Application of dynamic programming algorithm in winter heating control of greenhouse
Abstract
Key words: greenhouse; dynamic programming; heating control; model predictive control; Internet of Things
DOI: 10.25165/j.ijabe.20241704.8221
Citation: Gao F, Tu H B, Zhu D L, Liu M Y, Shi C Y, Zhang R, et al. Application of dynamic programming algorithm in winter heating control of greenhouse. Int J Agric & Biol Eng, 2024; 17(4): 60–66.
Keywords
Full Text:
PDFReferences
Oliveira M P, Pires S E, Boaventura-Cunha J, Pinho M T. Review of nature and biologically inspired metaheuristics for greenhouse environment control. Transactions of the Institute of Measurement and Control, 2020; 42(12): 2338–2358.
Du S F, Dong Q X, Xu Y, Feng L. Review of control algorithms for environment of greenhouse production system. Agricultural Engineering, 2021; 11(2): 21–25. (in Chinese)
Huang S, Xiang H, Leng C, Dai T, He G. Intelligent regulation of temperature and humidity in vegetable greenhouses based on single neuron pid algorithm. Electronics, 2024; 13(11): 2083.
Abbood H M, Nouri N M, Riahi M, Alagheband S H. An intelligent monitoring model for greenhouse microclimate based on RBF Neural Network for optimal setpoint detection. Journal of Process Control, 2023: 129: 103037.
Su Y, Yu Q, Zeng L. Parameter self-tuning PID control for greenhouse climate control problem. IEEE Access, 2020; 8: 186157–186171.
Gong H, Li J X. Design of temperature and humidity control system for greenhouse based on shuffled frog leaping PID algorithm. Journal of Agricultural Mechanization Research, 2021; 43(1): 186–190. (in Chinese)
Jung D-H, Kim H-J, Kim J Y, Lee T S, Park S H. Model predictive control via output feedback neural network for improved multi-window greenhouse ventilation control. Sensors, 2020; 20(6): 1756.
Lin D, Zhang L J, Xia X H. Hierarchical model predictive control of Venlo-type greenhouse climate for improving energy efficiency and reducing operating cost. Journal of Cleaner Production, 2020; 264: 121513.
Chen W H, You F Q. Efficient greenhouse temperature control with data-driven robust model predictive. Philadelphia: Proceedings of the American Control Conference, 2020; Paper No. 9147701. doi: 10.23919/acc45564.2020.9147701.
Su Y P, Xu L H, Goodman E D. Nearly dynamic programming NN-approximation-based optimal control for greenhouse climate: A simulation study. Optimal Control Applications and Methods, 2017; 39(5): 638–662.
Zhu C W, Unachak P, Llera J R, Knoester D B, Runkle E S, Xu L H, et al. Robust multi-objective evolutionary optimization to allow greenhouse production/energy use tradeoffs. Acta Horticulturae, 2014; 1037: 525–532.
Li Y B, Zhou W, Wang X C, Ding W M. Greenhouse control system design based on singular perturbation theory. Transactions of the CSAM, 2012; 43(5): 184–189. (in Chinese)
Jin C, Mao H P, Ma G X, Wang Q R, Shi Q. Dynamic optimal control of greenhouse environment based on improved genetic algorithm. Journal of Jiangsu University (Natural Science Edition), 2022; 43(2): 169–177. (in Chinese)
Hu J, Yang Y X, Li Y F, Hou J Y, Sun Z T, Wang H Y, et al. Analysis and prospect of the environmental control systems for greenhouse. Transactions of the CSAE, 2024; 40(1): 112–128. (in Chinese)
Rytter M, Sørensen J C, Jørgensen B N, Körner O. Advanced model-based greenhouse climate control using multi-objective optimization. In: IV International Symposium on Models for Plant Growth Environmental Control and Farm Management in Protected Cultivation (HortiModel2012), ISHS, 2012; 957: 29–35. doi: 10.17660/ActaHortic.2012.957.2.
Ghoreishi S N, Sørensen J C, Jørgensen B N. Comparative study of evolutionary multi-objective optimization algorithms for a non-linear Greenhouse climate control problem. In: 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai: IEEE, 2015; pp.1909–1917. doi: 10.1109/CEC.2015.7257119.
Zhang X H, Zhang W, Yang X, Wang L J, Ma H M, Fan Qs. Survey of research methods on agricultural greenhouse environment control. Control Engineering of China, 2017; 14(1): 8–15. (in Chinese)
Chen B Z. Operations research: Undergraduate edition. Beijing: Tsinghua University Press, 2012; pp.155–156. (in Chinese)
Tadeusz T. Vectors of indicators and pointer function in the Multistage Bipolar Method. Central European Journal of Operations Research, 2023; 31(3): 791–816.
Yang Y Y. Heatinag test of air source heat pump in multi span film greenhouse and thermal environment analysis. Master dissertation. Hefei: Anhui Agricultural University, 2020; 77p. (in Chinese)
Wu C N, Yang Y Y, Wu Y W, Lu D P, Cao K, Bao E C. Heating effect of air source heat pump system and analysis of greenhouse thermal environment. Agricultural Engineering Technology, 2021; 41(19): 28–35. (in Chinese)
Gu H, Guo X, Wei X, Xu R. Dynamic programming principles for mean-field controls with learning. Operations Research, 2023; 71(4): 1040–1054.
Djete M F, Possamaï D, Tan X. McKean-Vlasov optimal control: The dynamic programming principle. Ann. Probab, 2022; 50(2): 791–833.
Zhu D L, Tu H B, Wang R X, Liu M Y, Zhang R, Jing Y P. Intelligent control strategy of temperature and humidity in greenhouse in summer based on subsection and multi-interval. Transactions of the CSAM, 2022; 53(9): 334–341. (in Chinese)
Su Y, Xu L, Goodman E D. Greenhouse climate fuzzy adaptive control considering energy saving. International Journal of Control, Automation, and Systems, 2017; 15(4): 1936–1948.
Fu J L, Zhou C J, Wang L. Methods for calculation of heating load in gutter-connected glasshouse. Transactions of the CSAE, 2020; 36(21): 235–242. (in Chinese)
Morcego B, Yin W, Boersma S, Henten E, Puig V, Sun C. Reinforcement learning versus model predictive control on greenhouse climate control. Computers and Electronics in Agriculture, 2023; 215: 108372.
Bhardwaj M, Choudhury S, Boots B. Blending MPC & value function approximation for efficient reinforcement learning. International Conference on Learning Representations (ICLR), 2021; arXiv,arXi: 2012.05909v2.
Wang K L, Liu X W. Efficient production management technology of tomato in intelligent multi span glass greenhouse. Agricultural Engineering Technology, 2020; 40(34): 12–14. (in Chinese)
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.