.  A computer 

can produce random numbers from a long sequence that it 

creates.  These numbers are called pseudo-random 

numbers. Because a set of this sequence relies on a 

designated number called ‘seeds’ of which the time 

corresponds to 1/1000 s, the computer can create different 

random numbers as often as desired.  To create random 

numbers between 0 and 1, the random function embedded 

in Java
TM

 (Oracle Corporation, Redwood Shores, CA, 
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USA) was called out recursively.  Box-Muller functions 

as shown in Equations (21) and (22) transformed the 

random numbers created by the computer into a standard 

normal distribution
[39]

. 

1/2

1 1 2( 2.0ln( )) cos(2 )U X X  
  

if 
3 0.5X   (21) 

1/2

2 1 2( 2.0ln( )) sin(2 )U X X  
  

if 
3 0.5X    (22) 

where, U1 and U2 are the non-associated standard normal 

random numbers; X1, X2 and X3 are the random numbers 

occurring between zero and one. 

The targeted normal distribution can be obtained as 

shown in Equation (23): 

 1 2(  or )X XX U U       (23) 

where, X is the targeted normal distribution; μ is the mean 

and σ is the standard deviation. 

4.3  Progressive elimination method 

When external loads act on a structure, internal 

stresses occur at components of the structure following 

the stress paths produced by external loads.  If the 

internal stresses are over the yield stresses, the 

components collapse and the extra stresses are 

redistributed to neighboring components in order to 

balance the structure.  These processes will continue 

until the structure is stable.  It is also assumed that the 

loads dealt with in this study are static loads which are 

gradually increased or relatively constant during the 

simulation.  Therefore, the progressive elimination 

method, which sequentially removes the structural 

components with the largest stresses over the allowable 

stresses at each time step of the structural analysis, was 

adopted.  However, if there were no redundant 

components to withstand the external loads during the 

processes, the structure was regarded as a collapsed 

structure.  The detailed procedure is shown in Figure 8. 

 

Figure 8  Progressive elimination method 
 

4.4  Expression of removed components 

There are two methods of removing structural 

components: actually removing the components or 

virtually making material properties of the removed 

components zero.  Generally, the former method allows 

control of the input and output files.  This approach 

occupies a considerable amount of computational time 

compared with the computational time needed for 

structural analysis.  Therefore, the latter method was 

chosen to improve computational speed. 

4.5  Removal of unnecessary members as structural 

components 

When truss members with stresses larger than the 

yield stress are sequentially removed, truss members 

shown to be unnecessary as structural components are 

eliminated during the progressive elimination processes.  

In Figure 9a, the member AB is removed and the 

members BC and BD share the node B; the triangle ACD 

is unstable.  In Figure 9b, the members BC and BD are 

removed; the member AB becomes unnecessary as a 

structural component.  Therefore, structural analysis at 

each time step was carried out after removing all 

unnecessary members during the progressive elimination 

processes.  The rule to remove unnecessary members is 

summarized below. 

1) Remove any member exceeding the allowable 

stresses. 

2) Select triangles that share with the member 

(triangles including the red dots as shown in Figure 9). 

3) Check if there are triangles to share with any 

remaining sides of the selected triangles or not.  If there 

are none, then remove other members connected with the 

removed members. 

4) Repeat the same elimination processes for all 

removed members. 

 
a. The case that the member AB is 

removed 

 b. The case that the members BC 

and BD are removed 
 

Figure 9  Unnecessary members as structural components 

5  Results and discussion 

Beams with various types of loads and boundary 

conditions were used to test the equivalent truss structure 
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model by executing crack propagation and calculating 

failure probability. 

5.1  Simply supported beam with a concentrated load 

A crack propagation test was conducted, changing the 

sizes and triangulation methods of the irregular triangle 

mesh.  A simply supported beam with a concentrated 

load on the top middle point as shown in Figure 10 was 

considered for the test.   

 
a 

 
b 

 
c 

Figure 10  Crack propagation patterns of the structure using the 

coarse (a) vs. dense meshes using Delaunay-triangulation-based (b) 

and advancing front techniques (c), respectively 
 

The beams had the following characteristics: width of 

0.9 m, depth of 1.8 m, span length of 9.0 m, elastic 

modulus of 20.0 GPa, concentrated load of 25 kN with 

standard deviation of 2 kN, and resisting moment of 60 

kN·m with a standard deviation of 6 kN·m.  The coarse 

meshes consisted of 980 nodes and 2793 elements were 

uniformly distributed over the whole domain as shown in 

Figure 10a.  However, since it is already known that the 

crack propagation of the beam occurs at the mid area of 

the span, it is possible to increase the mesh density using 

dense meshes across the area to reduce the computational 

time.  For the other beams with different types of mesh 

conditions in the area, the whole domain was divided into 

9326 elements including 3181 nodes and 14080 elements 

including 4782 nodes using Delaunay-triangulation-based 

and advancing front techniques, respectively.  In the 

case of the coarse mesh, the crack developed in the wrong 

direction.  Even the dense mesh constructed by the 

advancing front technique was suboptimal because the 

meshes were not distributed consistently through the mid 

domain.  On the other hand, the case created by the 

Delaunay-triangulation-based technique demonstrated 

desirable crack propagation. 

The failure probability of the structure based on the 

Delaunay triangle mesh was calculated as shown in Table 

2.  An analytical solution for failure probability based on 

the limit state equation expressed in the form of a 

moment was 30.85% (Thoft-Christensen and Murotsu, 

1986).  It was understood that the approximate solution 

of the failure probability was closer to the analytical 

solution as the sampling number increased. 
 

Table 2  Failure probability of simply supported beam under 

a concentrated load 

Sampling number Failure probability 

800 0.2931 

2400 0.2974 
 

5.2  Crack propagation of a beam subjected to 

multiple boundary conditions 

The experimental result of crack development in 

concrete was compared with the regular and irregular 

truss structure model equivalent to the continuum
[40]

.  

The dimensions and material properties of the structure 

subjected to multiple boundary conditions are shown in 

Figure 11 and Table 3.  In the case of the irregular truss 

structure, the region in which the crack occurred was 

filled with dense mesh to reduce computational time, 

whereas the whole domain of the regular truss structure 

was divided into sizes which were equal to the sizes of 

the dense meshes of the irregular truss structure.  There 

were 5611 nodes and 18140 elements, and 1994 nodes 

and 5766 elements used for the regular and irregular truss 

structures, respectively. 

 

Figure 11  Beam subjected to multiple boundary conditions 
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Table 3  Dimensions and material properties of beam 

Variables Values Units Description 

D 150.00 mm Depth of beam 

t 50.00 mm Thickness of beam 

L 675.00 mm Span length of beam 

α 1.00  Constant 

β 1.00  Constant 

W 7.50 mm Width of notch 

P 13.00 kN Point load 

E 38.40 GPa Young’s modulus 

v 0.33  Poisson’s ratio 

 7.50 mm Length of regular truss element 
 

The simulation results of cracks propagated during 66 

steps of testing are shown in Figure 12.  It took 675 min 

and 167 min to complete the crack simulations of the 

regular and irregular truss structures, respectively.   

 
a. Regular mesh 

 

b. Irregular mesh 

Figure 12  Crack propagations of regular (a) and irregular (b) truss 

structure models equivalent to continuum 
 

The crack pattern of the regular truss structure was in 

a straight line, whereas the crack shape of the irregular 

truss structure followed a curvilinear form.  The ability 

to break away from the main route of the crack was 

observed at both the beginning and end times.  Research 

on fracture mechanism was started by Griffith, and glass 

was used for most experiments that included tensile 

tests
[41,42]

.  Tensile stress could be a main reason for the 

fracture. Brittle materials are fractured in a 

trans-crystalline direction, and some cracks changed their 

forward direction instantly from the surface of a structure 

to the inside.  It was also shown in other research that a 

fracture in brittle material occurs in the vertical direction 

when tensile stresses exist
[43]

.  These observations are in 

good agreement with the simulation results of the 

irregular truss structure model developed in this study. 

5.3  Simply supported beam with two independent 

concentrated loads 

A simply supported beam with two independent 

concentrated loads was tested to evaluate the feasibility of 

an irregular truss structure model for crack propagation 

and probability analysis as shown in Figure 13.   

 
a. 

 

b. 

 

c. 

 

d. 

Figure 13  Case that there is no overlapping area between each 

distribution of two concentrated independent loads; it represents the 

locations of loads (a), the possible area of collapse (b), the 

probabilities of loads (c) and the pattern of crack propagation (d) 
 

The beams had the following characteristics: width of 

0.9 m, depth of 1.8 m, span length of 9.0 m, elastic 

modulus of 20.0 GPa, concentrated load P1 of 12.94 kN 
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with standard deviation of 0.37 kN, concentrated load P2 

of 21.99 kN with standard deviation of 0.65 kN, and 

resisting moment of 60 kN·m with standard deviation of  

6 kN·m.  The only mid area consisted of a dense mesh 

and the whole domain was divided into 6643 elements 

including 2260 nodes.  

Until the structure collapsed, the crack developed 

only at the area subjected to the larger load.  The 

structure’s failure probability was calculated as shown in 

Table 4.  The analytical solution for failure probability 

based on the limit state equation expressed in the form of 

a moment was 30.85%.  The approximate solution to 

failure probability was closer to the analytical solution as 

the sampling number increased.  Therefore, it was 

verified that an approach using an equivalent truss 

structure model is sufficiently accurate to estimate the 

failure probability of the continuum structure. 
 

Table 4  Failure probability when there is no overlapped area 

between each distribution of two concentrated independent 

loads 

Sampling number Failure probability 

800 0.2861 

2400 0.2892 
 

In this time, the special case that the distributions of 

the loads P1 and P2 dealt with in the above example were 

overlapped by changing the means and standard 

deviations of the loads was considered.  The loads 

included the following details: the concentrated load P1 of 

17.97 kN with a standard deviation of 4.00 kN and load 

P2 of 18.97 kN with a standard deviation of 0.60 kN.  To 

obtain the analytical solution for failure probability, the 

first conditional case in which load P1 is bigger than load 

P2 was assumed (Figures 14 and 15a):  

 
max 1 2

1 1
(2 )

9 9
M P P P        (24) 

where, 
1 2

2P P P    , 
1 2

2 2 2 22P P P    , and Mmax is  

the maximum moment that occurs due to the combination 

of loads. 

The limit state equation could be expressed in the 

form of a moment as follows: 

max

1

9
R Rg M M M P          (25) 

where, 
9Rg M P    , 

2

2 2 2

9Rg M P  
 

   
 

, and MR  

is the resisting moment. 

 

Figure 14  Venn diagram of loads P1 and P2 

 

a. 

 

b. 

 

c. 

Figure 15  Various failure modes according to the load conditions: 

collapses of node 1 (a), node 2 (b), and both nodes 1 and 2 (c) due 

to load P1, load P2, and both loads P1 and P2, respectively 
 

The failure probability Pf1 was calculated to be 0.31 

from the reliability index β of the limit state equation.  

The second conditional case in which the load P2 is 

bigger than P1 was assumed (Figures 14 and 15b).  The 

failure probability Pf2 was calculated to be 0.29 as in the 

previous case. 

From the Venn diagram shown in the Figure 14, the 

failure probability (Pf) of the structure can be set up 

following the intersection rule of the Venn diagram. 

 
( ) ( ) ( )fP P A P B P A B             (26) 

From the Figure 14, the probability for only node 1 to 

collapse due to the load P1 can be defined as below:. 

 1 2( ) (1 )f fP A P P            (27) 

The probability for only node 2 to fail due to load P2 

can be induced by applying the same method. 

 1 2( ) (1 )f fP B P P            (28) 

The probability for nodes 1 and 2 to collapse 

simultaneously due to loads P1 and P2 is defined below. 
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 1 2( ) f fP A B P P        (29) 

From Equations (26) to (29), the failure probability of 

the structure was calculated to be 32.95%.  The 

simulation results using the equivalent irregular truss 

structure model showed that the probabilities were 

40.42%, 24.63%, 10.08% and 34.71% in the cases where 

the load P1 is greater than P2 without regard to structural 

failure; only node 1 collapses due to load P1; only node 2 

collapses due to load P2, and nodes 1 or 2 collapse due to 

both loads P1 and P2, respectively (Table 5).  Two kinds 

of failure modes were also observed because the loads 

systematically affected each other (Figure 16). 
 

Table 5  Failure probability in the case that there is an 

overlapped area between each distribution of two concentrated 

independent loads 

Sampling 

number 

Failure probability 

P1>P2 P1<P2 P1>P2 or P1<P2  Analytical solution 

800 0.2550 0.0988 0.3538 
0.3295 

2400 0.2463 0.1008 0.3471 

 
a. 

 

b. 

 

c. 

 

d. 

Figure 16  Case in which there is an overlapping area between 

each distribution of two concentrated independent loads; it 

represents the locations of loads (a), the possible areas of collapse 

(b), the probabilities of loads (c) and the patterns of crack 

propagation (d) 

 

6  Conclusions 

A discretized model that shows the same behaviour 

as a continuum structure, referred to as the equivalent 

truss structure model, was developed based on irregular 

triangle elements.  With the assumptions that 

displacements occurred in a two-dimensional plane, the 

deformation maintained a linear relationship, and the 

size of the element was infinitesimal enough to have all 

stresses at any location inside the domain be identical, 

the energy conservation theory was applied to obtain 

the necessary conditions for the equivalent truss 

structure model.  The volumetric ratio of the truss 

element to the solid element showed an exact linear 

relationship because this model was based on the 

Laplace equation.  The detailed rules and processes for 

the crack propagation and reliability analysis of an 

irregular truss structure model were also developed.  

Through various examples, it was proved that the 

equivalent truss structure model is useful for simulation 

of crack propagation and estimating the failure 

probability of the continuum structure.  The 

uncertainty imbedded in the irregular triangle meshes 

could describe the propagation of a crack more 

realistically.  The model could also be expanded for 

three-dimensional structure analysis.  This model can 

be used for the simulations of crack propagation and 

reliability analysis in the areas of agricultural 

engineering related to structure, soil, food and so on.  

However, the model in this study assumes that a crack 

propagates statically.  Therefore, if the amount of 

deformation of a structure exceeds the elastic range 

during the crack propagation processes, the crack 

propagation model would be inaccurate.  Therefore, in 

the future, it will be necessary to further develop the 

amended model to include the dissipation energy 

associated with crack propagation.  
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