Multi-class detection of cherry tomatoes using improved Yolov4-tiny model
Abstract
Keywords: cherry tomatoes, deep learning, data augmentation, YOLOv4, occlusion, multi-class detection
DOI: 10.25165/j.ijabe.20231602.7744
Citation: Zhang F, Chen Z J, Ali S, Yang N, Fu S L, Zhang Y K. Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny. Int J Agric & Biol Eng, 2023; 16(2): 225-231.
Keywords
Full Text:
PDFReferences
Rong J C, Wang P B, Yang Q, Huang F. A field-tested harvesting robot for oyster mushroom in greenhouse. Agronomy, 2021; 11(6): 1210. doi: 10.3390/agronomy11061210.
Zhang F, Chen Z J, Wang Y F, Bao R F, Chen X G, Fu S L, et al. Research on flexible end-effectors with humanoid grasp function for small spherical fruit picking. Agriculture, 2023; 13(1): 123. doi: 10.3390/agriculture13010123.
Rong J C, Wang P B, Wang T J, Ling H, Yuan T. Fruit pose recognition and directional orderly grasping strategies for tomato harvesting robots. Computers and Electronics in Agriculture, 2022; 202: 107430. doi: 10.1016/j.compag.2022.107430.
Afroza A, Ambreen N, Baseerat A; Nigeena N, Ahmad S P, Azrah I S, Amreena S; Insha J, Majid R. Evaluation of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) Genotypes for Yield and Quality Traits. Journal of Community Mobilization and Sustainable Development, 2021; 16(1): 72-76.
Yamamoto K, Guo W, Ninomiya S S. Node detection and internode length estimation of tomato seedlings based on image analysis and machine learning. Sensors, 2016; 16(7): 1044.
Wang Z L. Underwood J. Walsh KB. Machine vision assessment of mango orchard flowering. Computers and Electronics in Agriculture, 2018; 151: 501–511.
Wu J G, Zhang B H, Zhou J, Xiong Y J, Gu B X, Yang X L. Automatic Recognition of Ripening Tomatoes by Combining Multi-Feature Fusion with a Bi-Layer Classification Strategy for Harvesting Robots. Sensors, 2019; 19(3): 612- 612.
Xiong J T, Lin R, Liu Z, He Z L, Tang L Y, Yang Z G Zou X J. The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment. Biosystems Engineering, 2018; 166: 44-57.
Bechar A, Vigneault C. Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 2016; 149: 94-111.
Silwal A, Davidson J R, Karkee M, Mo C K, Zhang Q, Lewis K. Design, integration, and field evaluation of a robotic apple harvester. Journal of Field Robotics, 2017; 34(6: 1140-1159.
Silwal A, Karkee M, Zhang Q. A hierarchical approach to apple identification for robotic harvesting. Transactions of the ASABE, 2016; 59(5): 1079-1086.
Guo Y M, Liu Y, Oerlemans A, Lao S Y, Lew M S. Deep learning for visual understanding: A review. Neurocomputing, 2016; 187: 27-48.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; 770-778.
Liu F, Liu Y K, Lin S, Guo W Z, Xu F, Zhang B. Fast recognition method for tomatoes under complex environments based on improved YOLO. Transactions of the Chinese Society for Agriculture Machinery, 2020; 51(6): 229-237. (in Chinese)
Vougioukas S G. Annual Review of Control, Robotics, and Autonomous Systems. Annual Reviews, 2019; 2: 365-392.
Zhang F, Chen Z J, Bao R F, Zhang C C, Wang Z H. Recognition of dense cherry tomatoes based on improved YOLOv4-LITE lightweight neural network. Transactions of the Chinese Society of Agricultural Engineering, 2021; 37(16): 270-278. (in Chinese)
Xu Z F, Jia R S, Liu Y B, Zhao C Y, Sun H M. Fast Method of Detecting Tomatoes in a Complex Scene for Picking Robots. IEEE Access, 2020; 8: 55289 - 55299.
Zhang W J, Zhao X X, Ding R R, Zhang Z, Jiang H H, Liu P Z. A Detection and Recognition Method for Tomato on Faster R-CNN Algorithm. Journal of Shandong Agricultural University (Natural Science Edition), 2021; 52(4): 624-630. (in Chinese)
Xu C, Xiong Z, Jiang X P, Deng M, Huang G C. Design and research of the cluster tomato picking robot. Modern Agricultural Equipment, 2021; 42(6): 15-23. (in Chinese)
Zhang Q, Liu F P, Jiang X P, Xiong Z, Xu C. Motion planning method and experiments of tomato bunch harvesting manipulator. Transactions of the CSAE, 2021; 39(7): 149-156. (in Chinese)
Gao F F, Fu L S, Zhang X, Majeed Y, Li R, Karkee M, et al. Multi-class fruit-on-plant detection for apple in SNAP system using Faster RCNN. Computers and Electronics in Agriculture, 2020; 176: 105634. doi: 10.1016/j.compag.2020.105634.
Suo R, Gao F F, Zhou Z X, Fu L X, Song Z Z, Dhupia J, et al. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking. Computers and Electronics in Agriculture, 2021; 182: 106052. doi: 10.1016/j.compag.2021.106052.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137-1149.
Zhao D A, Wu R D, Liu X Y, Zhao Y Y. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background. Transactions of the CSAE, 2019; 35(3): 164-173. (in Chinese)
Wang C, Bochkovskiy A, Liao H M. Scaled-YOLOv4: Scaling cross stage partial network. In: 20221 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021; pp.13024-13033. doi: 10.1109/CVPR46437.2021.01283.
Li H P, Li C Y, Li G B, Chen L X. A real-time table grape detection method based on improved YOLOv4-tiny network in complex background. Biosystems Engineering, 2021; 212: 347-359.
Xu B, Wang N Y, Chen T Q, Li M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint, 2015; arXiv:1505.00853.
Zheng Z H, Wang P, Liu W, Li J Z, Ye R G, Ren D W. Distance-IoU loss: Faster and better learning for bounding box regression. arXiv preprint, 2020; arXiv:1911.08287.
Wang C Y, Liao H M, Wu Y H, Chen P Y, Hsieh J W, Yeh I H. CSPNet: A new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020; pp.1571-1580.
Woo S, Park J C, Lee J, Lweon I. CBAM: Convolutional Block Attention Module. In: Computer Vision - ECCV, 2018; pp.3-19.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.