Autonomous trajectory tracking control method for an agricultural robotic vehicle
Abstract
Keywords: trajectory tracking, autonomy control, agricultural robotic vehicle, online PSO continuously tuned PID, dynamic pure pursuit algorithm
DOI: 10.25165/j.ijabe.20241701.7296
Citation: Yan J, Zhang W G, Liu Y, Pan W, Hou X Y, Liu Z Y. Autonomous trajectory tracking control method for an agricultural robotic vehicle. Int J Agric & Biol Eng, 2024; 17(1): 215-224.
Keywords
Full Text:
PDFReferences
Zhai Z Y, Martínez J F, Beltran V, Martínez N L. Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 2020; 170: 105256.
Ferrández-Pastor F J, Ferrández-Pastor J M, Nieto-Hidalgo M, Mora-Pascual J, Ferrández-Pastor J. Developing ubiquitous sensor network platform using Internet of Things: Application in precision agriculture. Sensors, 2016; 16(7): 1141.
Bannerjee G, Sarkar U, Das S, Ghosh I. Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 2018; 7(3): 1–6.
Bhatnagar V, Singh G, Kumar G, Gupta R. Internet of things in smart agriculture: Applications and open challenges. International Journal of Students’ Research in Technology & Management, 2020; 8(1): 11–17.
Gu H L, Wang H W. Innovative design of modern agricultural industry chain under 5G era. Value Engineering, 2019; 38(16): 69–71.
Bell T. Automatic tractor guidance using carrier-phase differential GPS. Computers and Electronics in Agriculture, 2000; 25(1-2): 53–66.
Matveev A S, Hoy M, Katupitiya J, Savkin A. Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation. Robotics and Autonomous Systems, 2013; 61(9): 973–987.
Zhang S, Liu J Y, Du Y F, Zhu Z X, Mao E R, Song Z H. Method on automatic navigation control of tractor based on speed adaptation. Transactions of the CSAE, 2017; 33(23): 48–55. (in Chinese)
Ruckelshausen A, Biber P, Dorna M, Gremmes H, Klose R Linz A, et al. BoniRob: An autonomous field robot platform for individual plant phenotyping. Precision Agriculture ’09, 2009; pp.841-847.
Scholz C, Kohlbrecher M, Ruckelshausen A, Kinski D, Mentrup D. Camera-based selective weed control application module (“Precision Spraying App”) for the autonomous field robot platform BoniRob. Proceedings InInternational Conference of Agricultural Engineering, Zurich, 2014; Paper No. C0598. Available:
Bakker T, van Asselt, Bontsema J, Müller J, van Straten G. Autonomous navigation using a robot platform in a sugar beet field. Biosystems Engineering, 2011; 109(4): 357–368.
Bakker ., Van K ., Bontsema ., Müller J, Van G S. Systematic design of an autonomous platform for robotic weeding. Journal of Terramechanics, 2010; 47(2): 63–73.
Bawden O, Ball D, Kulk J, Perez T, Russell R. A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. In: Proceedings of the 16th Australasian Conference on Robotics and Automation Australian Robotics and Automation Association (ARAA), 2014; pp.1-9.
Grimstad L, Skattum K, Solberg E, Loureiro G, From P J. Thorvald II configuration for wheat phenotyping. In: Proceedings of the IROS Workshop on Agri‐Food Robotics: Learning from Industry. 2017; 4. Available: https://agrifoodroboticsworkshop.files.wordpress.com/2017/09/agrob_2017_paper_7.pdf. Accessed on [2021-06-05].
Hossain T, Habibullah H, Islam R. Steering and speed control system design for autonomous vehicles by developing an optimal hybrid controller to track reference trajectory. Machines, 2022; 10(6): 420.
Wang R, Li Y, Fan J H, Wang T, Chen X T. A novel pure pursuit algorithm for autonomous vehicles based on salp swarm algorithm and velocity controller. IEEE Access, 2020; 8: 166525–166540.
Wallace R S, Stentz A, Thorpe C E, Moravec H, Whittaker W, Kanade T, et al. First results in robot road-following. In: IJCAI, 1985; pp.1089–1095.
Cao S X, Jin Y, Trautmann T, Liu K. Design and experiments of autonomous path tracking based on dead reckoning. Applied Sciences, 2022; 13(1): 317.
Ohta H, Akai N, Takeuchi E, Kato S, Edahiro M. Pure pursuit revisited: field testing of autonomous vehicles in urban areas. In: 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), Nagoya: IEEE, 2016; pp.7–12. doi: 10.1109/CPSNA.2016.10.
Park M W, Lee S W, Han W Y. Development of lateral control system for autonomous vehicle based on adaptive pure pursuit algorithm. In: 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Korea: IEEE, 2014; pp.1443–1447. doi: 10.1109/OCCAS.2014.6987787.
Yu L L, Yan X X, Kuang Z X, Chen B F, Zhao Y Q. Driverless bus path tracking based on fuzzy pure pursuit control with a front axle reference. Applied Sciences, 2020; 10(1): 230.
Gámez Serna C, Lombard A, Ruichek Y, Abbas-Turki A. GPS-based curve estimation for an adaptive pure pursuit algorithm. Advances in Computational Intelligence: 15th Mexican International Conference on Artificial Intelligence, MICAI 2016, Cancún: Springer International Publishing, 2017; pp.497-511. doi: 10.1007/978-3-319-62434-1_40.
Wang W J, Hsu T M, Wu T S. The improved pure pursuit algorithm for autonomous driving advanced system. In: 2017 IEEE 10th International Workshop on Computational Intelligence and Applications (IWCIA). Hiroshima: IEEE, 2017; pp.33-38. doi: 10.1109/IWCIA.2017.8203557.
Bakker T, van Asselt K, Bontsema J, Müller J, van Straten G. A path following algorithm for mobile robots. Autonomous Robots, 2010; 29: 85–97.
Han G N, Fu W P, Wang W, Wu Z S. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network. Sensors, 2017; 17(6): 1244.
Al-Mayyahi A, Wang W, Birch P. Path tracking of autonomous ground vehicle based on fractional order PID controller optimized by PSO. In: 2015 IEEE 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any: IEEE, 2015; pp.109-114.
Poultangari I, Shahnazi R, Sheikhan M. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA Transactions, 2012; 51(5): 641–648.
Kashyap A K, Parhi D R. Particle swarm optimization aided PID gait controller design for a humanoid robot. ISA Transactions, 2021; 114: 306–330.
Wang Y B, Peng X, Wei B Z. A new particle swarm optimization based auto-tuning of PID controller. In: 2008 International Conference on Machine Learning and Cybernetics, Kunming: IEEE, 2008; pp.1818-1823. doi: 10.1109/ICMLC.2008.4620701.
Salamat B, Tonello A M. Adaptive nonlinear PID control for a quadrotor UAV using particle swarm optimization. In: 2019 IEEE Aerospace Conference, Gig Sky: IEEE, 2019; pp.1-12. doi: 10.1109/AERO.2019.8741829.
Rajinikanth V, Latha K. Tuning and retuning of PID controller for unstable systems using evolutionary algorithm. International Scholarly Research Notices, 2012; 2012: 693545.
Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, et al. ROS: An open-source Robot Operating System. ICRA Workshop on Open Source Software, 2009; 3: 5.
Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, et al. Stanley: The robot that won the DARPA grand challenge. Journal of Field Robotics, 2006; 23(9): 661–692.
Tu X Y, Gai J Y, Tang L. Robust navigation control of a 4WD/4WS agricultural robotic vehicle. Computers and Electronics in Agriculture, 2019; 164: 104892.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.