Design of a high-voltage electrostatic ultrasonic atomization nozzle and its droplet adhesion effects on aeroponically cultivated plant roots
Abstract
Keywords: ultrasonic nozzle, high pressure electrostatic system, droplet size measurement, root adhesion test, droplet deposition effect
DOI: 10.25165/j.ijabe.20231602.7222
Citation: Gao J M, Guo Y N, Tunio M H, Chen X C, Chen Z J. Design of a high-voltage electrostatic ultrasonic atomization nozzle and its droplet adhesion effect on aeroponically cultivated plant roots. Int J Agric & Biol Eng, 2023; 16(2): 30–37.
Keywords
Full Text:
PDFReferences
Hayden A L, Yokelsen T N, Giacomelli G A, Hoffmann J J. Aeroponics: An alternative production system for high-value root crops. Acta Horticulturae, 2004; 629: 207-213.
Kamies R, Rafudeen M S, Farrant J. The use of aeroponics to investigate antioxidant activity in the roots of Xerophyta viscosa. Plant Growth Regulation, 2010; 62(3): 203-211.
Rajan R, Pandit A B. Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics, 2001; 39(4): 235-255.
Laryea G N, No S Y. Effect of fan speed and electrostatic charge on deposition of orchard canopy sprays. Atomization & Sprays, 2005; 15(15): 133-144.
Ru Y, Zhou H, Zheng J. Design and experiments on droplet charging device for high-range electrostatic sprayer. Pesticides in the Modern World - Pesticides Use and Management, InTech, 2011. doi: 10.13031/2013.24589.
Appah S, Wang P, Ou M, Gong C, Jia W. Review of electrostatic system parameters, charged droplets characteristics and substrate impact behavior from pesticides spraying. Int J Agric & Biol Eng, 2019; 12(2): 1-9.
Al-Mamury M, Balachandran W, Al-Raweshidy H, Manivannan N. Computation model of electrostatic spraying in agriculture Industry. Proceedings of the 2014 COMSOL Conference in Cambridge, 2014.
Bren Tj Es A, Pozarlik A K, Brem G. Estimating droplet charge in numerical simulations of charged sprays. Journal of Electrostatics, 2021; 112. doi: 10.1016/j.elstat.2021.103591.
Herrada M A, López-Herrera J M, Gañán-Calvo A M, Vega E J, Montanero J M, Popinet S. Numerical simulation of electrospray in the cone-jet mode. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012; 86(2): 026305. doi: 10.1103/PhysRevE.86.026305.
Wei W, Zhaolin, Gu, Sheng, Wang, et al. Numerical simulation of the cone–jet formation and current generation in electrostatic spray—modeling as regards space charged droplet effect. Journal of Micromechanics and Microengineering, 2012; 23(1): 15004-15014.
Laryea G N, No S Y. Development of electrostatic pressure-swirl nozzle for agricultural applications. Journal of Electrostatics, 2003; 57(2): 129-142.
Pascuzzi S, Cerruto E. Spray deposition in "tendone" vineyards when using a pneumatic electrostatic sprayer. Crop Protection, 2015; 68: 1-11.
Patel MK, Praveen B, Sahoo HK, Patel B, Kumar A, Singh M, et al. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture, 2017; 127: 280-288.
Patel B, Singh M, Mishra P, Manes G, Patel M. Efficacy of the prototype electrostatic nozzle for cotton crops. African Entomology, 2021; 29(2): 471-478.
Gao J, Zhang J, Lu D. Design and atomization experiments of an ultrasonic atomizer with a levitation mechanism. Applied Engineering in Agriculture 2016; 32(4): 353-360.
Chen J, Jiang W, Han C, Liu Y. Study on supersonic swirling condensation characteristics of CO2 in Laval nozzle. Journal of Natural Gas Science and Engineering, 2020; 84: 103672. doi: 10.1016/j.jngse.2020.103672.
Gao X, Li C, Zhang D, Gao H, Han X. Numerical analysis of the activated combustion high-velocity air-fuel (AC-HVAF) thermal spray process: A survey on the parameters of operation and nozzle geometry. Surface and Coatings Technology. 2020. doi: 10.1016/j.surfcoat.2020.126588.
Suleymanov M A, Tsoy O A. Research of gas jet pumps with diagraphic, conical and laval nozzles. Oil and Gas Technologies, 2020; 129: 53-57.
Hansmann B R, Abel B. Kinetics in cold laval nozzle expansions: From atmospheric chemistry to oxidation of biomolecules in the gas phase. ChemPhysChem, 2010; 8(3): 343-356.
Planche MP, Khatim O, Dembinski L, Bailly Y, Coddet C. Evaluation of the splats properties and relation with droplets diameters in atomization process using a De Laval Nozzle. Materials Chemistry and Physics, 2013; 137(3): 681–688.
Kudryavtsev Y, Ferrer R, Huyse M, Bergh P, Duppen PV. The in-gas-jet laser ion source: resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nuclear Instruments & Methods in Physics Research 2013; 297. doi: 10.1016/j.nimb.2012.12.008.
Zadvornaya A, Creemers P, Dockx K, Ferrer R, Papadakis P. Characterization of supersonic gas jets for high-resolution laser ionization spectroscopy of heavy elements. Physical Review X 2018; 8(4). doi: 10.1103/PhysRevX.8.041008.
Sallam K A, Aalburg C, Faeth G M. Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA Journal, 2004; 42(12): 2529-2540.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.