Detection of Staphylococcus Aureus using quantum dots as fluorescence labels
Abstract
Keywords
Full Text:
PDFReferences
Gracias K S, Mckillip J L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian Journal of Microbiology, 2004; 50: 883- 890.
Zhang Y Q, Liu J X, Luo D L, Li P Y, Xu B C, Zhong X F, et al. Research advance on detection methods of Staphylococcus aureus in food. Academic Periodical of Farm Products Processing, 2009; 9: 84-86.
Mansfield L P, Forsythe S J. The detection of Salmonella using a combined immunomagneticseparation and ELISA end-detection procedure. Letter Applied Microbiology, 2000; 31: 279-283.
Varshney M, Li Y, Nanapanneni R, Johnson M, Griffis C L.
A chemiluminescence biosensor coupled with immunomagnetic separation for rapid detection of Salmonella Typhimurium. Journal of Rapid Methods and Automation in Microbiology, 2003; 11: 111-131.
Cloak O M, Duffy G, Sheridan J J, Mcdowell D A, Blair I S. Development of a surface adhesion immunofluorescent technique for rapid detection of Salmonella spp. from meat and poultry. Journal of Applied Microbiology, 1999; 86: 583.
Tu S, Golden M, Andreotti P, Yu L S L, Irwin P. Applications of time-resolved fluoroimmunoassay to detect magnetic bead captured Escherichia coli O157: H7. Journal of Rapid Methods and Automation in Microbiology, 2001; 9: 71-84.
Jaiswal J K, Simon S M. Potential and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology, 2004; 14(9): 497-504.
Soukka T, Harma H, Paukkunen J, Lovgren T. Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticles-antibody bioconjugation. Analytical Chemistry, 2001; 73: 2254- 2260.
Varshney M, Yang L, Su X, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. Journal of Food Protection, 2005; 68: 1804-1811.
Bushon R N, Likirdopulos C A, Brady A M G. Comparison of immunomagnetic separation /adenosine triphosphate rapid method to traditional culture-based method for E. coli and enterococci enumeration in wastewater. Water Research, 2009; 43: 4940-4946.
Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine, 2008; 3: 83-91.
Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology, 2004; 22: 47-51.
Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998; 281: 2016-2018.
Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta, 2007; 71: 1494-1499.
Goldman E R, Clapp A R, Anderson G P, Uyeda H T, Mauro J M, Medintz I L, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry, 2004; 76: 684-688.
Akhtar R S, Latham C B, Siniscalco D, Fuccio C, Roth K A. Immunohistochemical detection with quantum dots. Methods in Molecular Biology, 2007; 374: 11-28.
Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivo imaging of quantum dots enscapsulated in phospholipid micelles. Science, 2002; 298: 1759-1762.
Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003; 300: 1434-1436.
Zhu L, Ang S, Liu W. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Applied & Environmental Microbiology, 2004; 70: 597-598.
Su X L, Li Y B. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Analytical Chemistry, 2004; 76(16): 4806-4810.
Dudak F C, Boyaci I H. Enumeration of immunomagnetically captured Escherichia coli in water samples using quantum dot-labeled antibodies. Journal of Rapid Methods and Automation in Microbiology, 2008; 16: 122-131.
Yang L J, Li Y B. Quantum dots as fluorescent labels for quantitative detection of Salmonella Typhimurium in chicken carcass wash water. Journal of Food Protection, 2005; 68(6):
-1245.
Wang H, Li Y B, Slavik M F. Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. Journal of Rapid Methods and Automation in Microbiology, 2007; 15: 67-76.
Wang H, Li Y B, Slavik M F. Rapid detection of Listeria monocytogenes in different food samples using magnetic nanobeads and a quantum dots based fluorescent immunosensor method. Biological Engineering, 2011; 4(4): 183-194.
Yang L J, Li Y B. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 2006; 131: 394-401.
Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. Journal of Agricultural and Food Chemistry, 2009; 57: 517-524.
Wang H, Li Y B, Wang A, Slavik M F. Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. Journal of Food Protection, 2011; 74(12): 2039-2047.
Copyright (c)